

Preliminary Storm Drainage Report

Sherwood Oldtown Apartments Sherwood, Oregon

Applicant: Edge Development 2233 NE 23rd Ave. Suite 100 Portland, Oregon 97210 503.292.7733

Engineer:

Pioneer Design Group, Inc. 9020 SW Washington Sq. Rd. Suite 170 Portland, Oregon 97223 503.643.8286

VALID THROUGH 12-31-22

Date: October 22, 2021 Revised: December 27, 2021 Prepared By: Jacob Bibb Reviewed By: Luke Lappin, P.E. PDG Job No. 112-026

Land Use Planning • Civil Engineering • Land Surveying • Landscape Architecture • Construction Management 9020 SW Washington Square Rd. Suite 170 • Portland, Oregon 97223 • 503.643.8286 www.pd-grp.com

TABLE OF CONTENTS

1.0	INTRODUCTION2				
2.0	SITE DESCRIPTION AND LOCATION	2			
3.0	EXISTING CONDITIONS				
	3.1 SITE TOPOGRAPHY	2			
	3.2 SOIL TYPE	3			
	3.3 RUNOFF CURVE NUMBERS	3			
4.0	PROPOSED IMPROVEMENTS	3-5			
	4.1 HYDROLOGY/HYDRAULIC METHODOLOGY	4			
	4.2 WATER QUALITY	4-5			
	4.3 DETENTION & HYDROMODIFICATION	5-6			
	4.4 CONVEYANCE	6-7			
5.0	DOWNSTREAM ANALYSIS	6			
6.0	CONCLUSION	7			
7.0	VICINITY MAP	8			
8.0	ENGINEERING CALCULATIONS AND SPREADSHEETS	9-29			
	8.1 SOIL TYPE EXHIBITS	10-13			
	8.2 EXISTING CONDITIONS PLAN	14			
	8.3 COMPOSITE UTILITY PLAN	15			
	8.4 SOIL FEATURES FOR WASHINGTON COUNTY	16			
	8.5 SCS RUNOFF CURVE NUMBERS (TR-55)	17-18			
	8.6 MANNING'S 'N' VALUES	19			
	8.7 IMPERVIOUS AREA CALCULATIONS AND EXHIBITS	20-21			
	8.8 PREDEVELOPED TIME OF CONCENTRATION AND EXHIBIT	22-23			
	8.9 DEVELOPED TIME OF CONCENTRATION				
		، ۲۵-۲۷			
		20 29			
_					
TECHN					
APPEN APPEN	NDIX 'A' – CITY OF SHERWOOD UTILITY MAPS & HYDROMODIFICATION MAF NDIX 'B' – HYDROCAD REPORT	J			
APPEN	NDIX 'C' – FLOW CONTROL MANHOLE DETAIL				
APPEN	NDIX 'D' – DETENTION CHAMBER SPECIFICATIONS				
APPEN	NDIX 'E' – FILTER CATCHBASIN DETAIL				
APPEN	NDIX 'F' – OPERATIONS & MAINTENANCE PLAN				
APPEN	NDIX 'G' – STORMWATER REPORT FOR THE COLUMBIA STREET REGIONAL W	/ATER			

QUALITY FACILITY

1.0 INTRODUCTION

This report represents the **preliminary** storm drainage and stormwater analysis for the Sherwood Oldtown Apartments development project. The basis of this report is to comply with the City of Sherwood, Clean Water Services (CWS), and the State of Oregon's regulations and engineering standards as well as the latest edition of the Oregon Plumbing Specialty Code (OSPC). Compiled in this report are the design criteria for the site, the hydrologic methodology, and the **preliminary** drainage analysis.

2.0 SITE DESCRIPTION AND LOCATION

The proposed project is a 3-parcle partition for the development of a 24-unit apartment building with associated parking and utilities. There will also be two single-family detached homes on separate parcels. The property is identified as tax lot 400 of Tax Map 2S132BD and is approximately 1.18 acres. The site is currently addressed as 15665 SW Willamette Street and is located east of SW Pine Street and south of SW Columbia Street. The property lies within the Old Town Overlay District (Old Cannery Area) and is zoned High Density Residential (HDR) by the City of Sherwood's land use ordinance.

3.0 EXISTING CONDITIONS

The site is currently vacant and well vegetated with trees, shrubs, and grasses. A wetland has been identified on the property. Based on available jurisdictional maps, the site does not contain a 100-year floodplain or regionally significant habitat.

The site has frontage along three public streets including SW Pine Street to the west, SW Willamette Street to the south and SW Columbia Street to the north. Existing City storm, sanitary and water systems surround the property and are available for use to serve the development.

3.1 <u>Site Topography</u>

The property is relatively flat, sloping from the northeast to the southwest. The high point of the site is along the north boundary line an elevation of approximately 196 feet with a relative low point due to the wetlands in the southwest corner of the property at an approximate elevation of 189 feet.

The properties abutting the site are all zoned High Density Residential. Parcels across SW Columbia Street, north of the site, are zoned Retail Commercial (RC) while the properties south of the subject site are zoned Medium Density Residential Low (MDRL).

3.2 <u>Soil Type</u>

The predominant soil found on site is a mix of Aloha silt loam and Huberly silt loam with the corresponding hydrologic soil group (HSG) designation 'C/D', as shown on the attached Natural Resources Conservation Service (NRCS) soil survey for Washington County.

Table 3-2: Hydrologic Soil Group Ratings				
NRCS Map Unit Symbol	Hydrologic Soil Group Rating			
1	Aloha silt loam	C/D		
2225A	Huberly silt loam, 0 to 3 percent slopes	C/D		

3.3 <u>Runoff Curve Numbers</u>

Predeveloped pervious areas will use a composite Runoff Curve Number (RCN) of 73.5 corresponding to "Woods" cover type (HSG designations 'C' and 'D') in good condition. Developed pervious areas will use a composite Runoff Curve Number (RCN) of 77 corresponding to "Open Space" cover type (HSG designations 'C' and 'D') in good condition. A runoff curve number of 98 will be used for all predeveloped and developed impervious areas (refer to the *SCS Runoff Curve Numbers* Exhibit).

Table 3.3 – Runoff Curve Numbers				
Land Description Existing RCN Proposed RCN				
Woods, Good Condition	73.5	N/A		
Open Space, Good Condition	N/A	77		
Impervious	98	98		

4.0 **PROPOSED IMPROVEMENTS**

We will be constructing impervious surfaces as a result of the public street improvements and private driveway along with the eventual townhomes and sidewalks. Private utilities will be extended into the site for the use of the mixed-use development.

The project will treat its collected runoff through a combination of LIDA planters, rain gardens, and proprietary single-cartridge stormfilter catch basins. Underground Stormtech detention chambers will provide detention for the site. The proposed storm drainage system will convey runoff into an existing public main located in SW Pine Street.

4.1 <u>Hydrology/Hydraulic Methodology</u>

Using the Santa Barbara Urban Hydrograph (SBUH) method based on a Type 1A rainfall distribution, the site has been analyzed to determine the proposed peak runoff rates for the 2, 5, 10, and 25-year 24-hour storm event. The SBUH method uses runoff curve numbers in conjunction with the property's hydrologic soil group to model the site's permeability.

A predeveloped time of concentration of 97.7 minutes and a developed time of concentration of 6.5 minutes were calculated using the methodology outlined in the TR-55 technical manual (*refer to the Time of Concentration Calculations and Exhibits*).

Rainfall depths for all storm events used in the calculations and design of the proposed storm drainage system are found in latest edition of Clean Water Services (CWS) Design and Construction Standards and as shown below.

Table 4.1 – 24-Hour Rainfall Depth (CWS)						
Recurrence Interval, Years251025						
24-Hour Depths, Inches	2.50	3.10	3.45	3.90		

4.2 <u>Water Quality</u>

As required by Clean Water Services, we will treat runoff from any new impervious surface created as a result of the proposed development and for any existing impervious areas to remain. The water quality facilities will be designed to treat storm water generated by 0.36 inches of precipitation falling in 4 hours with an average storm return period of 96 hours. The water quality facilities, in conjunction with the sumped catch basins, will remove a minimum of 65% of the Total Phosphorous (TP) from the storm water runoff.

Owners of new development and other activities which create or modify 1,000 square feet or greater of impervious surfaces, or increase the amount of stormwater runoff or pollution leaving the site, are required to implement or fund permanent water quality approaches to reduce contaminants entering the storm and surface water system.

Runoff from the majority of the site (Lot 1) will be treated in two rain gardens located on the southwest end of the site and two LIDA planters located next to the drive aisle. In areas of the parking lot where runoff cannot be directed into these facilities, treatment will be provided by proprietary single-cartridge stormfilter catch basins (*refer to Appendix 'E' – Stormfilter Catch Basin Detail*). These facilities will provide treatment for all contributing onsite impervious surfaces in accordance with the Clean Water Services' *"Design and Construction Standard's for Sanitary and Storm Water Management"* (R&O 19-22) Section 4.04.

Parcels 2 and 3 will be partitioned into individual lots. Due to site constraints, it is impractical and inefficient to provide water quality treatment for runoff from the two single-family lots at the south end of the property. Instead, we are requesting a water quality fee-in-lieu payment for these lots. The total impervious area requiring fee-in-lieu is 5,280 SF.

The new impervious area within public right-of-way created by widening SE Willamette Street and installing new sidewalks, as well as impervious areas modified by installing driveway approaches, are not collected and will not be treated with this project. An existing downstream regional public water quality facility located on SW Columbia Street adjacent to the railroad treats surface water from the downtown area (see Appendix 'G' – Stormwater Report for the Columbia Street Regional Water Quality Facility).

Table 4.2 – Site Cover Type (Existing)					
Cover Type Area (sq. ft.) Area (acres)					
Impervious Area	0	0.00			
Pervious Area	50,555	1.16			
Total	50,555	1.16			

Table 4.2.1 – Site Cover Type (Proposed)					
Cover Type Area (sq. ft.) Area (acres)					
Impervious Area	33,839	0.78			
Pervious Area	16,716	0.38			
Total	50,555	1.16			

Except for the two single-family lots, all on-site impervious areas will be treated per CWS requirements by the aforementioned LIDA planters, rain gardens, and filter catch basins.

4.3 <u>Detention & Hydromodification</u>

Water quantity control (detention) is being provided with this development in underground detention chambers as per the requirements of a Category 2 Hydromodification assessment. To satisfy the hydromodification criteria, the project proposes to use Peak-Flow Matching Detention in accordance with Clean Water Services' Design and Construction Standard's for Sanitary and Storm Water Management Section 4.08.6.

Due to topographic constraints, it is not feasible to provide detention for runoff from the two single-family lots. In exchange, the detention facility for the apartment site will over-detain its stormwater to include the runoff not being managed by the two residential properties.

Underground detention will be provided by StormTech ADS SC-310 detention chambers. Runoff from the site will flow into seven rows of 26 chambers located underneath the parking lot. 12" of drainage rock will be placed below the chambers, and 6" of rock will be placed above them. The bottom of the drainage rock will be at an elevation of 187.69, approximately 5 feet below the top of pavement.

In the 25-year storm, the water level in the underground detention facility will rise to an elevation of 102.81, near the top of the 6" of drainage rock on top of the chambers.

A flow control manhole with two orifices will attenuate the post-developed peak runoff for the 2, 5, 10-year storm events to the respective 50%-2 year, 5-year, and 10-year predeveloped peak flows for the facility. Orifice "A" will be sized to attenuate the 2-year storm, while Orifice "B" will be set above the 2-year storm elevation to attenuate larger storms. The top of the baffle wall will be set at an elevation of 102.78 to provide emergency overflow for the 25-year and 100-year storms. The underground detention facility will have a final total storage volume of 5,816 cubic feet (refer to *Appendix B*).

Table 4.3 – Underground Detention						
Storm Event (yr) Pre-Developed (cfs) Developed (cfs) Released Outflow (cfs)						
2	0.04	0.49	0.02			
5	0.08	0.64	0.08			
10	0.11	0.73	0.11			

4.4 <u>Conveyance</u>

The conveyance system for the site consists of an underground pipe system, underground detention facility, roof drains, and filtered catch basins. Stormwater from the site will be conveyed to an existing 27" storm system located in SW Pine Street. As per the requirements of CWS, the drainage system will be designed to convey the 25-year storm event and comply with the requirements of the Uniform Plumbing Code.

The pipes leading from the underground detention facility to the existing storm main will be 12" PVC at a slope of 0.005 ft/ft. Using a Manning's 'n' value of 0.013, a 12" pipe at a slope of 0.005 ft./ft. has capacity to convey the 25-year storm event for the entire

site. All storm pipes draining to the underground detention facility will be 6" PVC, with a minimum slope of 0.010 ft/ft. Using a Manning's 'n' value of 0.013, a 6" pipe at a slope of 0.010 ft./ft. has enough capacity to convey the 25-year storm event for half of the site (refer to the *Stormwater Conveyance Calculations*).

5.0 DOWNSTREAM ANALYSIS

Per CWS Section 2.04.2.m.3.A, any development constructing new impervious surface of greater than 5,280 square feet, or collecting and discharging greater than 5,280 square feet of impervious area shall perform a capacity and condition analysis of existing downstream storm facilities and conveyance elements receiving flow from the proposed development. The analysis shall extend downstream shall continue for one-quarter (1/4) of a mile; or until the additional flow constitutes less than 5 percent of the total tributary drainage flow.

Runoff from the development is discharged into an existing 27-inch storm main in SW Pine Street. The existing main conveys stormwater downstream to the southwest where it connects to a 30" pipe in SW Odge Gribble Lane before upsizing into a 36" and 42" pipe and ultimately discharging into the Columbia Street Regional Water Quality Facility.

As shown in Appendix 'G' – Stormwater Management Report for the Columbia Street Water Quality Facility, a downstream analysis of existing and future stormwater improvements for this storm network was conducted determining the system had capacity to convey runoff from the proposed development.

Furthermore, detention is provided on site and the development will not increase peak runoff nor exacerbate any potential downstream restrictions.

6.0 CONCLUSION

Based on the supporting stormwater calculations and attached analysis, it is the opinion of Pioneer Design Group that the development of the Sherwood Oldtown Apartments project will not adversely affect the existing downstream drainage system or adjacent property owners. Therefore, all the requirements associated with the City of Sherwood and Clean Water Services' design and construction standards have been met for this project.

7.0 VICINITY MAP

ENGINEERING CALCULATIONS & SPREADSHEETS

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Aloha silt loam	C/D	0.6	48.9%
2225A	Huberly silt loam, 0 to 3 percent slopes	C/D	0.6	51.1%
Totals for Area of Interest			1.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

LEGEND		
	RIGHT-OF-WAY LINE	
	BOUNDARY LINE	
	EXISTING LOT LINE	
	CENTER LINE	
XSD	STORM DRAINAGE LINE	08
XSS	SANITARY SEWER LINE	U U
XW XW		
X X	EXISTING FENCE	r
	CONIFEROUS TREE (DBH)	
\bigcirc	DECIDUOUS TREE (DBH)	
	CATCH BASIN/DRAIN INLET	
0	STORM MANHOLE	
·CO	STORM CLEANOUT	
0	SANITARY MANHOLE	
o MV	WATER VALVE	
°FH	FIRE HYDRANT ASSEMBLY	
¤WM	WATER METER	
٥GV	GAS VALVE	
• SGN	STREET SIGN	
TRANS	ELECTRICAL TRANSFORMER	
• PP	POWER POLE	
BR	BIKE RACK	
۰LP	LIGHT POLE	
•	FOUND SURVEY MONUMENT	
4	EXISTING CONCRETE	
	EXISTING ASPHALT PAVEMENT	DN ,
×	CONIFEROUS TREE TO BE REMOVED	IS A

DECIDUOUS TREE TO BE REMOVED

DEMOLITION NOTES

 \bigotimes

- EXISTING CURB AND SIDEWALK TO BE REMOVED FRONTING THE SITE ON SW WILLAMETTE STREET. (1)
- A PORTION OF THE EXISTING CURB AND ASPHALT SIDEWALK TO BE REMOVED ALONG SW PINE STREET. (2)
- A PORTION OF THE EXISTING CURB, SIDEWALK, AND LIDA FACILITIES TO BE REMOVED ALONG SW COLUMBIA STREET. 3
- EXISTING TREES TO BE PROTECTED DURING CONSTRUCTION. 4

GENERAL NOTES

1. TOPOGRAPHIC SURVEY PROVIDED BY CASWELL/HERTEL SURVEYORS INC., DATED APRIL 12, 2021.

TREE TABLE				
TREE DIAMETER	QUANTITY			
DECIDUOUS, 7-12" DBH	29			
DECIDUOUS, 12-18" DBH 18				
DECIDUOUS, 18-24" DBH	9			
DECIDUOUS, >24" DBH	12			
EVERGREEN, 10" DBH	1			
EVERGREEN, 35" DBH	1			

OREGON 97140 SHERWOOD OLDTOWN APARTMENTS 15665 SW WILLAMETTE ST., SHERWOOD, EXISTING CONDITIOI DEMOLITION PLAN /2021 72/60 72/60 Date Date Date REF. NI DE NI N/A N/A Reviewed by Project No. ą ۲ ר Project SHERWOOD OLDTOWN APARTMENT 112-026 Type PLANNING Sheet P1.0

GENERAL UTILITY NOTES

- 1 INSTALL CLEANOUTS EVERY 100' AND AT ALL BENDS 45° OR GREATER.
- ALL ONSITE SANITARY AND STORM SEWER SYSTEMS SHALL BE PRIVATE 2.
- THE CONTRACTOR SHALL FIELD VERIFY THE LOCATION OF EXISTING 3 UTILITIES PRIOR TO BEGINNING CONSTRUCTION
- PRIVATE WATERLINES 3" AND SMALLER SHALL BE TYPE 'K' COPPER TUBING 4. OR AS NOTED OTHERWISE.
- STUB DOMESTIC WATER CONNECTION AND FIRE LINE 5.0 FEET FROM 5. BUILDING, REFER TO PLUMBING PLANS FOR CONTINUATION
- RESTRAINT JOINTS SHALL MEET OREGON STATE PLUMBING CODE AND 6. NFPA SECTION 10.8
- COORDINATE WATER AND SEWER UTILITY LOCATIONS AT BUILDING WITH PLUMBING PLANS. 7.

STORM SEWER NOTES

INSTALL 60° MANHOLE OVER EXISTING 27" STORM SEWER LINE. RIM = 190.19 12" IE IN (NE) = 186.90 $\langle 1 \rangle$ 27" IE IN (SE) = 185.65 27" IE OUT (NW) = 185.65 INSTALL 60" FLOW CONTROL MANHOLE. $\langle 2 \rangle$ RIM = 192.36 12" IE IN (NE) = 187.56 12" IE OUT (SW) = 187.36 7 ROWS OF 26 DETENTION CHAMBERS (STORMTECH ADS SC-310) 12" ROCK BASE, 6" ROCK COVER $\langle 3 \rangle$ ROCK BOTTOM ELEV = 187.69 CHAMBER BOTTOM ELEV = 188.69 CONNECT PROPOSED BUILDING DOWNSPOUTS TO 6" SD ROOF $\langle 4 \rangle$ DRAIN LEADER. CONSTRUCT 12" SQ. TRAPPED CATCH BASIN TO COLLECT $\left< 5 \right>$ RUNOFF FROM ADJACENT LOTS. PROPOSED STORMFILTER CARTRIDGE CATCHBASIN TO TREAT RUNOFF FROM PARKING LOT. 6 CONSTRUCT CURB CUTS TO DIRECT RUNOFF INTO RAIN $\langle 7 \rangle$ GARDEN $\left< 8 \right>$ PROPOSED LIDA PLANTERS (9) CONSTRUCT STORM SEWER STUB FOR PATIO DRAINAGE RECONECT EXISTING PLANTERS ON EAST AND WEST SIDE OF $\langle 10 \rangle$ PROPOSED DRIVEWAY WITH 4" PVC SD. NEW IRRIGATION PIPING TO BE SLEEVED THROUGH DRIVEWAY.

WATER NOTES

1	CONNECT TO EXISTING 8" WATERLINE.
2	INSTALL 2* WATER METER IN PLANTER STRIP.
3	INSTALL DOUBLE CHECK BACKFLOW PREVENTER FOR DOMESTIC SERVICE.
4	INSTALL 4" FIRE DOUBLE CHECK DETECTOR IN 577-WA VAULT WITH J-SALH20 BILCO DOOR. MONITORING DEVICES TO BE PROVIDED FOR ELECTRICAL INTERCONNECTION TO THE FIRE CONTROL PANEL. COORDINATE ALARM SETTINGS WITH ELECTRICAL PLANS AND FIRE SPRINKLER CONTRACTOR.
CVV	

SANITARY SEWER NOTES

1 INSTALL SANITARY SEWER MANHOLE OVER EXISTING 8" SEWER LINE.

Soil name and map symbol	Hydro- logic	Flooding		
	group	Frequency	Duration	Months
Aloha:	<u> </u>	1 2		
1	С	NONE	NONE	NONE
Amity:				
2	С	NONE	NONE	NONE
Astoria:				
3E, 3F	В	NONE	NONE	NONE
Briedwell:	п	NONE	NONE	NONE
4B, 5B, 5C, 5D	Б	NONE	NUNE	NONE
	R	NONE	NONE	NONE
ob, oc Cascade:	U U	TIOTIL	TIOTIL	TIONE
7B 7C 7D 7E 7F	С	NONE	NONE	NONE
Chehalem:	č	110112		
8C	С	NONE	NONE	NONE
Chehalis:				
9, 10	В	COMMON	BRIEF	NOV-MAR
Cornelius:				
11B, 11C, 11D, 11E, 11F:				
Cornelius part	С	NONE	NONE	NONE
Kinton part	C	NONE	NONE	NONE
Cornelius Varient:				
12A, 12B, 12C	C	NONE	NONE	NONE
Cove:		COMMON	DDIEE	
13, 14 Destant	D	COMMON	BKIEF	DEC-APK
Dayton: 15	σ	NONE	NONE	NONE
15 Delena	D	INOTAL	INOINE	INOTAL
160	D	NONE	NONE	NONE
Goble:	2	1.01.12	110112	110112
17B, 17C, 17D, 17E, 18E, 18F	С	NONE	NONE	NONE
Helvetia:				
19B, 19C, 19D, 19E	С	NONE	NONE	NONE
Hembre:				
20E, 20F, 20G	В	NONE	NONE	NONE
Hillsboro:				
21A, 21B, 21C, 21D	В	NONE	NONE	NONE
Hubberly:	5	NONE	NONE	NONE
22	D	NONE	NONE	NONE
Jory:	C	NONE	NONE	NONE
23B, 23C, 23D, 23E, 23F Vilobic:	C	NONE	NONE	NONE
Kilchis part	C	NONE	NONE	NONE
Klickitat part	B	NONE	NONE	NONE

SOIL FEATURES FOR WASHINGTON COUNTY

RUNOFF CURVE NUMBERS (TR55)

Cover description		CN f	for hydrol	ogic soil gr	oup
	Average percent				
Cover type and hydrologic condition	impervious area ²	А	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ³ :					
Poor condition (grass cover <50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover >75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc. (excluding right-of-					
way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) ⁴		63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert					
shrub with 1- to 2-inch sand or gravel mulch and basin borders)					
		96	96	96	96
Urban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas (pervious areas only, no vegetation) ⁵	77	86	91	94	
Idle lands (CNs are determined using cover types similar to those in table 2-2c)					

Table 2-2a: Runoff curve numbers for urban areas

1: Average runoff condition, and $I_a = 0.2S$.

2: The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas hava a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

3: CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

4: Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

5: Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

RUNOFF CURVE NUMBERS (TR55)

		Curve numbers for hydrologic soil		gic soil	
Cover description			gro	up	
	Hydrologic				
Cover type	condition	А	В	С	D
Pasture, grassland, or range continuous forage for grazing					
<50% ground cover or heavily grazed with no mulch.	Poor	68	79	86	89
50% to 75% ground cover and not heavily grazed.	Fair	49	69	79	84
>75% ground cover and lightly or only occasionally grazed.					
	Good	39	61	74	80
Meadow continuous grass, protected from grazing and generally					
mowed for hay		30	58	71	78
Brush – weed-grass mixture with brush as the major element					
<50% ground cover	Poor	48	67	77	83
50% to 75% ground cover	Fair	35	56	70	05 77
>75% ground cover	Cood	30^{2}	19	65	72
	0000	30	40	05	73
Woods – grass combination (orchard or tree farm) ³	Poor	57	73	82	86
	Fair	43	65	76	82
	Good	32	58	72	79
Woods					
Forest litter, small trees, and brush are destroyed by heavy					
grazing or regular burning.	Poor	45	66	77	83
Woods are grazed but not burned, and some forest litter covers					
the soil.	Fair	36	60	73	79
Woods are protected from grazing, and litter and brush					
adequately cover the soil.	Good	30 ²	55	70	77
Formsteads buildings lange driveways and surrounding lots					
r amisteaus bundnigs, fanos, uriveways, and surrounding fots		59	74	82	86

Table 2-2c: Runoff curve numbers for other agricultural lands

1: Average runoff condition, and $I_a = 0.2S$.

2: Actual curve number is less than 30; use CN = 30 for runoff computations.

3: CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

MANNING'S "n" VALUES

SHEET FLOW EQUATION MANNING'S VALUES	n _s
Smooth Surfaces (concrete, asphault, gravel, or bare hand packed soil)	0.011
Fallow Fields or loose soil surface (no residue)	0.05
Cultivated soil with residue cover ($\leq 20\%$)	0.06
Cultivated soil with residue cover $(> 20\%)$	0.17
Short prairie grass and lawns	0.15
Dense grasses	0.24
Bermuda grasses	0.41
Range (natural)	0.13
Woods or forest with light underbrush	0.40
Woods or forest with dense underbrush	0.80
SHALLOW CONCENTRATED FLOW (after initial 300 ft of sheet flow, K = 0.1)	k _s
Forest with heavy ground litter and meadows $(n = 0.010)$	3
Brushy ground with some trees $(n = 0.060)$	5
Fallow or minimum tillage cultivation ($n = 0.040$)	8
High grass $(n = 0.035)$	9
Short grass, pasture and lawns $(n = 0.030)$	11
Nearly bare ground $(n = 0.25)$	13
Paved and gravel areas ($n = 0.012$)	27
CHANNEL FLOW (Intermittent) (At the beginning of all visible channels, $R = 0.2$)	k _c
Forested swale with heavy ground cover $(n = 0.10)$	5
Forested drainage course/ravine with defined channel bed ($n = 0.050$)	10
Rock-lined waterway ($n = 0.035$)	15
Grassed waterway ($n = 0.030$)	17
Earth-lined waterway (n = 0.025)	20
CMP pipe ($n = 0.024$)	21
Concrete pipe (n = 0.012)	42
Other waterways and pipe 0.508/n	
CHANNEL FLOW (continuous stream, R = 0.4)	k _c
Meandering stream ($n = 0.040$)	20
Rock-lined stream $(n = 0.035)$	23
Grass-lined stream ($n = 0.030$)	27
Other streams, man-made channels and pipe $(n = 0.807/n)$	

8:30:01 AM 10/20/2021 B:\Projects\112-026-19\Engineering\Hydro\Preliminary\112-026 Impervious Areas.dwg

<u>NSITE ONLY)</u>	PIONEER DESIGN GROUP CML ENGINEERING • LAND SURVEYING • LANDSCAPE ARCHITECTURE PORTLAND. USE PLANNING • LANDSCAPE ARCHITECTURE PORTLAND. OREGON HONOLULUL, HAWAII PH: 503.643.8286 PH: 808.753.2376 MMW.PD-GRP.COM
<u>= 50,555 SF (1.16 AC)</u> = 50,555 SF (1.16 AC)	10/2021 10/2021 10/2021
$\frac{= 0 \text{ SF}}{= 0 \text{ SF}}$	Date Date REF.
(0.00 AC)	/ JPB JPB y JPB 112-026 :
$= 9,003 \text{ SF} \\= 3,836 \text{ SF} \\= 15,720 \text{ SF} \\\hline 6 \text{ AREA} = 33,839 \text{ SF} \\(0.78 \text{ AC})$	Designed by Drawn by Reviewed b Project No. Horiz. Scale: Vert. Scale:
	112-026 IMPERVIOUS AREAS.DWG
SCALE 0 20 40	Project SHERWOOD OLDTOWN APARTMENTS No. 112-026 Type PLANNING Sheet
1 INCH = 40 FEET	1 of 1

IMPERVIOUS AREA CALCULATIONS

JOB NUMBER:112-026PROJECT:Sherwood Oldtown ApartmentsFILE:11226_Prelim Hydro.xls

NEW IMPERVIOUS AREA

	33,839.00 ft ²	0.78 ac
PRIVATE STREET PAVEMENT	15,720.00 ft ²	
SIDEWALKS	3,836.00 ft ²	
APARTMENT BUILDINGS	9,003.00 ft ²	
2 LOTS AT 2,640-SF IMPERVIOUS AREA / LOT	5,280.00 ft ²	

EXISTING IMPERVIOUS AREA

EXISTING PAVEMENT	0.00 ft ²		
	0.00 ft ²	0.00 ac	
Total Shed Area	50,555.00 ft ²	1.16 ac	
% Impervious	0.00 11	0.00 ac	
Proposed Impervious Area % Impervious	33,839.00 ft ²	0.78 ac 66.9 %	

100

PREDEVELOPED TIME OF CONCENTRATION

JOB NUMBER:	112-026			
PROJECT:	Sherwood Oldtown A	partments		
FILE:	11226_Prelim Hydro.	xls		
				Accum.
LAG ONE: SHEE	I FLOW (FIRST 300	FEET)		Tc
Tt = Travel time		0.00		
Manning's "n " =		0.80		
Flow Length, $L =$		300 ft	(300 ft. max.)	
P = 2-year, 24hr st	orm =	2.5 in		
Slope, $S_0 =$		0.023 ft/ft		
$T_T = \frac{(0.42)}{(P)^{0.4}}$	$\frac{(n*L)^{0.8}}{(S_0)^{0.4}}$	96.33 min.		96.33 min.
LAG TWO: SHAI	LOW CONCENTRAT	ED FLOW (NEXT 2	6 FEET)	
Tc Velocity factor,	k=		3	
Slope, $S_0 =$		0.	012 ft/ft	
$V = k \sqrt{S_0}$		(0.33 ft/s	
Flow Length, $L =$		26 ft		
$T = \frac{L}{L}$		1	1.32 min.	97.65 min.
(6U)(V)				
	TOTAL PREDEVE	LOPED TIME OF C	CONCENTRATION (Tc) =	97.65 min.

DEVELOPED TIME OF CONCENTRATION

JOB NUMBER:	112-026
PROJECT:	Sherwood Oldtown Apartments
FILE:	11226_Prelim Hydro.xls

Catchment Time	5 min.
Longest Run of Pipe	264 ft
Velocity of Flow	3 ft/s
Time in Pipe = $(264 \text{ ft})/(3.00 \text{ ft/s}) =$	88 s
TOTAL DEVELOPED Tc =	6.47 min.

NORTH RAIN GARDEN CALCULATIONS

JOB NUMBER:	112-026
PROJECT:	Sherwood Oldtown Apartments
FILE:	11226_Prelim Hydro.xls

REFERENCES:

1. Clean Water Services R&O 19-05.

2. Discussions with Clean Water Services.

0.36 inches
4 hours
96 hours
2 weeks

IMPERVIOUS AREA:

Roof Areas:	0.10 acres
Paved Areas:	0.06 acres
Impervious Area:	0.16 acres

Design Inflow = $(0.16 \text{ ac})^{*}(43560 \text{ ft}^{2}/\text{ac})^{*}(0.36 \text{ in} / 4.0 \text{ hrs}) =$

VOLUME CALCULATION:

WATER QUALITY VOLUME = (0.16 acres)(43560 sqft/acre)(0.36 inch)/(12 in/ft) =	209 ft ³
--	---------------------

0.01 cfs

RAIN GARDEN PARAMETERS:

Bottom Area =	760 ft^2	
Side Slopes =	3 :1	
Treatment Depth =	6 in	
Treatment Area =	959 ft^2	
Storage Volume =	430 ft ³	_
Assumed Infiltration Rate =	0.2 in/hr (Per CW	/S R&O 19-05, Table 4-5)
Factor of Safety =	2	
Design Infiltration Rate =	0.1 in/hr	
Infiltration Flow Rate =	7.99 ft ³ /hr	
Time to Infiltrate WQ Volume =	26.2 hours	(Maximum 36 hours)

SOUTH RAIN GARDEN CALCULATIONS

JOB NUMBER:	112-026
PROJECT:	Sherwood Oldtown Apartments
FILE:	11226_Prelim Hydro.xls

REFERENCES:

1. Clean Water Services R&O 19-05.

2. Discussions with Clean Water Services.

0.36 inches
4 hours
96 hours
2 weeks

IMPERVIOUS AREA:

Roof Areas:	0.00 acres
Paved Areas:	0.20 acres
Impervious Area:	0.20 acres

Design Inflow = (0.2 ac)*(43560 ft^2/ac)*(0.36 in / 4.0 hrs) =

VOLUME CALCULATION:

WATER QUALITY VOLUME = (0.2 acres)(43560 sqft/acre)(0.36 inch)/(12 in/ft) =	261 ft'
---	---------

0.02 cfs

RAIN GARDEN PARAMETERS:

Bottom Area =	585 ft ²	
Side Slopes =	3 :1	
Treatment Depth =	6 in	
Treatment Area =	1009 ft^2	
Storage Volume =	399 ft ³	
Assumed Infiltration Rate =	0.2 in/hr (Per CWS R&O 19-05, Table 4-5	5)
Factor of Safety =	2	
Design Infiltration Rate =	0.1 in/hr	
Infiltration Flow Rate =	8.41 ft ³ /hr	
Time to Infiltrate WQ Volume =	31.0 hours (Maximum 36 hours)	

LIDA SIZING CALCULATIONS

JOB NUMBER:	112-026
PROJECT:	Sherwood Oldtown Apartments
FILE:	11226_Prelim Hydro.xls

REFERENCES:

1. Clean Water Services R&O 19-05.

2. Discussions with Clean Water Services.

Roof Area (each building):	2178 SF
Total Impervious Area:	2178 SF
Sizing factor:	0.06
Treatment area:	131 SF
Reduced treatment area w/ 30" growing medium:	98 SF
Treatment area provided:	108 SF

SANTA BARBARA URBAN HYDROGRAPHS

JOB NUMBER:112-026PROJECT:Sherwood Oldtown ApartmentsFILE:11226_Prelim Hydro.xls

	DESIGN	DURATION	PRECIP	AREA	%	AREA	CN	AREA	CN	TIME	Q
	STORM			TOTAL	IMP	PERV.	PER.	IMP.	IMP.	(MIN)	(CFS)
DESCRIPTION	(YR)	(HR)	(IN)	(AC)		(AC)		(AC)			
PREDEVELOPED 2-YEAR PEAK DISCHARGE	2	24	2.5	1.16	0.00	1.16	73.5	0.00	98	97.65	0.05
DEVELOPED 2-YEAR PEAK DISCHARGE	2	24	2.5	1.16	66.94	0.38	77	0.78	98	6.47	0.52
PREDEVELOPED 5-YEAR PEAK DISCHARGE	5	24	3.1	1.16	0.00	1.16	73.5	0.00	98	97.65	0.07
DEVELOPED 5-YEAR PEAK DISCHARGE	5	24	3.1	1.16	66.94	0.38	77	0.78	98	6.47	0.68
PREDEVELOPED 10-YEAR PEAK DISCHARGE	10	24	3.45	1.16	0.00	1.16	73.5	0.00	98	97.65	0.10
DEVELOPED 10-YEAR PEAK DISCHARGE	10	24	3.45	1.16	66.94	0.38	77	0.78	98	6.47	0.77
PREDEVELOPED 25-YEAR PEAK DISCHARGE	25	24	3.9	1.16	0.00	1.16	73.5	0.00	98	97.65	0.13
DEVELOPED 25-YEAR PEAK DISCHARGE	25	24	3.9	1.16	66.94	0.38	77	0.78	98	6.47	0.90
PREDEVELOPED 100-YEAR PEAK DISCHARGE	100	24	4.5	1.16	0.00	1.16	73.5	0.00	98	97.65	0.19
DEVELOPED 100-YEAR PEAK DISCHARGE	100	24	4.5	1.16	66.94	0.38	77	0.78	98	6.47	1.07

STORMWATER CONVEYANCE CALCULATIONS

JOB NUMBER: PROJECT:	112-026 Sherwoo	od Oldtow	n Apartr	nents												
FILE:	11226_F	Prelim Hyc	dro.xls													
Design Storm:	25	, YR														
Storm Duration:	24	HRS														
Precipitation:	3.9	/ IN														
Manning's "n"	0.013	J														
	INC.	AREA	%	AREA	CN	AREA	CN	TIME	Q	PIPE	SLOPE	Qf	Q/Qf	Vf	V/Vf	ACTUAL
	AREA	TOTAL	IMP.	PERV.	PER.	IMP.	IMP.	(MIN)	(CFS)	SIZE						V
LINE	(AC)	(AC)		(AC)		(AC)				(IN)	(FT/FT)	(CFS)	(%)	(FPS)	(%)	(FPS)
ENTIRE SHED	1.16	1.16	66.94	0.38	77	0.78	98	6.47	0.90	12	0.0050	2.53	0.36	3.22	0.90	2.89
												(ENTIRE §	SHED ARE PIPE	A CAN BE AT 0.5% S	CONVEY LOPE)	ED IN A 12"
1/2 OF SITE	0.58	0.58	66.94	0.19	77	0.39	98	6.47	0.45	6	0.0100	0.56	0.80	2.87	1.14	3.26
												(1/2 OF S	SHED ARE. PIPE	A CAN BE AT 1.0% S	CONVEYI LOPE)	ED IN A 6"

APPENDIX 'A' – CITY OF SHERWOOD UTILITY MAPS & HYDROMODIFICATION MAP

The City of Sherwood's infrastructure records, drawings, and other documents have been gathered over many years, using many different formats and standards. While the data provided is generally believed to making any property purchases or other investments based in full or in part upon the material provided, it is specifically advised that you independently field verify the information contained within our records.

New Searc

The City of Sherwood's infrastructure records, drawings, and other documents have been gathered over many years, using many different formats and standards. While the data provided is generally believed to be accurate, occasionally it proves to be incorrect; thus its accuracy making any property purchases or other investments based in full or in part upon the material provided, it is specifically advised that you independently field verify the information contained within our records.

The City of Sherwood's infrastructure records, drawings, and other documents have been gathered over many years, using many different formats and standards. While the data provided is generally believed to making any property purchases or other investments based in full or in part upon the material provided, it is specifically advised that you independently field verify the information contained within our records.

New Searc

The City of Sherwood's infrastructure records, drawings, and other documents have been gathered over many years, using many different formats and standards. While the data provided is generally believed to be accurate, occasionally it proves to be incorrect; thus its accuracy making any property purchases or other investments based in full or in part upon the material provided, it is specifically advised that you independently field verify the information contained within our records.

1 384 Legend

Partner Storm

Storm Cleanouts

Storm Fittings

•

Storm Pond Outlets

Storm Inlets

Storm Manholes •

Storm Vaults

Storm Ponds

Storm Open Conveyances

Storm Closed Conveyances

Storm Virtual Flows

- 10-

Storm Pond Outlines i..!

Taxlots

Taxlots Taxlot Boundary

Hydromod Risk Levels

Hydromod Risk Levels

- Low
- Moderate
- High
APPENDIX 'B' – HYDROCAD REPORT

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.780	98	Impervious Areas (2S)
0.380	77	Open space, good condition, C/D soils (2S)
1.160	74	Woods, good condition, C/D soils (1S)
2.320	83	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
2.320	Other	1S, 2S
2.320		TOTAL AREA

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Printed 10/21/2021 Page 4

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.000	0.780	0.780	Impervious Areas	2
0.000	0.000	0.000	0.000	0.380	0.380	Open space, good condition, C/D soils	2
0.000	0.000	0.000	0.000	1.160	1.160	Woods, good condition, C/D soils	S 1
0.000	0.000	0.000	0.000	2.320	2.320	TOTAL AREA	S
	HSG-A (acres) 0.000 0.000 0.000 0.000	HSG-A (acres) (acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	HSG-A (acres) HSG-B (acres) HSG-C (acres) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)0.000	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)Other (acres)0.0000.0000.0000.0000.7800.0000.0000.0000.0000.3800.0000.0000.0000.0001.1600.0000.0000.0000.0002.320	HSG-A (acres)HSG-B (acres)HSG-C (acres)HSG-D (acres)Other (acres)Total (acres)0.0000.0000.0000.0000.7800.7800.0000.0000.0000.0000.3800.3800.0000.0000.0000.0001.1601.1600.0000.0000.0000.0002.3202.320	HSG-A (acres) HSG-B (acres) HSG-C (acres) HSG-D (acres) Other (acres) Total (acres) Ground Cover 0.000 0.000 0.000 0.000 0.780 0.780 Impervious Areas 0.000 0.000 0.000 0.000 0.380 0.380 Open space, good condition, C/D soils 0.000 0.000 0.000 1.160 1.160 Woods, good condition, C/D soils 0.000 0.000 0.000 2.320 Z320 TOTAL AREA

Ground Covers (all nodes)

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here

Prepared by {enter your company name here}	
HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC	

			PI	pe Listin	g (all noo	ues)			
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	3P	100.00	99.00	100.0	0.0100	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD	Type IA 24-hr 2 year Rainfall=2.50" Printed 10/21/2021 Software Solutions LLC Page 6
Time span=0.00-100. Runoff by SBUH m Reach routing by Stor-Ind+Trans	00 hrs, dt=0.05 hrs, 2001 points ethod, Split Pervious/Imperv. method - Pond routing by Stor-Ind method
Subcatchment 1S: Predeveloped Basin	Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=0.61" Tc=97.7 min CN=74/0 Runoff=0.04 cfs 0.059 af
Subcatchment 2S: Developed Basin	Runoff Area=1.160 ac 67.24% Impervious Runoff Depth=1.77" Tc=6.5 min CN=77/98 Runoff=0.49 cfs 0.171 af
Pond 3P: Detention Chambers Discarded=0.01 cfs	Peak Elev=102.49' Storage=5,374 cf Inflow=0.49 cfs 0.171 af 0.075 af Primary=0.02 cfs 0.096 af Outflow=0.03 cfs 0.171 af
	Dumoff Maluman 0.000 of Augurana Dumoff Dauth 4.40

Total Runoff Area = 2.320 acRunoff Volume = 0.230 afAverage Runoff Depth = 1.19"66.38% Pervious = 1.540 ac33.62% Impervious = 0.780 ac

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: Predeveloped Basin

Runoff = 0.04 cfs @ 11.16 hrs, Volume= 0.059 af, Depth= 0.61"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.50"

	Area	(ac)	CN	Desc	cription		
*	1.	160	74	Woo	ds, good c	ondition, C	C/D soils
	1.	160	74	100.0	00% Pervi	ous Area	
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	97.7						Direct Entry,

Subcatchment 1S: Predeveloped Basin

0.35

(cts) 0.3-Mon 0.25-

0.2

0.15

0.1

0.

0

5

10 15 20 25 30 35

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: Developed Basin

Runoff = 0.49 cfs @ 7.95 hrs, Volume= 0.171 af, Depth= 1.77"

40

45 50 55

Time (hours)

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 2 year Rainfall=2.50"

_	Area (ac)	CN	Desc	ription							
*	0.380	77	Oper	n space, g	ood conditi	on, C/D soils					
*	0.780	98	Impe	rvious Are	eas						
	1.160	91	Weig	hted Aver	age						
	0.380	77	32.76	S% Pervio	us Area						
	0.780	98	67.24	1% Imperv	ious Area						
	Tc Len (min) (fe	gth eet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
_	6.5					Direct Entry	/,				
				Sub	ocatchme _{Hydr}	nt 2S: Deve	eloped B	asin			
	$\overline{\Lambda}$					<u> </u>					
		40 - 4-									Runoff
	0.5							Tvr		1_hr	
	0.45							_' y ŀ			
							2 year	Rair	ntail=2	.50"	
	0.4						Runoff	Area	a=1.16	0 ac	

Runoff Volume=0.171 af

65 70

60

Runoff Depth=1.77"

80

85 90

75

Tc=6.5 min CN=77/98

95 100

Summary for Pond 3P: Detention Chambers

Inflow Area	a =	1.160 ac, 6	67.24% Imp	ervious, Inflow	Depth = $1.77''$	for 2 year event
Inflow	=	0.49 cfs @	7.95 hrs,	Volume=	0.171 af	
Outflow	=	0.03 cfs @	24.08 hrs,	Volume=	0.171 af, Atte	en= 94%, Lag= 967.7 mir
Discarded	=	0.01 cfs @	2.05 hrs,	Volume=	0.075 af	-
Primary	=	0.02 cfs @	24.08 hrs,	Volume=	0.096 af	

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 102.49' @ 24.08 hrs Surf.Area= 4,677 sf Storage= 5,374 cf

Plug-Flow detention time= 1,773.5 min calculated for 0.171 af (100% of inflow) Center-of-Mass det. time= 1,774.5 min (2,477.6 - 703.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	100.00'	3,170 cf	24.83'W x 188.32'L x 2.83'H Field A
			13,250 cf Overall - 2,683 cf Embedded = 10,567 cf x 30.0% Voids
#2A	101.00'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			7 Rows of 26 Chambers
		5,853 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	100.00'	12.0" Round Culvert
			L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 100.00' / 99.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	98.00'	0.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	102.49'	2.8" Vert. Orifice/Grate C= 0.600
#4	Device 1	102.78'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32
#5	Discarded	100.00'	0.100 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.01 cfs @ 2.05 hrs HW=100.03' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.02 cfs @ 24.08 hrs HW=102.49' (Free Discharge)

1=**Culvert** (Passes 0.02 cfs of 4.21 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 7.60 fps)

-3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.12 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Detention Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

26 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 186.32' Row Length +12.0" End Stone x 2 = 188.32' Base Length 7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width 12.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.83' Field Height

182 Chambers x 14.7 cf = 2,683.0 cf Chamber Storage

13,250.4 cf Field - 2,683.0 cf Chambers = 10,567.4 cf Stone x 30.0% Voids = 3,170.2 cf Stone Storage

Chamber Storage + Stone Storage = 5,853.2 cf = 0.134 af Overall Storage Efficiency = 44.2%Overall System Size = $188.32' \times 24.83' \times 2.83'$

182 Chambers 490.8 cy Field 391.4 cy Stone

(-+-+-+-+-+-+-+-

HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Pond 3P: Detention Chambers

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD	Type IA 24-hr 5 year Rainfall=3.10" Printed 10/21/2021 Software Solutions LLC Page 12
Time span=0.00-100. Runoff by SBUH m Reach routing by Stor-Ind+Trans	.00 hrs, dt=0.05 hrs, 2001 points nethod, Split Pervious/Imperv. method - Pond routing by Stor-Ind method
Subcatchment 1S: Predeveloped Basin	Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=0.97" Tc=97.7 min CN=74/0 Runoff=0.08 cfs 0.094 af
Subcatchment 2S: Developed Basin	Runoff Area=1.160 ac 67.24% Impervious Runoff Depth=2.30" Tc=6.5 min CN=77/98 Runoff=0.64 cfs 0.223 af
Pond 3P: Detention Chambers Discarded=0.01 cfs	Peak Elev=102.70' Storage=5,670 cf Inflow=0.64 cfs 0.223 af 0.077 af Primary=0.08 cfs 0.146 af Outflow=0.10 cfs 0.223 af
Total Pupoff Area - 2 220 ac	Punoff Volume - 0.317 of Average Punoff Donth - 1.64"

Total Runoff Area = 2.320 ac Runoff Volume = 0.317 af Average Runoff Depth = 1.64" 66.38% Pervious = 1.540 ac 33.62% Impervious = 0.780 ac

Summary for Subcatchment 1S: Predeveloped Basin

Runoff = 0.08 cfs @ 9.37 hrs, Volume= 0.094 af, Depth= 0.97"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 5 year Rainfall=3.10"

Area	(ac)	CN	Desc	ription				
* 1.	160	74	Woo	Woods, good condition, C/D soils				
1.	1.160 74 100.00% Pervious Area							
Tc (min)	Lengt (fee	th :t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
97.7						Direct Entry,		
Orders (sharrow) (40) Day davada a shi Dayin								

Subcatchment 1S: Predeveloped Basin

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: Developed Basin

Runoff = 0.64 cfs @ 7.95 hrs, Volume= 0.223 af, Depth= 2.30"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 5 year Rainfall=3.10"

	Area (a	ac)	CN	Desc	cription		
*	0.3	80	77	Oper	n space, g	ood conditi	on, C/D soils
*	0.7	80	98	Impe	ervious Are	eas	
	1.1	60	91	Weig	ghted Aver	age	
	0.3	80	77	32.7	5% Pervio	us Area	
	0.7	80	98	67.24	4% Imperv	vious Area	
	Tc (min)	Length (feet	ו)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5						Direct Entry,
	Subcatchment 2S: Developed Basin						

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Pond 3P: Detention Chambers

Inflow Area	a =	1.160 ac, 6	7.24% Imp	ervious, Inflow	Depth = 2.30'	for 5 year event	
Inflow	=	0.64 cfs @	7.95 hrs,	Volume=	0.223 af		
Outflow	=	0.10 cfs @	16.66 hrs,	Volume=	0.223 af, At	ten= 85%, Lag= 522.7	' min
Discarded	=	0.01 cfs @	1.70 hrs,	Volume=	0.077 af	-	
Primary	=	0.08 cfs @	16.66 hrs,	Volume=	0.146 af		

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 102.70' @ 16.66 hrs Surf.Area= 4,677 sf Storage= 5,670 cf

Plug-Flow detention time= 1,508.9 min calculated for 0.223 af (100% of inflow) Center-of-Mass det. time= 1,508.8 min (2,206.8 - 698.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	100.00'	3,170 cf	24.83'W x 188.32'L x 2.83'H Field A
			13,250 cf Overall - 2,683 cf Embedded = 10,567 cf x 30.0% Voids
#2A	101.00'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			7 Rows of 26 Chambers
		5,853 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	100.00'	12.0" Round Culvert
	-		L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 100.00' / 99.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	98.00'	0.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	102.49'	2.8" Vert. Orifice/Grate C= 0.600
#4	Device 1	102.78'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32
#5	Discarded	100.00'	0.100 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.01 cfs @ 1.70 hrs HW=100.03' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.09 cfs @ 16.66 hrs HW=102.70' (Free Discharge)

1=**Culvert** (Passes 0.09 cfs of 4.43 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 7.92 fps)

-3=Orifice/Grate (Orifice Controls 0.06 cfs @ 1.57 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Detention Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

26 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 186.32' Row Length +12.0" End Stone x 2 = 188.32' Base Length 7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width 12.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.83' Field Height

182 Chambers x 14.7 cf = 2,683.0 cf Chamber Storage

13,250.4 cf Field - 2,683.0 cf Chambers = 10,567.4 cf Stone x 30.0% Voids = 3,170.2 cf Stone Storage

Chamber Storage + Stone Storage = 5,853.2 cf = 0.134 afOverall Storage Efficiency = 44.2%Overall System Size = $188.32' \times 24.83' \times 2.83'$

182 Chambers 490.8 cy Field 391.4 cy Stone

HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Pond 3P: Detention Chambers

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD \$	Type IA 24-hr 10 year Rainfall=3.45"Printed 10/21/2021Software Solutions LLCPage 18					
Time span=0.00-100.00 hrs, dt=0.05 hrs, 2001 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
Subcatchment 1S: Predeveloped Basin	Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=1.21" Tc=97.7 min CN=74/0 Runoff=0.11 cfs 0.117 af					
Subcatchment 2S: Developed Basin	Runoff Area=1.160 ac 67.24% Impervious Runoff Depth=2.62" Tc=6.5 min CN=77/98 Runoff=0.73 cfs 0.253 af					
Pond 3P: Detention Chambers Discarded=0.01 cfs	Peak Elev=102.78' Storage=5,777 cf Inflow=0.73 cfs 0.253 af 0.077 af Primary=0.11 cfs 0.176 af Outflow=0.12 cfs 0.253 af					
Total Runoff Area = 2.320 ac 66	Runoff Volume = 0.370 afAverage Runoff Depth = 1.91"5.38% Pervious = 1.540 ac33.62% Impervious = 0.780 ac					

Summary for Subcatchment 1S: Predeveloped Basin

Runoff = 0.11 cfs @ 9.19 hrs, Volume= 0.117 af, Depth= 1.21"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.45"

	Area	(ac)	CN	Desc	cription			
*	1.	160	74	Woo	ds, good c	ondition, C	/D soils	
	1.160 74 100.00% Pervious Area							
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	97.7						Direct Entry,	
	Subcatchment 1S: Predeveloped Basin							

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: Developed Basin

Runoff = 0.73 cfs @ 7.95 hrs, Volume= 0.253 af, Depth= 2.62"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 10 year Rainfall=3.45"

	Area (ac)	CN	Desc	ription		
*	0.3	380	77	Oper	n space, g	ood conditi	ion, C/D soils
*	0.7	780	98	Impe	rvious Are	as	
	1.1	160	91	Weig	hted Aver	age	
	0.3	380	77	32.76	S% Pervio	us Area	
	0.7	780	98	67.24	1% Imperv	vious Area	
	Tc (min)	Length (feet)	ר ני)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5						Direct Entry,
	Orders (shares of OO, Development Design						

Subcatchment 2S: Developed Basin

Summary for Pond 3P: Detention Chambers

Inflow Area	a =	1.160 ac, 6	67.24% Imp	ervious, Inflow	Depth = 2	2.62" f	for 10 y	ear event	
Inflow	=	0.73 cfs @	7.95 hrs,	Volume=	0.253 at	f			
Outflow	=	0.12 cfs @	14.67 hrs,	Volume=	0.253 at	f, Atten	= 84%,	Lag= 403.2 mi	n
Discarded	=	0.01 cfs @	1.60 hrs,	Volume=	0.077 at	f			
Primary	=	0.11 cfs @	14.67 hrs,	Volume=	0.176 at	f			

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 102.78' @ 14.67 hrs Surf.Area= 4,677 sf Storage= 5,777 cf

Plug-Flow detention time= 1,356.4 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 1,357.6 min (2,053.1 - 695.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	100.00'	3,170 cf	24.83'W x 188.32'L x 2.83'H Field A
			13,250 cf Overall - 2,683 cf Embedded = 10,567 cf x 30.0% Voids
#2A	101.00'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			7 Rows of 26 Chambers
		5,853 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	100.00'	12.0" Round Culvert
	-		L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 100.00' / 99.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	98.00'	0.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	102.49'	2.8" Vert. Orifice/Grate C= 0.600
#4	Device 1	102.78'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32
#5	Discarded	100.00'	0.100 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.01 cfs @ 1.60 hrs HW=100.03' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.11 cfs @ 14.67 hrs HW=102.78' (Free Discharge)

1=**Culvert** (Passes 0.11 cfs of 4.51 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 8.03 fps)

-3=Orifice/Grate (Orifice Controls 0.09 cfs @ 2.00 fps)

-4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: Detention Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

26 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 186.32' Row Length +12.0" End Stone x 2 = 188.32' Base Length 7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width 12.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.83' Field Height

182 Chambers x 14.7 cf = 2,683.0 cf Chamber Storage

13,250.4 cf Field - 2,683.0 cf Chambers = 10,567.4 cf Stone x 30.0% Voids = 3,170.2 cf Stone Storage

Chamber Storage + Stone Storage = 5,853.2 cf = 0.134 af Overall Storage Efficiency = 44.2% Overall System Size = 188.32' x 24.83' x 2.83'

182 Chambers 490.8 cy Field 391.4 cy Stone

Pond 3P: Detention Chambers

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD	Type IA 24-hr 25 year Rainfall=3.90" Printed 10/21/2021 Software Solutions LLC Page 24
Time span=0.00-100. Runoff by SBUH m Reach routing by Stor-Ind+Trans	00 hrs, dt=0.05 hrs, 2001 points ethod, Split Pervious/Imperv. method - Pond routing by Stor-Ind method
Subcatchment 1S: Predeveloped Basin	Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=1.52" Tc=97.7 min CN=74/0 Runoff=0.14 cfs 0.147 af
Subcatchment 2S: Developed Basin	Runoff Area=1.160 ac 67.24% Impervious Runoff Depth=3.03" Tc=6.5 min CN=77/98 Runoff=0.85 cfs 0.293 af
Pond 3P: Detention Chambers Discarded=0.01 cfs	Peak Elev=102.81' Storage=5,816 cf Inflow=0.85 cfs 0.293 af 0.077 af Primary=0.17 cfs 0.216 af Outflow=0.18 cfs 0.293 af

Total Runoff Area = 2.320 acRunoff Volume = 0.440 afAverage Runoff Depth = 2.28"66.38% Pervious = 1.540 ac33.62% Impervious = 0.780 ac

Summary for Subcatchment 1S: Predeveloped Basin

Runoff = 0.14 cfs @ 9.06 hrs, Volume= 0.147 af, Depth= 1.52"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

_	Area	(ac)	CN	Desc	cription				
*	1.	160	74	Woo	ds, good o	condition, C	/D soils		
	1.	160	74	100.0	00% Pervi	ous Area			
	Tc (min)	Leng (fee	th et)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	97.7					X/	Direct Entry,		

Subcatchment 1S: Predeveloped Basin

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: Developed Basin

Runoff = 0.85 cfs @ 7.95 hrs, Volume= 0.293 af, Depth= 3.03"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 25 year Rainfall=3.90"

	Area (ad	c) CN	l Desc	cription		
*	0.38	80 77	Oper	n space, g	ood conditi	on, C/D soils
*	0.78	98 98	3 Impe	ervious Are	as	
	1.16	60 91	Weig	ghted Aver	age	
	0.38	80 77	32.7	5% Pervio	us Area	
	0.78	98 98	67.24	4% Imperv	vious Area	
	Tc L (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.5					Direct Entry,

Subcatchment 2S: Developed Basin

Summary for Pond 3P: Detention Chambers

Inflow Area	a =	1.160 ac, 6	7.24% Imp	ervious, Inflow	/ Depth = 3.0	03" for 25 y	ear event
Inflow	=	0.85 cfs @	7.95 hrs,	Volume=	0.293 af		
Outflow	=	0.18 cfs @	10.82 hrs,	Volume=	0.293 af,	Atten= 78%,	Lag= 172.4 min
Discarded	=	0.01 cfs @	1.45 hrs,	Volume=	0.077 af		
Primary	=	0.17 cfs @	10.82 hrs,	Volume=	0.216 af		

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 102.81' @ 10.82 hrs Surf.Area= 4,677 sf Storage= 5,816 cf

Plug-Flow detention time= 1,194.7 min calculated for 0.293 af (100% of inflow) Center-of-Mass det. time= 1,196.1 min (1,888.6 - 692.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	100.00'	3,170 cf	24.83'W x 188.32'L x 2.83'H Field A
			13,250 cf Overall - 2,683 cf Embedded = 10,567 cf x 30.0% Voids
#2A	101.00'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			7 Rows of 26 Chambers
		5,853 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	100.00'	12.0" Round Culvert
	-		L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 100.00' / 99.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	98.00'	0.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	102.49'	2.8" Vert. Orifice/Grate C= 0.600
#4	Device 1	102.78'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32
#5	Discarded	100.00'	0.100 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.01 cfs @ 1.45 hrs HW=100.03' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.17 cfs @ 10.82 hrs HW=102.81' (Free Discharge)

1=Culvert (Passes 0.17 cfs of 4.53 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 8.07 fps)

-3=Orifice/Grate (Orifice Controls 0.09 cfs @ 2.15 fps)

-4=Broad-Crested Rectangular Weir (Weir Controls 0.06 cfs @ 0.44 fps)

Pond 3P: Detention Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

26 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 186.32' Row Length +12.0" End Stone x 2 = 188.32' Base Length 7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width 12.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.83' Field Height

182 Chambers x 14.7 cf = 2,683.0 cf Chamber Storage

13,250.4 cf Field - 2,683.0 cf Chambers = 10,567.4 cf Stone x 30.0% Voids = 3,170.2 cf Stone Storage

Chamber Storage + Stone Storage = 5,853.2 cf = 0.134 af Overall Storage Efficiency = 44.2% Overall System Size = 188.32' x 24.83' x 2.83'

182 Chambers 490.8 cy Field 391.4 cy Stone

Pond 3P: Detention Chambers

112-026 Detention_Long TC_Infiltration Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD \$	Type IA 24-hr 100 year Rainfall=4.50"Printed 10/21/2021Software Solutions LLCPage 30
Time span=0.00-100. Runoff by SBUH m Reach routing by Stor-Ind+Trans	00 hrs, dt=0.05 hrs, 2001 points ethod, Split Pervious/Imperv. method - Pond routing by Stor-Ind method
Subcatchment 1S: Predeveloped Basin	Runoff Area=1.160 ac 0.00% Impervious Runoff Depth=1.97" Tc=97.7 min CN=74/0 Runoff=0.20 cfs 0.191 af
Subcatchment 2S: Developed Basin	Runoff Area=1.160 ac 67.24% Impervious Runoff Depth=3.59" Tc=6.5 min CN=77/98 Runoff=1.00 cfs 0.347 af
Pond 3P: Detention Chambers Discarded=0.01 cfs	Peak Elev=102.84' Storage=5,853 cf Inflow=1.00 cfs 0.347 af 0.077 af Primary=0.34 cfs 0.270 af Outflow=0.35 cfs 0.347 af
Total Dunoff Area 2220 aa	Dunoff Volume 0.529 of Average Dunoff Donth 2.79

Total Runoff Area = 2.320 acRunoff Volume = 0.538 afAverage Runoff Depth = 2.78"66.38% Pervious = 1.540 ac33.62% Impervious = 0.780 ac

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: Predeveloped Basin

Runoff = 0.20 cfs @ 8.96 hrs, Volume= 0.191 af, Depth= 1.97"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.50"

	Area	(ac)	CN	Desc	ription						
*	1.	.160	74	Woo	ds, good c	ondition, C	C/D soils				
	1.	160	74	100.0	00% Pervi	ous Area					
	Тс	Leng	th	Slope	Velocity	Capacity	Description				
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	97.7						Direct Entry,				
	Subatahmant 1St Prodovalanad Pasin										

Prepared by {enter your company name here} HydroCAD® 10.00-18 s/n 09255 © 2016 HydroCAD Software Solutions LLC

Summary for Subcatchment 2S: Developed Basin

Runoff = 1.00 cfs @ 7.94 hrs, Volume= 0.347 af, Depth= 3.59"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Type IA 24-hr 100 year Rainfall=4.50"

Area (a	c) CN	Desc	cription								
* 0.38	30 77	Ope	n space, g	jood conditi	on, C/D s	oils					
<u> </u>	<u>30 98</u> 50 91 30 77	impe Weig 32.70	ghted Ave 6% Pervic	eas rage ous Area							
0.78	30 98	67.24	4% Imper	vious Area							
Tc L (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descrip	tion					
6.5					Direct E	Entry,					
			Sul	ocatchme	nt 2S: D	evelop	ed Bas	in			
				Hydr	ograph						-
	1.00 cfs]									Runoff
1						100 y	vear R	Type lainfa	A 2 =4	4-hr .50"	
-						Rur	noff A	rea=1	1.16	0 ac	
(cfs)						R	unoff	Dept	0.34 h=3	.59"	
Flow								Tc=	6.5	min	
-								CI	N=7	7/98	
0	5 10	15 20	25 20	35 40 45	50 55	60 65		80 %		95 100	ļ
0	5 10	15 20	20 00	55 40 45 Tin	ne (hours)	00 00	10 15	00 00	90	35 100	

Summary for Pond 3P: Detention Chambers

[93] Warning: Storage range exceeded by 0.01'

Inflow Area	a =	1.160 ac, 67	.24% Impervio	us, Inflow De	epth = 3.	59" for 1	00 year event
Inflow	=	1.00 cfs @	7.94 hrs, Volu	ime=	0.347 af		
Outflow	=	0.35 cfs @	8.99 hrs, Volu	ime=	0.347 af,	Atten= 659	%, Lag= 62.8 min
Discarded	=	0.01 cfs @	1.30 hrs, Volu	ime=	0.077 af		
Primary	=	0.34 cfs @	8.99 hrs, Volu	ime=	0.270 af		

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Peak Elev= 102.84' @ 8.99 hrs Surf.Area= 4,677 sf Storage= 5,853 cf

Plug-Flow detention time= 1,028.2 min calculated for 0.347 af (100% of inflow) Center-of-Mass det. time= 1,028.0 min (1,717.2 - 689.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	100.00'	3,170 cf	24.83'W x 188.32'L x 2.83'H Field A
			13,250 cf Overall - 2,683 cf Embedded = 10,567 cf x 30.0% Voids
#2A	101.00'	2,683 cf	ADS_StormTech SC-310 +Cap x 182 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			7 Rows of 26 Chambers
		5,853 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	100.00'	12.0" Round Culvert
	-		L= 100.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 100.00' / 99.00' S= 0.0100 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	98.00'	0.7" Vert. Orifice/Grate C= 0.600
#3	Device 1	102.49'	2.8" Vert. Orifice/Grate C= 0.600
#4	Device 1	102.78'	5.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32
#5	Discarded	100.00'	0.100 in/hr Exfiltration over Horizontal area

Discarded OutFlow Max=0.01 cfs @ 1.30 hrs HW=100.03' (Free Discharge) **5=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.33 cfs @ 8.99 hrs HW=102.84' (Free Discharge)

2=Orifice/Grate (Orifice Controls 0.02 cfs @ 8.12 fps)

-3=Orifice/Grate (Orifice Controls 0.10 cfs @ 2.34 fps)

-4=Broad-Crested Rectangular Weir (Weir Controls 0.21 cfs @ 0.67 fps)

Pond 3P: Detention Chambers - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length)

Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing

26 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 186.32' Row Length +12.0" End Stone x 2 = 188.32' Base Length 7 Rows x 34.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 24.83' Base Width 12.0" Base + 16.0" Chamber Height + 6.0" Cover = 2.83' Field Height

182 Chambers x 14.7 cf = 2,683.0 cf Chamber Storage

13,250.4 cf Field - 2,683.0 cf Chambers = 10,567.4 cf Stone x 30.0% Voids = 3,170.2 cf Stone Storage

Chamber Storage + Stone Storage = 5,853.2 cf = 0.134 af Overall Storage Efficiency = 44.2% Overall System Size = 188.32' x 24.83' x 2.83'

182 Chambers 490.8 cy Field 391.4 cy Stone

Hydrograph Inflow 1.00 cfs Outflow Discarded Primary Inflow Area=1.160 ac Peak Elev=102.84' 1 Storage=5,853 cf Flow (cfs) 0.35 cfs 0.34 cfs 0.01 cfs 0 ò 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Time (hours)

Pond 3P: Detention Chambers
APPENDIX 'C' – FLOW CONTROL MANHOLE DETAIL

NOTES:

APPENDIX 'D' – DETENTION CHAMBER SPECIFICATIONS

SC-310 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

9.9"

(251 mm)

STORMTECH SC-310 CHAMBER

(not to scale)

Nominal Chamber Specifications

Size (L x W x H) 85.4" x 34.0" x 16.0" 2,170 mm x 864 mm x 406 mm

Chamber Storage 14.7 ft³ (0.42 m³)

Min. Installed Storage* 31.0 ft³ (0.88 m³)

Weight 37.0 lbs (16.8 kg)

Shipping 41 chambers/pallet 108 end caps/pallet 18 pallets/truck

*Assumes 6" (150 mm) stone above and below chambers and 40% stone porosity.

> CHAMBERS SHALL MEET THE REQUIREMENTS FOR ASTM F2418 POLYPROPLENE (PP) CHAMBERS

15.6"

(396 mm)

12" (300 mm)

DIAMETER MAX.

90.7" (2304 mm) ACTUAL LENGTH

GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES, COMPACT IN 6" (150 mm) MAX LIFTS TO 95% PROCTOR DENSITY. SEE THE TABLE OF ACCEPTABLE FILL MATERIALS. EMBEDMENT STONE SHALL BE A CLEAN, CRUSHED AND ANGULAR STONE WITH AN AASHTO M43 DESIGNATION BETWEEN #3 AND #57 CHAMBERS SHALL BE BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". OR ASTM F922 POLYETHYLENE (PE) CHAMBERS ADS GEOSYTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND CLEAN, CRUSHED PAVEMENT LAYER (DESIGNED ANGULAR EMBEDMENT STONE BY SITE DESIGN ENGINEER) ***** 6" (150 mm) MIN 18' (2.4 m) (450 mm) MIN* MAX PERIMETER STONE 16 (405 mm) EXCAVATION WALL (CAN BE SLOPED OR VERTICAL) DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 6" (150 mm) MIN 12" (300 mm) MIN 34" (865 mm) 12" (300 mm) TYP (150 mm) MIN END CAP

SITE DESIGN ENGINEER IS RESPONSIBLE FOR THE ENSURING THE REQUIRED BEARING CAPACITY OF SUBGRADE SOILS

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

SC-310 CUMULATIVE STORAGE VOLUMES PER CHAMBER

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (150 mm) Stone Base Under Chambers.

Depth of Water in System Inches (mm)	Cumulativ Storag	ve Chamber e ft³ (m³)	Total System Cumulative Storage ft ³ (m ³)
28 (711)	•	14.70 (0.416)	31.00 (0.878)
27 (686)		14.70 (0.416)	30.21 (0.855)
26 (680)	Stone	14.70 (0.416)	29.42 (0.833)
25 (610)	Cover	14.70 (0.416)	28.63 (0.811)
24 (609)		14.70 (0.416)	27.84 (0.788)
23 (584)	*	14.70 (0.416)	27.05 (0.766)
22 (559)		14.70 (0.416)	26.26 (0.748)
21 (533)		14.64 (0.415)	25.43 (0.720)
20 (508)		14.49 (0.410)	24.54 (0.695)
19 (483)		14.22 (0.403)	23.58 (0.668)
18 (457)		13.68 (0.387)	22.47 (0.636)
17 (432)		12.99 (0.368)	21.25 (0.602)
16 (406)		12.17 (0.345)	19.97 (0.566)
15 (381)		11.25 (0.319)	18.62 (0.528)
14 (356)		10.23 (0.290)	17.22 (0.488)
13 (330)		9.15 (0.260)	15.78 (0.447)
12 (305)		7.99 (0.227)	14.29 (0.425)
11 (279)		6.78 (0.192)	12.77 (0.362)
10 (254)		5.51 (0.156)	11.22 (0.318)
9 (229)		4.19 (0.119)	9.64 (0.278)
8 (203)		2.83 (0.081)	8.03 (0.227)
7 (178)		1.43 (0.041)	6.40 (0.181)
6 (152)		0	4.74 (0.134)
5 (127)		0	3.95 (0.112)
4(102)	_ Stone Four	ndation 0	3.16 (0.090)
3 (76)		0	2.37 (0.067)
2 (51)		0	1.58 (0.046)
1 (25)	*	0	0.79 (0.022)

Note: Add 0.79 ft 3 (0.022 m $^{3}) of storage for each additional inch. (25 mm) of stone foundation.$

STORAGE VOLUME PER CHAMBER FT³ (M³)

	Bare Chamber	C Four	hamber and S Idation Depth	tone in. (mm)
	ft ³ (m ³)	6 (150)	12 (300)	18 (450)
StormTech SC-310	14.7 (0.4)	31.0 (0.9)	35.7 (1.0)	40.4 (1.1)

Note: Assumes 6" (150 mm) of stone above chambers, 6" (150 mm) row spacing and 40% stone porosity.

AMOUNT OF STONE PER CHAMBER

	Ston	e Foundation D	epth
ENGLISH TONS (yas")	6"	12"	18"
StormTech SC-310	2.1 (1.5 yd ³)	2.7 (1.9 yd ³)	3.4 (2.4 yd ³)
METRIC KILOGRAMS (m ³)	150 mm	300 mm	450 mm
StormTech SC-310	1830 (1.1 m³)	2490 (1.5 m ³)	2990 (1.8 m ³)

Note: Assumes 6" (150 mm) of stone above, and between chambers.

VOLUME EXCAVATION PER CHAMBER YD³ (M³)

	St	one Foundation D	epth
	6" (150 mm)	12" (300 mm)	18" (450 mm)
StormTech SC-310	2.9 (2.2)	3.4 (2.6)	3.8 (2.9)

Note: Assumes 6" (150 mm) of row separation and 18" (450 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

Working on a project? Visit us at www.stormtech.com and utilize the StormTech Design Tool

For more information on the StormTech SC-310 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710

THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS™

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #S15 090508 09/17 CS Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com

APPENDIX 'E' – FILTER CATCH BASIN DETAIL

STORMFILTER STEEL CATCHBASIN DESIGN NOTES

STORMFILTER TREATMENT CAPACITY IS A FUNCTION OF THE CARTRIDGE SELECTION AND THE NUMBER OF CARTRIDGES. 1 CARTRIDGE CATCHBASIN HAS A MAXIMUM OF ONE CARTRIDGE. SYSTEM IS SHOWN WITH A 27" CARTRIDGE, AND IS ALSO AVAILABLE WITH AN 18" CARTRIDGE. STORMFILTER CATCHBASIN CONFIGURATIONS ARE AVAILABLE WITH A DRY INLET BAY FOR VECTOR CONTROL. PEAK HYDRAULIC CAPACITY PER TABLE BELOW. IF THE SITE CONDITIONS EXCEED PEAK HYDRAULIC CAPACITY, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

CARTRIDGE SELECTION

CARTRIDGE HEIGHT		27"			18"			18" DEEP	
RECOMMENDED HYDRAULIC DROP (H)		3.05'			2.3'			3.3'	
SPECIFIC FLOW RATE (gpm/sf)	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf	2 gpm/sf	1.67* gpm/sf	1 gpm/sf
CARTRIDGE FLOW RATE (gpm)	22.5	18.79	11.25	15	12.53	7.5	15	12.53	7.5
PEAK HYDRAULIC CAPACITY		1.0			1.0			1.8	
INLET PERMANENT POOL LEVEL (A)		1'-0"			1'-0"			2'-0"	
OVERALL STRUCTURE HEIGHT (B)		4'-9"			3'-9"			4'-9"	

* 1.67 gpm/sf SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- THIS DRAWING
- CONTRACTOR. OF THE STEEL SFCB.
- USING FLEXIBLE COUPLING BY CONTRACTOR.
- BY CONTRACTOR.
- 7-INCHES. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 38 SECONDS. 9. SPECIFIC FLOW RATE IS EQUAL TO THE FILTER TREATMENT CAPACITY (gpm) DIVIDED BY THE FILTER CONTACT SURFACE AREA (sq ft).

INSTALLATION NOTES

- ENGINEER OF RECORD.
- PROVIDED)
- C. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-526-3999 513-645-7000 513-645-7993 FAX

PLAN VIEW

SECTION A-A

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STORMFILTER CATCHBASIN STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR

3. STORMFILTER CATCHBASIN WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN

4. INLET SHOULD NOT BE LOWER THAN OUTLET. INLET (IF APPLICABLE) AND OUTLET PIPING TO BE SPECIFIED BY ENGINEER AND PROVIDED BY

5. MANUFACTURER TO APPLY A SURFACE BEAD WELD IN THE SHAPE OF THE LETTER "O" ABOVE THE OUTLET PIPE STUB ON THE EXTERIOR SURFACE

6. STORMFILTER CATCHBASIN EQUIPPED WITH 4 INCH (APPROXIMATE) LONG STUBS FOR INLET (IF APPLICABLE) AND OUTLET PIPING. STANDARD OUTLET STUB IS 8 INCHES IN DIAMETER. MAXIMUM OUTLET STUB IS 15 INCHES IN DIAMETER. CONNECTION TO COLLECTION PIPING CAN BE MADE

7. STEEL STRUCTURE TO BE MANUFACTURED OF 1/4 INCH STEEL PLATE. CASTINGS SHALL MEET AASHTO M306 LOAD RATING. TO MEET HS20 LOAD RATING ON STRUCTURE, A CONCRETE COLLAR IS REQUIRED. WHEN REQUIRED, CONCRETE COLLAR WITH #4 REINFORCING BARS TO BE PROVIDED

8. FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CATCHBASIN (LIFTING CLUTCHES

1-CARTRIDGE CATCH	HBASIN	1
STORMFILTER DA	٩ΤΑ	
STRUCTURE ID		XXX
WATER QUALITY FLOW RATE (cfs)		X.XX
PEAK FLOW RATE (<1 cfs)		X.XX
RETURN PERIOD OF PEAK FLOW (yrs)	XXX
CARTRIDGE HEIGHT (27", 18", 18" DEE	EP)	XX
CARTRIDGE FLOW RATE (gpm)		XX
MEDIA TYPE (PERLITE, ZPG, PSORB)		XXXXX
RIM ELEVATION		XXX XX'
PIPE DATA:	I.E.	DIAMETER
INLET STUB	XXX.XX'	XX"
OUTLET STUB	XXX.XX'	XX"
OUILEI (
) INL	ET
INLET	INLËT	
INLET SLOPED LID	INLËT	YES\NO
INLET SLOPED LID SOLID COVER		YES\NO YES\NO
INLET SLOPED LID SOLID COVER NOTES/SPECIAL REQUIREMENTS:	INLET	YES\NO YES\NO
INLET SLOPED LID SOLID COVER NOTES/SPECIAL REQUIREMENTS:		YES\NO YES\NO
INLET SLOPED LID SOLID COVER NOTES/SPECIAL REQUIREMENTS:		YES\NO YES\NO

1 CARTRIDGE CATCHBASIN STORMFILTER STANDARD DETAIL

APPENDIX 'F' – OPERATIONS & MAINTENANCE PLAN

Infiltration Plan Annual inspections ar inspection and maintene more information.	ter / Rain Garden Oper, e required. It is recommended that ance activities, and may be used as a	ation and Maintenance the facility is inspected on a monthly an inspection log. Contact the desig	Plan / basis to ensure proper funct n engineer, Clean Water Serv	ion. The plan below describes ices or City representative for
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	🗸 Task Complete Comments
Invasive Vegetation as outlined in Appendix A	Invasive vegetation found in facility. Examples include: Himalayan Blackberry; Reed Canary Grass; Teasel; English Ivy; Nightshade; Clematis; Cattail; Thistle; Scotch Broom	Remove excessive weeds and all invasive plants. Attempt to control even if complete eradication is not feasible. Refer to Clean Water Services Integrated Pest Management Plan for appropriate control methods, including proper use of chemical treatment.	SPRING SUMMER FALL	
Obstructed Inlet/Outlet	Material such as vegetation, trash, sediment is blocking more than 10% of the inlet pipe or basin opening	Remove blockages from facility	งที่หารครากร winter รครเทร Inspect after major storm (1-inch in 24 hours)	
Excessive Vegetation	Vegetation grows so tall it competes with or shades approved emergent wetland grass/shrubs; interferes with access or becomes a fire danger	Cut tall grass 4" to 6" and remove clippings. Prune emergent wetland grass/shrubs that have become overgrown.	SPRING SPRING Ideal time to prune emergent wetland grass is spring. Cut grass during dry months	
Tree/Shrub Growth	Tree/shrub growth shades out wetland/emergent grass in treatment area. Interferes with access for maintenance/inspection	Prune trees and shrubs that block sun from reaching treatment area. Remove trees that block access points. Do not remove trees that are not interfering with access or maintenance without first contacting Clean Water Services or local City.	winter winter ldeal timing for pruning trees is winter	

Infiltration Plan Annual inspections ar inspection and maintena more information.	ter / Rain Garden Opera e required. It is recommended that ince activities, and may be used as a	ation and Maintenance the facility is inspected on a monthly in inspection log. Contact the desig	Plan (continued) / basis to ensure proper functi n engineer, Clean Water Servi	on. The plan below describes ces or City representative for
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	✓ Task Complete Comments
Hazard Trees	Observe dead, dying or diseased trees	Remove hazard trees. A certified arborist may need to determine health of tree or removal requirements	As Needed	
Poor Vegetation Coverage	80% survival of approved vegetation and no bare areas large enough to affect function of facility.	Determine cause of poor growth and correct the condition. Replant per the approved planting plan and applicable standards at the time of construction. Remove excessive weeds and all invasive plants.	RPRING FALL SPRING FALL Ideal time to plant is spring and fall seasons	
Trash and Debris	Visual evidence of trash, debris or dumping	Remove trash and debris from facility. Dispose of properly	spring summer fall winter	
Contaminants and Pollu- tion	Evidence of oil, gasoline, contaminants or other pollutants. Look for sheens, odor or signs of contamination.	If contaminants or pollutants are present, coordinate removal/cleanup with local jurisdiction	SPRING SUMMER FALL WINTER	
Erosion	Erosion or channelization that impacts or effects the function of the facility or creates a safety concern	Repair eroded areas and stabilize using proper erosion control measures. Establish appropriate vegetation as needed.	FALL WINTER SPRING	
Flow Not Distributed Evenly	Flows unevenly distributed through planter width due to uneven or clogged flow spreader	Level the spreader and clean so that flows spread evenly over entire planter width	WINTER SPRING	

Infiltration Plan Annual inspections an inspection and maintens more information.	Iter / Rain Garden Oper e required. It is recommended that ance activities, and may be used as a	ation and Maintenanc the facility is inspected on a monthl an inspection log. Contact the desig	e Plan (continued) y basis to ensure proper func n engineer, Clean Water Sen	tion. The plan below describes vices or City representative for
ldentified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	🗸 Task Complete Comments
Vector Control	Evidence of rodents or water piping through facility via rodent holes. Insects such as wasps and hornets interfere with maintenance/inspection activities	Repair facility if damaged. Remove harmful insects, use professional if needed. Refer to Clean Water Services Integrated Pest Management Plan for management options	As Needed	
Sediment Accumulation in Treatment Area	Sediment depth in treatment area exceeds 3 inches	Remove sediment from treatment area. Ensure planter is level from side to side and drains freely toward outlet; no standing water within 24 hours after any major storm (1-inch in 24 hours)	summer Fall	
Standing Water	Standing water in the planter between storms that does not drain freely. Water should drain after 24 hours of dry weather	Remove sediment or trash blockages; improve end to end grade so there is no standing water 24 hours after any major storm (1-inch in 24 hours)	MINTER SPRING WINTER SPRING Inspect after major storm (1-inch in 24 hours)	
Grate Damaged, Missing or Not in Place	Grate is missing or only partially in place may have missing or broken grate members	Grate must be in place and meets design standards. Replace or repair any open structure	As Needed	

Flow-Through P Annual inspections ar inspection and maintena more information.	Planter Operation and N e required. It is recommended that ance activities, and may be used as a	Aaintenance Plan the facility is inspected on a monthly an inspection log. Contact the desig	r basis to ensure proper funct n engineer, Clean Water Serv	ion. The plan below describes ices or City representative for
ldentified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	🗸 Task Complete Comments
Sediment Accumulation in Treatment Area	Sediment depth exceeds 3 inches	Remove sediment from treatment area. Ensure planter is level from side to side and drains freely toward outlet, no standing water within 24 hours after any major storm (1-inch in 24 hours)	Ideally in dry season	
Erosion	Erosion or channelization that impacts or effects the function of the facility or creates a safety concern	Repair eroded areas and stabilized using proper erosion control mea- sures Establish appropriate vegetation as needed	FALL WINTER SPRING Inspect after major storm (1-inch in 24 hours)	
Standing Water	Standing water in the planter between storms that does not drain freely. Water should drain after 24 hours of dry weather.	Remove sediment or trash blockages. Grade out areas of mounding and improve end to end grade so there is no standing water.	WINTER SPRING	
Flow Not Distributed Evenly	Flow unevenly distributed through planter width due to uneven or clogged flow spreader	Level the spreader and clean so that flows spread evenly over entire planter width	WINTER SPRING	
Obstructed Inlet/Outlet	Material such as vegetation, sediment, trash is blocking more than 10% of the inlet/outlet pipe	Remove blockages from facility	MINTER SPRING WINTER SPRING Inspect after major storm (1-inch in 24 hours)	

Flow-Through P Annual inspections ar inspection and maintena more information.	'lanter Operation and N e required. It is recommended that ance activities, and may be used as a	Aaintenance Plan (cont the facility is inspected on a monthly an inspection log. Contact the desig	inued) / basis to ensure proper funct n engineer, Clean Water Serv	on. The plan below describes ices or City representative for
Identified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	🗸 Task Complete Comments
Poor Vegetation Coverage	80% survival of approved vegetation and no bare areas large enough to affect function of facility.	Determine cause of poor growth and correct the condition; replant with plugs or containerized plants per ap- proved plans and applicable standards at time of construction. Remove ex- cessive weeds and all invasive plants.	Ideal time to plant is spring and fall seasons	
Invasive Vegetation as outlined in Appendix A	Invasive vegetation found in facility. Examples include: Himalayan Blackber- ry; Reed Canary Grass; Teasel, English Ivy, Nightshade, Clematis, Cattail, Thistle	Remove excessive weeds and all invasive plants. Attempt to control even if complete eradication is not feasible. Refer to Clean Water Services Integrated Pest Management Plan for appropriate control methods, includ- ing proper use of chemical treatment.	SPRING SUMMER FALL	
Excessive Vegetation	Vegetation grows so tall it competes with or shades approved emergent wetland grass/shrubs; interferes with access or becomes a fire danger	Prune over-hanging limbs, if possible; remove brushy vegetation as needed. Prune emergent wetland grass/shrubs that have become overgrown.	Ideal time to prune emergent wetland grass is spring	
Vector Control	Evidence of rodents or water flowing through facility via rodent holes. Harm- ful insects such as wasps or hornets present	Repair damage to facility. Remove harmful insects, call professional if needed. Refer to Clean Water Services Integrated Pest Management Plan for management options.	As Needed	

Flow-Through F Annual inspections an inspection and maintens more information.	Planter Operation and N e required. It is recommended that ance activities, and may be used as a	Maintenance Plan (cont the facility is inspected on a monthl an inspection log. Contact the desig	tinued) y basis to ensure proper func in engineer, Clean Water Sen	ion. The plan below describes ices or City representative for
ldentified Problem	Condition to Check for	Maintenance Activity	Maintenance Timing	🗸 Task Complete Comments
Trash and Debris	Visual evidence of trash, debris or dumping.	Remove and dispose of trash and debris from facility. Dispose of properly	SPRING SUMMER FALL WINTER	
Contamination and Pollution	Evidence of oil, gasoline, contaminants, or other pollutants. Look for sheens, odor or signs of contamination.	If contaminants or pollutants present, coordinate removal/cleanup with local jurisdiction.	SPRING SUMMER FALL WINTER	
Outlet Structure Damaged	Grate or overflow structure is missing or only partially in place and may have missing or broken grate members.	Repair or replace outlet structure.	As Needed	

After Recording Return to: Clean Water Services 2550 SW Hillsboro Hwy. Hillsboro, OR 97123	
PRIVATE STORMWATER FACILITIES AGREEMENT	
This Agreement is made and entered into this day of 20, by and between Clean Water Service (District) and (Owner) whose address is	s
RECITALS A. Owner has developed or will develop the Facilities listed below. (List the type of private stormwater facilities or site and the quantity of each type). Facility type (list each) Quantity	n
 B. The Facilities enable development of property while mitigating the impacts of additional surface water and pollutants associated with stormwater runoff prior to discharge from the property to the public stormwater system. The consideration for this Agreement is connection to the public stormwater system. C. The property benefited by the Facilities and subject to the obligation of this Agreement is described below or in Exhibit A (Property) attached hereto and incorporated by reference. 	ne
 D. The Facilities are designed by a registered professional engineer to accommodate the anticipated volume of runa and to detain and treat runoff in accordance with District's Design and Construction Standards. E. Failure to inspect and maintain the Facilities can result in an unacceptable impact to the public stormwater system. 	off
Page 1 of 3 – Private Stormwater Facility Agreem	ent

NOW, THEREFORE, it is agreed by and between the parties as follows:

1. <u>OWNER INSPECTIONS</u> District shall provide Owner an Operations and Maintenance Plan (O&M Plan) for each Facility. Owner agrees to operate, inspect and maintain each Facility in accordance with the current O&M Plan and any subsequent modifications to the Plan. Owner shall maintain a log of inspection activities. The log shall be available to District upon request or during District inspections.

2. <u>DEFICIENCIES</u> All aspects in which the Facilities fail to satisfy the O&M Plan shall be noted as "Deficiencies".

3. <u>OWNER CORRECTIONS</u> All Deficiencies shall be corrected at Owner's expense within thirty (30) days after completion of the inspection. If more than 30 days is reasonably needed to correct a Deficiency, Owner shall have a reasonable period to correct the Deficiency so long as the correction is commenced within the 30-day period and is diligently prosecuted to completion.

4. <u>DISTRICT INSPECTIONS</u> Owner grants District the right to inspect the Facilities. District will endeavor to give ten (10) days prior written notice to Owner, except that no notice shall be required in case of an emergency. District shall determine whether Deficiencies need to be corrected. Owner (at the address provided in this Agreement, or such other address as Owner may designate in writing to District) will be notified in writing through the US Mail of the Deficiencies and shall make corrections within 30 days of the date of the notice.

5. <u>DISTRICT CORRECTIONS</u> If correction of all Owner or District identified Deficiencies is not completed within thirty (30) days after Owner's inspection or District notice, District shall have the right to have any Deficiencies corrected. District (i) shall have access to the Facilities for the purpose of correcting such Deficiencies and (ii) shall bill Owner for all costs reasonably incurred by District for work performed to correct the Deficiencies (District Correction Costs) following Owner's failure to correct any Deficiencies in the Facilities. Owner shall pay District the District Correction Costs within thirty (30) days of the date of the invoice. Owner understands and agrees that upon non-payment, District Correction Costs shall be secured by a lien on the Property for the District Correction Cost amount plus interest and penalties.

6. <u>EMERGENCY MEASURES</u> If at any time District reasonably determines that the Facilities create any imminent threat to public health, safety or welfare, District may immediately and without prior notice to Owner take measures reasonably designed to remedy the threat. District shall provide notice of the threat and the measures taken to Owner as soon as reasonably practicable, and charge Owner for the cost of these corrective measures.

7. <u>FORCE AND EFFECT</u> This Agreement has the same force and effect as any deed covenant running with the land and shall benefit and bind all owners of the Property present and future, and their heirs, successors and assigns.

8. <u>AMENDMENTS</u> The terms of this Agreement may be amended only by mutual agreement of the parties. Any amendments shall be in writing, shall refer specifically to this Agreement, and shall be valid only when executed by the owners of the Property, District and recorded in the Official Records of the county where the Property is located.

9. <u>PREVAILING PARTY</u> In any action brought by either party to enforce the terms of this Agreement, the prevailing party shall be entitled to recover all costs, including reasonable attorney's fees as may be determined by the court having jurisdiction, including any appeal.

10. <u>SEVERABILITY</u> The invalidity of any section, clause, sentence, or provision of this Agreement shall not affect the validity of any other part of this Agreement, which can be given effect without such invalid part or parts.

Page 2 of 3 – Private Stormwater Facility Agreement

IN WITNESS WHEREOF, Owner and District have sign	ned this Agreement.
NOTARIZE DOCUMENT BELOW	
INDIVIDUAL OWNERS SIGN BELOW	CORPORATE, LLC, PARTNERSHIP, TRUST OR OTHER LEGAL ENTITY SIGN BELOW
Owner (Individual)	
	(Entity name)
Owner (Individual)	By:
	(Sign here for entity)
	Title:
CLEAN WATER SERVICES	APPROVED AS TO FORM
By: General Manager or Designee	District Counsel
[Use this notary block if	OWNER is an individual.]
STATE OF)	
) County of)	
This instrument was acknowledged before me this by	day of, 20,
Notary Public	
[Use this notary block	if OWNER is an entity.]
STATE OF)	
) County of	
by	(date) (name of person) as
(title) of	(name of entity).
Notary Public	Page 3 of 3 – Private Stormwater Facility Agreement

APPENDIX 'G' – STORMWATER REPORT FOR THE COLUMBIA STREET REGIONAL WATER QUALITY FACILITY

Columbia Street Regional Water Quality Facility

STORMWATER REPORT

DATE:

CLIENT:

May 9, 2014

City of Sherwood Contact: Craig Christensen, PE 22560 SW Pine Street Sherwood, OR 97140

Alex Hurley, PE, PLS, Principal

Alex@aks-eng.com

ENGINEERING CONTACT:

ENGINEERING FIRM:

AKS Engineering & Forestry, LLC.

12965 SW Herman Road, Suite 100 Tualatin, OR 97062 P: (503) 563-6151 www.aks-eng.com

AKS ENGINEERING & FORESTRY, LLC

ENGINEERING / SURVEYING / PLANNING / FORESTRY LANDSCAPE ARCHITECTURE / ARBORICULTURE

TABLE OF CONTENTS

- 1.0 PURPOSE OF REPORT
- 2.0 PROJECT LOCATION/DESCRIPTION
- 3.0 REGULATORY DESIGN CRITERIA
 - 3.1 STORMWATER QUANTITY
 - 3.2 STORMWATER QUALITY
- 4.0 DESIGN METHODOLOGY
- 5.0 DESIGN STORM
 - 5.1 SITE TOPOGRAPHY AND LAND USE
 - 5.1.1 SITE TOPOGRAPHY
 - 5.1.2 LAND USE
 - 5.2 DESCRIPTION OF OFF-SITE CONTRIBUTORY BASINS
 - 5.3 SOIL TYPE
- 6.0 CALCULATION METHODOLOGY
 - 6.1 PROPOSED STORMWATER CONDUIT SIZING
 - 6.2 PROPOSED STORMWATER QUALITY CONTROL FACILITY DESIGN
 - 6.3 PROPOSED STORMWATER QUANTITY CONTROL FACILTY DESIGN
 - 6.4 SECONDARY CULVERT (BACKWATER REDUCTION) ANALYSIS
 - 6.5 DOWNSTREAM ANALYSIS

APPENDIX A FIGURES

APPENDIX B WATER QUALITY & VEGETATED SWALE CALCULATIONS

- APPENDIX C PRE-CONSTRUCTION HYDRAULIC ANALYSIS, 25-YEAR STORM EVENT (3.90")
- APPENDIX D POST-CONSTRUCTION HYDRAULIC ANALYSIS, 25-YEAR STORM EVENT (3.90")
- APPENDIX E CURVE NUMBERS FROM TECHNICAL RELEASE 55 URBAN HYDROLOGY FOR SMALL WATERSHEDS
- APPENDIX F USDA SOIL SURVEY OF WASHINGTON COUNTY.

AKS ENGINEERING & FORESTRY, LLC ENGINEERING / SURVEYING / PLANNING / FORESTRY LANDSCAPE ARCHITECTURE / ARBORICULTURE

COLUMBIA STREET REGIONAL WATER QUALITY FACILITY SHERWOOD, OREGON

1.0 PURPOSE OF REPORT

The purpose of this report is to document the criteria for which the new regional stormwater facility for this site is designed to meet, the sources of information on which the analysis is based, the design methodology, and the results of the analysis.

2.0 PROJECT LOCATION/DESCRIPTION

The site is located on a parcel of land in Section 32, Township 2 South, Range 1 West, Willamette Meridian, Washington County, Oregon (Tax Lot 6801, Tax Map 2S-1-32BC). The project site (3.70 acres) is bounded by SW Main Street to the east, residential lots to the north, railroad to the west, and SW Division Street to the south. See Appendix A for the Vicinity Map which contains additional information regarding the project site location.

The City of Sherwood proposes to construct a regional stormwater quality facility and address a known culvert capacity issue beneath the Southern Pacific Railroad right-of-way. The existing culvert crossing beneath the railroad and Wildlife Haven Drive will be improved by providing additional flow capacity with a parallel and secondary 24-inch culvert to run westerly under the railroad tracks.

3.0 REGULATORY DESIGN CRITERIA

3.1 STORMWATER QUANTITY

Per Clean Water Services (CWS) Design and Construction Standards Manual for Sanitary Sewer and Surface Water Management (R&O 07-20), Section 4.03 Water Quantity Control Requirements, on-site detention is required when any of the following conditions exist:

- 1. There is an identified downstream deficiency and the District or City determines that detention rather than conveyance system enlargement is the more effective solution.
- 2. There is an identified regional detention site within the boundary of the development.
- 3. Water quantity facilities are required by District-adopted watershed management plans or adopted subbasin master plans.

The purpose of this project is to construct a regional stormwater quality facility to treat runoff from an approximate 99.5 acre drainage basin and construct an additional culvert to alleviate existing capacity issues.

The existing culvert under the railroad tracks is currently undersized to convey the upstream runoff from a 25-year storm event by gravity flow. Section 6.5 of this report documents the condition and capacity of the existing downstream 21-inch diameter CMP culvert that crosses westerly under the Southern Pacific Railroad tracks. Calculations estimate the anticipated surface water elevations due to the backwater effect during the 25-year storm.

3.2 STORMWATER QUALITY

Stormwater quality management will be provided with a vegetated swale designed to meet the requirements of *Clean Water Services Design and Construction Standards for Sanitary Sewer* and Surface Water Management (R&O 07-20). The stormwater swale is designed to treat runoff from the estimated impervious area contained within the regional basin. See Appendix A for the Regional Basin and Soil Map and the Regional Drainage Basin Delineation exhibit.

The vegetated swale design meets the CWS design criteria (per Section 4.06.02 of CWS R&O 07-20).

4.0 DESIGN METHODOLOGY

The vegetated swale was designed and analyzed by using Manning's equation based on the water quality flow. A high-flow bypass is proposed as part of the storm system improvements to limit the amount of stormwater passing through the water quality swale. The bypass structure will route stormwater beyond the water quality flow rate back to the existing channel as shown in the proposed plans. This will minimize degradation and erosion of the water quality swale.

A secondary culvert is proposed to reduce the backwater elevations caused by the existing undersized culvert under the existing Southern Pacific Railroad right of way and SW Wildlife Haven Drive. HydroCAD was utilized to evaluate the existing and proposed culvert and the reduction in the backwater elevation due to the new culvert.

5.0 DESIGN STORM

The Santa Barbara Urban Hydrograph (SBUH) Method was used to analyze stormwater runoff from the site. This method utilizes the SCS Type 1A 24-hour design storm. HydroCAD computer software (version 8.5) aided in the analysis. Representative curve numbers (CN) are obtained from the USDA *Technical Release 55* and are included in the Appendices. Water quality flow volumes that require treatment were calculated per CWS R&O 07-20 Section 4.05.6.

The proposed water quality swale design is based on the water quality flow mentioned in Section 3.2 above. The existing culvert is analyzed based on a 25-year storm event (24-hour Type IA rainfall of 3.90 inches).

5.1 SITE TOPOGRAPHY AND LAND USE

5.1.1 SITE TOPOGRAPHY

The overall drainage basin varies from relatively level in the lower portion of the basin to fairly steep in the upper reaches of the basin.

The majority of the proposed stormwater facility site (tax lots 6100 and 6801) contains slopes between 10 and 30 percent and has elevations varying from 186 to 160 feet. The proposed water quality swale and maintenance access road are located within the flattest portions of the site.

5.1.2 LAND USE

Based on the 2011 Sherwood Plan and Zone Map, the contributory drainage basin has a mixture of land uses, including the following:

- Low Density Residential (LDR)
- Medium Density Residential Low (MDRL)
- Medium Density Residential High (MDRH)
- High Density Residential (HDR)
- PUD-High Density Residential (PUD-HDR)
- Retail Commercial (RC)
- PUD-Retail Commercial (PUD-RC)
- Institutional and Public (IP)

The proposed stormwater facility site (tax lot 6801) is currently zoned as MDRH. However, the City of Sherwood purchased the property and the property is identified as the desired location for this regional stormwater facility on the City's Stormwater Master Plan (June 2007).

5.2 DESCRIPTION OF OFF-SITE CONTRIBUTORY BASINS

Based on visual observations of aerial photography across the City of Sherwood, the majority of the regional drainage basin is nearly built-out and can be considered fully developed with some small areas of infill development.

The stormwater analysis assumes that larger existing tax lots within the drainage basin will be further divided. This results in an additional 27 residential infill lots which are assumed to buildout the basin. It is assumed that the Archer Glen school site is currently built out and no additional impervious area will be created. The Cannery Row site is not fully constructed at this time, however; the hydraulic analysis is based on a full build out of the site at 85% impervious area coverage.

5.3 SOIL TYPE

The soils for the drainage basin are classified as the following by the USDA Soil Survey for Washington County. Appendix A contains a Basin and Soil Map which shows and delineates the various NRCS soil types across the regional stormwater drainage basin.

Map Unit Symbol	Map Unit Name	Hydrologic Group
1	Aloha Silt Loam	C/D
11B	Cornelius and Kinton Silt Loam, 2 to 7 percent slopes	C
11C	Cornelius and Kinton Silt Loam, 7 to 12 percent slopes	C
11D	Cornelius and Kinton Silt Loam, 12 to 20 percent slopes	C
21B	Hillsboro Loam, 3 to 7 percent slopes	B
22	Huberly Silt Loam	C/D
28B	Laurelwood Silt Loam, 3 to 7 percent slopes	B
37A	Quatama Loam, 0 to 3 percent slopes	C
37B	Quatama Loam, 3 to 7 percent slopes	C
44C	Willamette Silt Loam, 7 to 12 percent slopes	В
46F	Xerochrepts and Haploxerolls, very steep	B

Information on these soil types are included in the NRCS Soil Resource Report which is attached as an appendix at the end of this report.

6.0 CALCULATION METHODOLOGY

6.1 PROPOSED STORMWATER CONDUIT SIZING

The new storm drainage system proposes to redirect runoff from four (4) existing storm drainage outfalls which currently discharge into the Cedar Creek tributary. The new storm drainage system will route the existing systems to the new regional water quality facility. The stormwater pipes and inlets have been designed to convey flows from the 25-year storm event. See Appendix D for additional information and stormwater calculations with respect to the proposed storm drain system.

An existing stormwater facility is located along the north boundary of tax lot 6801 and will be abandoned/removed as part of the project. The primary desire for abandoning the existing stormwater facility and connecting the outfall pipe to the new regional stormwater quality facility is to eliminate the need for ongoing maintenance of multiple facilities.

6.2 PROPOSED STORMWATER QUALITY CONTROL FACILITY DESIGN

The stormwater runoff from the existing impervious areas within the regional basin will be routed to the new vegetated swale for treatment. As mentioned above, additional storm drainage improvements will allow collection and treatment of the existing outfalls which currently discharge untreated water into the unnamed tributary of Cedar Creek. The regional water quality swale is sized to meet Clean Water Services (CWS) requirements.

See Appendix B for water quality calculations associated with the design of the regional water quality swale.

6.3 PROPOSED STORMWATER QUANTITY CONTROL FACILTY DESIGN

As mentioned above in Section 3.1, this project is intended to construct a regional water quality facility and provide conveyance improvements with respect to the existing 21 inch culvert that

runs westerly under the railroad tracks. Since the project does not involve the construction of a significant amount of impervious area and the project includes downstream conveyance system upgrades, additional stormwater detention is not required or proposed as part of this project.

6.4 SECONDARY CULVERT (BACKWATER REDUCTION) ANALYSIS

This analysis reviewed the condition and capacity of the existing 21 inch diameter CMP culvert which conveys stormwater westerly under the Southern Pacific Railroad tracks.

Based on the development conditions and the soil types within the basin, curve numbers were assigned to all areas of the drainage basin. With all existing condition parameters input into the HydroCAD software, the estimated 25-year runoff for the drainage basin is 56.44 cfs. See Appendix C for detailed calculations.

The capacity of the culvert was analyzed considering the drainage area's stage/storage/discharge capacities. Under this condition, the culvert acts as an orifice restricting flow with storage volume available by virtue of the railroad embankment. As such, the incremental volume of the available storage was determined by the surface area of each upstream contour based on the topographic survey. The area of each 1 foot contour was input into the HydroCAD software along with the 21-inch culvert as the outflow orifice restrictor.

Based on the inflow hydrograph and the stage/storage/discharge characteristics of the drainage way, a backwater surface water elevation of 169.38 feet (invert of 21 inch culvert is 160.07 feet) is anticipated to occur during the 25-year storm event. The backwater elevation does not extend into the railroad right of way, but does encroach on the adjacent property to the south (tax lot 6400) where the drainage channel leaves tax lot 6801.

To increase the stormwater conveyance capacity, an additional parallel culvert is proposed. The proposed secondary culvert is planned to be 24 inches in diameter with the invert at 161.25 feet. This will lower the backwater surface elevation to 165.55 feet (3.83-foot reduction), and will lower the flood elevation such that flood backwater stays within the limits of city property (tax lot 6801). The secondary culvert provides additional conveyance capacity and reduces the backwater elevation to within the project limits.

The existing 21-inch CMP culvert currently requires continual monitoring and maintenance to ensure the inlet does not plug up during larger storm events. Steel "t" posts have been installed on the opposite bank of the culvert inlet in an attempt to "trap" downed tree limbs. The construction of the culvert maintenance access road and the secondary 24-inch culvert will provide City of Sherwood personnel with easier access to periodically clean the culvert inlet area and prevent clogging of the culvert inlets.

6.5 DOWNSTREAM ANALYSIS

The purpose of this project is to construct a regional stormwater quality facility to treat runoff from several existing drainage basins within the City of Sherwood. Currently, the majority of the stormwater runoff from the developed drainage basins discharge as untreated runoff into the existing unnamed tributary to Cedar Creek. No new development or home/duplex construction is proposed as part of the project. The only new impervious area constructed as part of the regional stormwater facility project is due to the construction of new access roads needed to provide the City of Sherwood access to facilities for future maintenance.

The new impervious access roads proposed as part of the project occupy 5,031 square feet of area. Per CWS R&O 07-20 Section 2.04.1, 5,280 square-feet of new impervious area is required to "trigger" the requirement evaluate the downstream system. Since the water quality project does not exceed this criteria, a downstream analysis is not necessary below the existing outlet culverts beneath the Southern Pacific Railroad embankment.

Earlier sections of this report address the capacity improvements which are proposed for the existing and proposed culverts beneath the Southern Pacific Railroad embankment.

APPENDIX A FIGURES

VICINITY MAP

APPENDIX B WATER QUALITY AND VEGETATED SWALE CALCULATIONS

STORMWATER QUALITY CALCULATIONS

Client: City of Sherwood Project: Columbia St. Water Quality Facililty AKS Job No.: 3068 Date: May 9, 2014 Done By: TSW/DS Checked By: PAS

IMPERVIOUS AREA

Total Site Area:	99.49	acres	
Total Site Area:	4,333,974	square feet (sf)	
Number of Lots:	317		
Impervious Area Per Lot:	2,640	sf	
Total Impervious Lot Area:	836,880	sf	
Total Impervious Commercial Area:	474,189	sf	
Total Impervious Right-of-Way Area:	671,988	sf	
Total Impervious Area:	1,983,057	sf	

ATER QUALITY VOLUME (WQV)

(Per CWS 4.05.6b - R&O 07-20)

 $WQV = \frac{0.36" \text{ X Area (ft)}}{12" \text{ per ft}} = 59,492 \text{ cubic feet}$

WATER QUALITY FLOW (WQF)

(Per CWS 4.05.6b - R&O 07-20)

 $WQF = \frac{WQV (sf)}{14,400 \text{ seconds}} = 4.13 \text{ cfs}$

'Y MANHOLE SUMP VOLUME CALCULATIONS

(Per CWS 4.06.1b - R&O 07-20)

CWS Criteria: Sump Volume = 20 cubic feet per 1.0 cfs of flow

Calculated 25-year Flow through WQ Manhole =	7.72	cfs		
Calculated Manhole Sump Volume =	154.4	cubic feet		
Calculated Manhole Sump Depth (84" Dia. Manhole) =	4.0	ft	<	5 feet maximum

3068 Water Quality Flow Calcs

VEGETATED SWALE, WATER QUALITY FLOW DESIGN & CALCULATIONS

Hydraulic Design Criteria (Per CWS 4.06.2 - R&O 07-20)

Design Flow: Water Quality Flow Minimum Hydraulic Residence Time: 9 minutes Maximum Water Design Depth: 0.5-ft Minimum Freeboard: 1.0 foot (for facilities not protected from high flows) Manning's "n" Value: 0.24 Maximum Velocity: 2.0 fps based on the 25-YR flow

Swale Sizing Assumptions:

Slope	Bottom Width	Manning's #	Side Slope	Depth of Swale	Length
(ft/ft)	(ft)	"n"	H:V	(ft)	(ft)
0.01	24.5	0.24	4	2.5	190

Water Quality Flow Hydraulic Calculations (See FlowsMaster Printouts):

Q	Flow Depth	Flow Area	Wp	R	Velocity
(cfs)	(ft)	(sf)	(ft)	(ft)	(fps)
4.13	0.45	11.88	28.22	0.42	0.35

25-Year Flow Hydraulic Calculations (See HydroCAD Printouts):

Q	Flow Depth	Velocity
(cfs)	(ft)	(fps)
7.72	0.65	0.44

Check Against Design Criteria:

	Calculated			CWS Criteria	9. TŠ	Criteria?
Minimum Hydraulic Residence Time:	9.0	minutes	>	9	minutes	Yes
Maximum Water Design Depth:	0.45	feet	<	0.5	feet	Yes
Minimum Freeboard at 25-YR:	1.85	feet	>	1	feet	Yes
Maximum Velocity at 25-YR:	0.44	fps	<	2	fps	Yes
Minimum Length:	190	feet	2	100	feet	Yes

Meet CWS

	Swale Water Quality Flow						
Project Description							
Friction Method Solve For	Manning Formula Normal Depth						
Input Data							
Channel Slope		0.01000	ft/ft				
Discharge		4.13	ft³/s				
Section Definitions							

Station (ft)		Elevation (ft)	
	-0+21		2.500
	-0+16		1.000
	-0+12		0.000
	0+12		0.000
	0+16		1.000
	0+21		2.500

Roughness Segment Definitions

Start Station	Ending	Station		Roughness Coefficient	
(-0+21,	2.500)	(-0+1	16, 1.000)		0.240
(-0+16,	1.000)	(-0+1	12, 0.000)		0.240
(-0+12,	0.000)	(0+1	12, 0.000)		0.240
(0+12,	0.000)	(0+1	16, 1.000)		0.240
(0+16,	1.000)	(0+2	21, 2.500)		0.240
Options					
Current Roughness Weighted Method Open Channel Weighting Method	Pavlovskii's Method Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.45	ft		
Elevation Range	0.00 to 2.50 ft				
Flow Area		11.88	ft²		

Bentley Systems, Inc. Haestad Methods ScheduldeyCElectronMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Swale Water Quality Flow			
Results	and the second second second	1	
Wetted Perimeter	28.22	ft	
Hydraulic Radius	0.42	ft	
Top Width	28.11	ft	
Normal Depth	0.45	ft	
Critical Depth	0.10	ft	
Critical Slope	1.84916	ft/ft	
Velocity	0.348	ft/s	
Velocity Head	0.00	ft	
Specific Energy	0.45	ft	
Froude Number	0.09		
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.45	ft	
Critical Depth	0.10	ft	
Channel Slope	0.01000	ft/ft	
Critical Slope	1.84916	ft/ft	

5/8/2014 6:16:55 PM

Bentley Systems, Inc. Haestad Methods ScheridleyC5kderMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Bentley Systems, Inc. Haestad Methods ScheitideyCEtterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

5/8/2014 6:17:44 PM

1.60

-0+10

-0+20

0+00

Station

0+10

0+20

LO 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 -0.20
ANALYSIS, 25-YEAR STORM EVENT PRE-CONSTRUCTION HYDRAULIC APPENDIX C (3.90")

3068 PRE-DEVELOPED Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
5.560	61	>75% Grass cover, Good, HSG B (5S,7.1S,7.2S,9S,10S,11S,13S)
1.956	66	Woods, Poor, HSG B (3.1S)
36.278	74	>75% Grass cover, Good, HSG C (5S,7.1S,7.2S,9S,10S,11S,13S)
10,176	80	>75% Grass cover, Good, HSG D (7.1S,9S)
0.848	98	Impervious Area on Lots (14 Lots x 2640sf) (13S)
8.485	98	Impervious Area on Lots (140 Lots x 2640sf) (7.1S)
0.182	98	Impervious Area on Lots (3 Lots x 2640sf) (10S)
0.242	98	Impervious Area on Lots (4 Lots x 2640sf) (5S)
0.303	98	Impervious Area on Lots (5 Lots x 2640sf) (7.2S)
3.576	98	Impervious Area on Lots (59 Lots x 2640sf) (11S)
5.576	98	Impervious Area on Lots (92 Lots x 2640sf) (9S)
10.886	98	Impervious Commercial (7.1S,9S,11S,13S)
15.427	98	Impervious Street ROW (7.1S,7.2S,9S,10S,11S,13S)
99.494		TOTAL AREA

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 3.1S:

Runoff = 0.31 cfs @ 8.00 hrs, Volume= 0.167 af, Depth> 1.02"

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S:

Runoff = 0.28 cfs @ 7.97 hrs, Volume= 0.107 af, Depth> 1.97"

A	rea (sf)	CN	Description	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	and the second	
	10,560	98	Impervious	Area on Lo	ots (4 Lots x 2640sf)	
	12,399	61	>75% Gras	s cover, Go	bod, HSG B	
	5,493	/4	>/5% Gras	s cover, Go	bod, HSG C	_
	28,452	77	Weighted A	Average		
	10,560	00	Impervious A	Area		
	10,500	50	impervious	Alea		
Tc	Length	Slope	e Velocity	Capacity	Description	
min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry, Minor sheet flow with all stor	mwater runoff
				Subc	atchment 5S:	
				Hydro	graph	
						Runoff
0.3	-		0.28	cfs	and the second sec	Kulloli
0.28				7	Type IA 24-hr 25-YR	
0.26			t		Rainfall=3 90"	
0.24			0	1		
0.22					Runoff Area=28,452 st	
0.2					Runoff Volume=0.107 af	
0.18			1	2	Runoff Denth>1 97"	
- 0.16				A		
0.14			2	R	1 C=5.0 min	
0.12	0		- 1		CN=65/98	
0.1						
0.08					THITTE	
			-	_		
0.06						
0.06		mal				

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 5

Summary for Subcatchment 7.1S:

Runoff = 32.17 cfs @ 7.93 hrs, Volume= 11.179 af, Depth> 2.73"

	Area (sf)	CN	Description							
*	369,600	98	Impervious	Area on Lo	ots (140 Lots x 2640sf)					
*	344,936	136 98 Impervious Street ROW								
*	430,182	98	Impervious	Commercia	al					
	12,115	61	>75% Gras	>75% Grass cover, Good, HSG B						
	593,407	74	>75% Gras	s cover, Go	ood, HSG C					
	392,771	80	>75% Gras	s cover, Go	bod, HSG D					
-	2,143,011	88	Weighted A	verage						
	998,293	76	76 Pervious Area							
	1,144,718	98	Impervious	Area						
	Tc Length (min) (feet)	Slo (ft/	pe Velocity (ft) (ft/sec)	Capacity (cfs)	Description					
-	5.0				Direct Entry, Minor sheet flow with all stormwater runoff convey					

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 7.2S:

Runoff = 3.00 cfs @ 8.06 hrs, Volume= 1.556 af, Depth> 1.86"

	A	rea (sf)	CN	Description										
*	A.F.T	91,020	98	Impervious	npervious Street ROW									
*		13.200	98	Impervious Area on Lots (5 Lots x 2640sf)										
		85,932 61 >75% Grass cover, Good, HSG B												
	2	47,594	74	>75% Grass cover, Good, HSG C										
2	4	37,746	77	Weighted A	verage									
	3	33,526	71	Pervious A	rea									
	1	04,220	98	Impervious	Area									
	Tc (min)	Length (feet)	Slop (ft/ft	e Velocity t) (ft/sec)	Capacity (cfs)	Description								
-	18.5	300	0.050	0 0.27		Sheet Flow, Grass' Short n= 0.150 P2= 2.50"								
	1.2	250	0.050	0 3.35		Shallow Concentrated Flow, Grassed Waterway, Ky= 15.0 fps								
	2.1	450	0.030	0 3.52		Shallow Concentrated Flow, Paved Ky= 20.3 fps								
	4.1	1,750	0.010	0 7.20	22.62	Circular Channel (pipe), Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013								
1	25.9	2,750	Total											

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 7

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Subcatchment 7.2S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 9S:

Runoff = 11.84 cfs @ 7.94 hrs, Volume= 4.228 af, Depth> 2.46"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Area (sf)	CN	Description					
*	242,880	98	Impervious Area on Lots (92 Lots x 2640sf)					
*	14,366	98	Impervious Commercial					
*	152,113	98	Impervious Street ROW					
	52,566	61	>75% Grass cover, Good, HSG B					
	387,655	387,655 74 >75% Grass cover, Good, HSG C						
	50,488),488 80 >75% Grass cover, Good, HSG D						
-	900,068	84	Weighted Average					
	490,709	73	Pervious Area					
	409,359	98	Impervious Area					
	Tc Length (min) (feet)	Sloj (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)					

Direct Entry, Minor sheet flow with all stormwater runoff convey

Subcatchment 9S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 9

Summary for Subcatchment 10S:

Runoff = 0.36 cfs @ 7.94 hrs, Volume= 0.126 af, Depth> 2.50"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Are	a (sf)	CN	Description	and the second second								
*		4,635	98	Impervious	Street ROV	N							
*		7,920	98	Impervious	mpervious Area on Lots (3 Lots x 2640sf)								
		1,318 61 >75% Grass cover, Good, HSG B											
	1	12,536 74 >75% Grass cover, Good, HSG C											
	2	6,409	85	Weighted Average									
	1	3,854	73	Pervious Area									
	1	2,555	98	Impervious	Area								
(п	Tc I nin)	Length (feet)	Slope (ft/ft	Velocity) (ft/sec)	Capacity (cfs)	Description							
	5.0			4,400,000		Direct Entry, Minor sheet flow with all stormwater runoff convey							

Subcatchment 10S:

Type IA 24-hr 25-YR Rainfall=3.90" 3068 PRE-DEVELOPED Printed 5/9/2014 Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 11S:

6.05 cfs @ 7.93 hrs, Volume= 2.167 af, Depth> 2.53" Runoff

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Area (sf)	CN	Description
*	27,403	98	Impervious Commercial
*	58,808	98	Impervious Street ROW
*	155,760	98	Impervious Area on Lots (59 Lots x 2640sf)
	77,385	61	>75% Grass cover, Good, HSG B
	129,130	74	>75% Grass cover, Good, HSG C
	448,486	85	Weighted Average
	206,515	69	Pervious Area
	241,971	98	Impervious Area
(1	Tc Length min) (feet)	Slop (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)

Direct Entry, Minor sheet flow with all stormwater runoff convey

Page 10

Subcatchment 11S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 13S:

Runoff 2.75 cfs @ 7.98 hrs, Volume= 1.013 af, Depth> 2.00"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Ar	ea (sf)	CN	Description										
*		2,238	98	Impervious	pervious Commercial									
*	e 1 1 1	20,476	98	Impervious	pervious Street ROW									
*	1.11	36,960	98	ts (14 Lots x 2640sf)										
		462	61	1 >75% Grass cover, Good, HSG B										
	20	04,471	74	>75% Grass cover, Good, HSG C										
12	20	64,607	79	Weighted A	verage									
	20	04,933	74	Pervious A	ea									
	59,674		98 Impervious Area		Area									
	Tc (min)	Length (feet)	Slop (ft/f	e Velocity t) (ft/sec)	Capacity (cfs)	Description								
	5.0					Direct Entry, Minor sheet flow with all stormwater runoff convey								

Subcatchment 13S:

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014

Page 11

3068 PRE-DEVELOPED 7 Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 2R: Existing Channel

0.07

 Inflow Area =
 99.494 ac, 45.76% Impervious, Inflow Depth > 2.48" for 25-YR event

 Inflow =
 56.48 cfs @
 7.96 hrs, Volume=
 20.539 af

 Outflow =
 56.44 cfs @
 7.97 hrs, Volume=
 20.525 af, Atten= 0%, Lag= 0.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.49 fps, Min. Travel Time= 1.0 min Avg. Velocity = 3.62 fps, Avg. Travel Time= 1.5 min

Peak Storage= 3,291 cf @ 7.97 hrs, Average Depth at Peak Storage= 1.58' Bank-Full Depth= 5.00', Capacity at Bank-Full= 570.75 cfs

0.03

Custom cross-section, Length= 320.0' Slope= 0.0185 '/' Flow calculated by Manning's Subdivision method Inlet Invert= 166.00', Outlet Invert= 160.07'

0.07

Off (fe	fset El	evation (feet)	Chan.Dept (fee	th t)	ñ	Description
-12	.50	5.00	0.0	0		
-1	.50	0.00	5.0	0	0.070	
1	.50	0.00	5.0	0	0.030	
12	.50	5.00	0.0	0	0.070	
Depth	End Are	ea Pe	erim.	S	torage	Discharge
(feet)	(sq-	ft) (feet) (c	ubi	ic-feet)	(cfs
0.00	0	0.0	3.0		0	0.00
5.00	70	0.0	27.2	- 13	22.400	570.75

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Reach 2R: Existing Channel

3068 PRE-DEVELOPED 7 Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 3R: Existing Channel

0.07

 Inflow Area =
 92.767 ac, 47.34% Impervious, Inflow Depth > 2.51" for 25-YR event

 Inflow =
 53.48 cfs @
 7.95 hrs, Volume=
 19.424 af

 Outflow =
 53.48 cfs @
 7.95 hrs, Volume=
 19.419 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.29 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.81 fps, Avg. Travel Time= 0.7 min

Peak Storage= 1,529 cf @ 7.95 hrs, Average Depth at Peak Storage= 1.81' Bank-Full Depth= 5.00', Capacity at Bank-Full= 498.97 cfs

Custom cross-section, Length= 151.3' Slope= 0.0250 '/' Flow calculated by Manning's Subdivision method Inlet Invert= 169.78', Outlet Invert= 166.00'

0.07

Of (fr	fset E eet)	Elevatio (fee	on Ch et)	an.Depth (feet)	n	Description
-13	3.25 0.75	5.0	00	0.00	0.070	2.00
10	0.75	0.0	00	5.00	0.030	
Depth (feet)	End A	vrea q-ft)	Perim. (feet)	(cub	Storage	Discharge (cfs
0.00 5.00	6	0.0 3.8	1.5 26.1		0 9,645	0.00 498.9

0.03

3068 PRE-DEVELOPED 7 Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

 Type IA 24-hr 25-YR
 Rainfall=3.90"

 Printed
 5/9/2014

 C
 Page 15

Reach 3R: Existing Channel

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Pond 1P: EX. 21" CMP

Inflow Are	ea =	99.494 ac, 4	5.76% Impervious, I	nflow Depth > 2.48"	for 25-YR event
Inflow	=	56.44 cfs @	7.97 hrs, Volume=	20.525 af	
Outflow	-	34.77 cfs @	8.26 hrs, Volume=	20.525 af, Atte	en= 38%, Lag= 17.1 min
Primary	=	34.77 cfs @	8.26 hrs, Volume=	20.525 af	manage in the and the

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 169.38' @ 8.26 hrs Surf.Area= 14,825 sf Storage= 41,659 cf

Plug-Flow detention time= 3.1 min calculated for 20.525 af (100% of inflow) Center-of-Mass det. time= 3.1 min (723.4 - 720.3)

Volume	Inv	ert Ava	il.Storage	Storage	Description	the second second second second second second	
#1	160.0	'00	90,422 cf	Custom	n Stage Data (Pris	matic)Listed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc (cubi	c.Store c-feet)	Cum.Store (cubic-feet)		
160.0	00	0		0	0		
161.0	00	19		10	10		
162.0	00	109		64	74		
163.0	00	415		262	336		
_164.0	00	948		682	1,017		
165.0	00	2,992		1,970	2,987		
166.0	00	5,541		4,267	7,254		
167.0	00	8,174		6,858	14,111		
168.0	00	11,058		9,616	23,727		
169.0	00	13,793	1.	12,426	36,153		
170.0	00	16,474	11 1 1	15,134	51,286		
171.0	00	19,548	1 17	18,011	69,297		
172.0	00	22,701		21,125	90,422		
Device	Routing	In	vert Out	et Device	s		
#1	Primary	160	0.07' 21.0	" Vert. E	X. 21" CMP, Orific	ce Inlet C= 0.620	

Primary OutFlow Max=34.76 cfs @ 8.26 hrs HW=169.38' (Free Discharge) —1=EX. 21" CMP, Orifice Inlet (Orifice Controls 34.76 cfs @ 14.45 fps)

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Pond 1P: EX. 21" CMP

POST-CONSTRUCTION HYDRAULIC ANALYSIS, 25-YEAR STORM EVENT APPENDIX D (3.90″)

3068 POST-DEVELOPED Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
5.560	61	>75% Grass cover, Good, HSG B (5S,7.1S,7.2S,9S,10S,11S,13S)
1.840	66	Woods, Poor, HSG B (3.1S)
36.278	74	>75% Grass cover, Good, HSG C (5S,7.1S,7.2S,9S,10S,11S,13S)
10.176	80	>75% Grass cover, Good, HSG D (7.1S,9S)
0.115	98	Access Rd Pavements (3.1S)
0.848	98	Impervious Area on Lots (14 Lots x 2640sf) (13S)
8.485	98	Impervious Area on Lots (140 Lots x 2640sf) (7.1S)
0.182	98	Impervious Area on Lots (3 Lots x 2640sf) (10S)
0.242	98	Impervious Area on Lots (4 Lots x 2640sf) (5S)
0.303	98	Impervious Area on Lots (5 Lots x 2640sf) (7.2S)
3.576	98	Impervious Area on Lots (59 Lots x 2640sf) (11S)
5.576	98	Impervious Area on Lots (92 Lots x 2640sf) (9S)
10.886	98	Impervious Commercial (7.1S,9S,11S,13S)
15.427	98	Impervious Street ROW (7.1S,7.2S,9S,10S,11S,13S)
99.494		TOTAL AREA

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 Page 3

Summary for Subcatchment 3.1S:

Runoff 8.00 hrs, Volume= 0.192 af, Depth> 1.18" 0.40 cfs @

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

1	Area (sf)	CN	Description		
7	80,164	66	Woods, Po	or, HSG B	
*	5,031	98	Access Rd	Pavements	
	85,195	68	Weighted A	verage	
	80,164	66	Pervious A	rea	
	5,031	98	Impervious	Area	
	Tc Lengt (min) (feet	h Slo) (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)	Description
-	5.0				Direct Entry, Stormwater runoff onsite, Minimum 5 minute

Direct Entry, Stormwater runoff onsite. Minimum 5 minutes sele

Subcatchment 3.1S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S:

Runoff = 0.28 cfs @ 7.97 hrs, Volume= 0.107 af, Depth> 1.97"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

_	Area (sf)	CN Description
r	10,560 12,399 5,493	 98 Impervious Area on Lots (4 Lots x 2640sf) 61 >75% Grass cover, Good, HSG B 74 >75% Grass cover, Good, HSG C
	28,452 17,892 10,560	 77 Weighted Average 65 Pervious Area 98 Impervious Area
(mi	Tc Length n) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
5	.0	Direct Entry, Minor sheet flow with all stormwater runof
		Subcatchment 5S:
		Hydrograph
Flow (cfs)	0.3 0.26 0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1 0.08	0.28 cfs Type IA 24-hr 25-YR Rainfall=3.90" Runoff Area=28,452 sf Runoff Volume=0.107 af Runoff Depth>1.97" Tc=5.0 min CN=65/98
0	0.04	
C	0.02	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 Type IA 24-hr 25-YR
 Rainfall=3.90"

 Printed
 5/9/2014

 C
 Page 4

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 5

Summary for Subcatchment 7.1S:

Runoff = 32.17 cfs @ 7.93 hrs, Volume= 11.179 af, Depth> 2.73"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

-	Area (sf)	CN	Description
*	369,600	98	Impervious Area on Lots (140 Lots x 2640sf)
*	344,936	98	Impervious Street ROW
*	430,182	98	Impervious Commercial
	12,115	61	>75% Grass cover, Good, HSG B
	593,407	74	>75% Grass cover, Good, HSG C
_	392,771	80	>75% Grass cover, Good, HSG D
_	2,143,011	88	Weighted Average
	998,293	76	Pervious Area
	1,144,718	98	Impervious Area
(Tc Length min) (feet)	Sloj (ft/	pe Velocity Capacity Description /ft) (ft/sec) (cfs)

Direct Entry, Minor sheet flow with all stormwater runoff convey

Subcatchment 7.1S:

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 6

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 7.2S:

Runoff = 3.00 cfs @ 8.06 hrs, Volume= 1.556 af, Depth> 1.86"

-	A	rea (sf)	CN	Description								
*		91,020	98	Impervious	mpervious Street ROW							
*		13,200	98	Impervious Area on Lots (5 Lots x 2640sf)								
		85,932	61	>75% Gras	s cover, Go	bod, HSG B						
_	2	47,594	74	>75% Gras	s cover, Go	bod, HSG C						
	4	37,746	77	Weighted A	verage							
	3	33,526	71	Pervious A	rea							
	1	04,220	98	Impervious	Area							
	Tc (min)	Length (feet)	Slope (ft/ft	Velocity (ft/sec)	Capacity (cfs)	Description						
	18.5	300	0.0500	0.27		Sheet Flow.						
			101204			Grass: Short n= 0.150 P2= 2.50"						
	1.2	250	0.0500	3.35		Shallow Concentrated Flow,						
						Grassed Waterway Kv= 15.0 fps						
	2.1	450	0.0300	3.52		Shallow Concentrated Flow,						
						Paved Kv= 20.3 fps						
	4.1	1,750	0.0100	7.20	22.62	Circular Channel (pipe),						
_	100			1.11	54, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013						
	25.0	2 750	Total									

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 S LLC Page 7

Subcatchment 7.2S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Subcatchment 9S:

4.228 af, Depth> 2.46" Runoff 11.84 cfs @ 7.94 hrs, Volume=

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Area (sf)	CN	Description
*	242,880	98	Impervious Area on Lots (92 Lots x 2640sf)
*	14,366	98	Impervious Commercial
*	152,113	98	Impervious Street ROW
	52,566	61	>75% Grass cover, Good, HSG B
	387,655	74	>75% Grass cover, Good, HSG C
	50,488	80	>75% Grass cover, Good, HSG D
	900,068	84	Weighted Average
	490,709	73	Pervious Area
	409,359	98	Impervious Area
(m	Tc Length nin) (feet)	Slop (ft/	be Velocity Capacity Description ft) (ft/sec) (cfs)

Direct Entry, Minor sheet flow with all stormwater runoff convey

Subcatchment 9S:

Page 8

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 9

Summary for Subcatchment 10S:

Runoff = 0.36 cfs @ 7.94 hrs, Volume= 0.126 af, Depth> 2.50"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

-	Area (sf)	CN	Description		
*	4,635	98	Impervious	Street RO	N
*	7,920	98	Impervious	Area on Lo	ots (3 Lots x 2640sf)
	1,318	61	>75% Gras	s cover, Go	bod, HSG B
	12,536	74	>75% Gras	s cover, Go	bod, HSG C
	26,409	85	Weighted A	verage	
	13,854	73	Pervious A	ea	
	12,555	98	Impervious	Area	
(mi	Tc Length n) (feet)	Slop (ft/	t) (ft/sec)	Capacity (cfs)	Description
5	.0				Direct Entry, Minor sheet flow with all stormwater runoff convey

Subcatchment 10S:

5.0

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 10

Summary for Subcatchment 11S:

Runoff = 6.05 cfs @ 7.93 hrs, Volume= 2.167 af, Depth> 2.53"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

_	Area (sf)	CN	Description
*	27,403	98	Impervious Commercial
*	58,808	98	Impervious Street ROW
*	155,760	98	Impervious Area on Lots (59 Lots x 2640sf)
	77,385	61	>75% Grass cover, Good, HSG B
1	129,130	74	>75% Grass cover, Good, HSG C
	448,486	85	Weighted Average
	206,515	69	Pervious Area
	241,971	98	Impervious Area
	Tc Length (min) (feet)	Slo (ft/	pe Velocity Capacity Description /ft) (ft/sec) (cfs)

Direct Entry, Minor sheet flow with all stormwater runoff convey

Subcatchment 11S:

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 11

Summary for Subcatchment 13S:

Runoff = 2.75 cfs @ 7.98 hrs, Volume= 1.013 af, Depth> 2.00"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-YR Rainfall=3.90"

	Area (sf)	CN	Description	A	
*	2,238	98	Impervious	Commercia	al
*	20,476	98	Impervious	Street RON	N
*	36,960	98	Impervious	Area on Lo	ots (14 Lots x 2640sf)
	462	61	>75% Gras	s cover, Go	bod, HSG B
2	204,471	74	>75% Gras	s cover, Go	bod, HSG C
	264,607	79	Weighted A	verage	
	204,933	74	Pervious A	rea	
	59,674	98	Impervious	Area	
	Tc Length (min) (feet)	Slo (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)	Description
	50				Direct Entry Minor sheet flow with all stormwater runoff conve

Subcatchment 13S:

0.07

70.0

5.00

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 2R: Existing Channel

0.07

570.75

 Inflow Area =
 99.494 ac, 45.87% Impervious, Inflow Depth > 2.47" for 25-YR event

 Inflow =
 56.62 cfs @
 7.98 hrs, Volume=
 20.508 af

 Outflow =
 56.50 cfs @
 7.98 hrs, Volume=
 20.494 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.49 fps, Min. Travel Time= 1.0 min Avg. Velocity = 3.61 fps, Avg. Travel Time= 1.5 min

Peak Storage= 3,293 cf @ 7.98 hrs, Average Depth at Peak Storage= 1.59' Bank-Full Depth= 5.00', Capacity at Bank-Full= 570.75 cfs

Custom cross-section, Length= 320.0' Slope= 0.0185 '/' Flow calculated by Manning's Subdivision method Inlet Invert= 166.00', Outlet Invert= 160.07'

0.03 Offset Elevation Chan.Depth n Description (feet) (feet) (feet) -12.50 5.00 0.00 -1.50 0.00 5.00 0.070 1.50 0.00 5.00 0.030 12.50 5.00 0.00 0.070 Depth End Area Perim. Storage Discharge (feet) (sq-ft) (feet) (cubic-feet) (cfs) 0.0 0.00 3.0 0.00 0

22,400

27.2

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

 Type IA 24-hr 25-YR
 Rainfall=3.90"

 Printed
 5/9/2014

 C
 Page 13

Reach 2R: Existing Channel

3068 POST-DEVELOPED 7 Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 3.1R: Realigned Channel

 Inflow Area =
 1.956 ac,
 5.91% Impervious, Inflow Depth > 81.09"
 for 25-YR event

 Inflow =
 48.80 cfs @
 7.96 hrs, Volume=
 13.217 af

 Outflow =
 48.80 cfs @
 7.96 hrs, Volume=
 13.216 af, Atten= 0%, Lag= 0.1 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 9.16 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.97 fps, Avg. Travel Time= 0.2 min

Peak Storage= 289 cf @ 7.96 hrs, Average Depth at Peak Storage= 1.05' Bank-Full Depth= 2.50', Capacity at Bank-Full= 251.42 cfs

Custom cross-section, Length= 54.2' Slope= 0.0672 '/ Flow calculated by Manning's Subdivision method Inlet Invert= 173.42', Outlet Invert= 169.78'

0:07 0.07 0.03 Offset Elevation Chan.Depth n Description (feet) (feet) (feet) -6.50 0.00 2.50 -1.50 0.00 2.50 0.070 1.50 0.00 2.50 0.030 6.50 2.50 0.00 0.070 Storage Depth End Area Discharge Perim. (feet) (sq-ft) (feet) (cubic-feet) (cfs) 0.00 0.0 3.0 0.00 0 2.50 20.0 14.2 1,084 251.42

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Reach 3.1R: Realigned Channel

Type IA 24-hr 25-YR Rainfall=3.90"

Printed 5/9/2014

Page 15

3068 POST-DEVELOPED Prepared by AKS Engineering & Forestry, LLC.

HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 3R: Existing Channel

0.07

 Inflow Area =
 1.956 ac,
 5.91% Impervious, Inflow Depth > 81.09" for 25-YR event

 Inflow =
 48.80 cfs @
 7.96 hrs, Volume=
 13.216 af

 Outflow =
 48.78 cfs @
 7.97 hrs, Volume=
 13.213 af, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.21 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.43 fps, Avg. Travel Time= 0.7 min

Peak Storage= 1,416 cf @ 7.97 hrs, Average Depth at Peak Storage= 1.73' Bank-Full Depth= 5.00', Capacity at Bank-Full= 498.97 cfs

0.03

Custom cross-section, Length= 151.3' Slope= 0.0250 '/' Flow calculated by Manning's Subdivision method Inlet Invert= 169.78', Outlet Invert= 166.00'

0.07

Of (fe	fset E eet)	levation (feet)	Chan.De (fe	pth eet)	n	Description
-13	.25	5.00	0	.00	0.070	V
0	.75	0.00	5	.00	0.030	
10	.75	5.00	0	.00	0.070	
Depth (feet)	End Ar (sq	rea Pe -ft) (erim. feet)	e (cub	Storage ic-feet)	Discharge (cfs
0.00	6	0.0 3.8	1.5		0 9.645	0.00

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

 Type IA 24-hr 25-YR Rainfall=3.90"

 Printed 5/9/2014

 C
 Page 17

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 18

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 5R: 12"

 Inflow Area =
 0.653 ac, 37.12% Impervious, Inflow Depth > 1.97" for 25-YR event

 Inflow =
 0.28 cfs @
 7.97 hrs, Volume=
 0.107 af

 Outflow =
 0.28 cfs @
 7.98 hrs, Volume=
 0.107 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.26 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.53 fps, Avg. Travel Time= 1.5 min

Peak Storage= 14 cf @ 7.98 hrs, Average Depth at Peak Storage= 0.14' Defined Flood Depth= 188.13', Capacity at Flood Depth= -5,362.63 cfs Bank-Full Depth= 1.00', Capacity at Bank-Full= 6.84 cfs

12.0" Diameter Pipe, n= 0.013 Length= 222.6' Slope= 0.0368 '/' Inlet Invert= 183.50', Outlet Invert= 175.30'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 19

Summary for Reach 6R: 42"

 Inflow Area =
 96.885 ac, 46.74% Impervious, Inflow Depth > 2.51" for 25-YR event

 Inflow =
 55.86 cfs @
 7.96 hrs, Volume=
 20.262 af

 Outflow =
 55.86 cfs @
 7.96 hrs, Volume=
 20.258 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.55 fps, Min. Travel Time= 0.3 min Avg. Velocity = 4.21 fps, Avg. Travel Time= 0.4 min

Peak Storage= 934 cf @ 7.96 hrs, Average Depth at Peak Storage= 2.90' Defined Flood Depth= 185.88', Capacity at Flood Depth= -12,027.04 cfs Bank-Full Depth= 3.50', Capacity at Bank-Full= 55.26 cfs

42.0" Diameter Pipe, n= 0.013 Length= 109.4' Slope= 0.0030 '/' Inlet Invert= 173.69', Outlet Invert= 173.36'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 7R: 42"

 Inflow Area =
 59.246 ac, 48.39% Impervious, Inflow Depth > 2.58" for 25-YR event

 Inflow =
 34.94 cfs @
 7.95 hrs, Volume=
 12.736 af

 Outflow =
 34.94 cfs @
 7.95 hrs, Volume=
 12.735 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.12 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.72 fps, Avg. Travel Time= 0.1 min

Peak Storage= 74 cf @ 7.95 hrs, Average Depth at Peak Storage= 2.01' Defined Flood Depth= 183.83', Capacity at Flood Depth= -12,009.83 cfs Bank-Full Depth= 3.50', Capacity at Bank-Full= 55.81 cfs

42.0" Diameter Pipe, n= 0.013 Length= 13.0' Slope= 0.0031 '/' Inlet Invert= 173.73', Outlet Invert= 173.69'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 8R: 30"

 Inflow Area =
 37.639 ac, 44.13% Impervious, Inflow Depth > 2.40" for 25-YR event

 Inflow =
 20.93 cfs @
 7.96 hrs, Volume=
 7.530 af

 Outflow =
 20.93 cfs @
 7.96 hrs, Volume=
 7.527 af, Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 5.89 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.63 fps, Avg. Travel Time= 0.9 min

Peak Storage= 674 cf @ 7.96 hrs, Average Depth at Peak Storage= 1.70' Defined Flood Depth= 188.59', Capacity at Flood Depth= -8,087.42 cfs Bank-Full Depth= 2.50', Capacity at Bank-Full= 25.98 cfs

30.0" Diameter Pipe, n= 0.013 Length= 189.5' Slope= 0.0040 '/' Inlet Invert= 175.45', Outlet Invert= 174.69'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 9R: 24"

 Inflow Area =
 20.663 ac, 45.48% Impervious, Inflow Depth > 2.46" for 25-YR event

 Inflow =
 11.84 cfs @
 7.94 hrs, Volume=
 4.228 af

 Outflow =
 11.84 cfs @
 7.94 hrs, Volume=
 4.228 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 13.50 fps, Min. Travel Time= 0.0 min Avg. Velocity = 7.89 fps, Avg. Travel Time= 0.0 min

Peak Storage= 17 cf @ 7.94 hrs, Average Depth at Peak Storage= 0.65' Defined Flood Depth= 188.34', Capacity at Flood Depth= -20,470.65 cfs Bank-Full Depth= 2.00', Capacity at Bank-Full= 52.49 cfs

24.0" Diameter Pipe, n= 0.013 Length= 19.5' Slope= 0.0538 '/' Inlet Invert= 180.50', Outlet Invert= 179.45'

3068 POST-DEVELOPED Prepared by AKS Engineering & Forestry, LLC.

HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 10R: 24"

 Inflow Area =
 16.977 ac, 42.49% Impervious, Inflow Depth >
 2.33" for 25-YR event

 Inflow =
 9.13 cfs @
 7.98 hrs, Volume=
 3.301 af

 Outflow =
 9.13 cfs @
 7.98 hrs, Volume=
 3.301 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 6.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.05 fps, Avg. Travel Time= 0.1 min

Peak Storage= 28 cf @ 7.98 hrs, Average Depth at Peak Storage= 0.89' Defined Flood Depth= 188.59', Capacity at Flood Depth= -8,812.65 cfs Bank-Full Depth= 2.00', Capacity at Bank-Full= 22.57 cfs

24.0" Diameter Pipe, n= 0.013 Length= 21.1' Slope= 0.0100 '/' Inlet Invert= 176.16', Outlet Invert= 175.95'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 11R: 24"

 Inflow Area =
 16.370 ac, 42.30% Impervious, Inflow Depth > 2.33" for 25-YR event

 Inflow =
 8.76 cfs @
 7.95 hrs, Volume=
 3.179 af

 Outflow =
 8.78 cfs @
 7.98 hrs, Volume=
 3.175 af, Atten= 0%, Lag= 1.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.28 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.62 fps, Avg. Travel Time= 2.8 min

Peak Storage= 914 cf @ 7.98 hrs, Average Depth at Peak Storage= 1.24' Defined Flood Depth= 185.29', Capacity at Flood Depth= -4,757.19 cfs Bank-Full Depth= 2.00', Capacity at Bank-Full= 12.40 cfs

24.0" Diameter Pipe, n= 0.013 Length= 445.8' Slope= 0.0030 '/' Inlet Invert= 177.70', Outlet Invert= 176.36'

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 12R: 15"

 Inflow Area =
 6.075 ac, 22.55% Impervious, Inflow Depth > 2.00" for 25-YR event

 Inflow =
 2.75 cfs @
 7.98 hrs, Volume=
 1.013 af

 Outflow =
 2.74 cfs @
 7.98 hrs, Volume=
 1.012 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 4.26 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.55 fps, Avg. Travel Time= 2.0 min

Peak Storage= 197 cf @ 7.98 hrs, Average Depth at Peak Storage= 0.65' Defined Flood Depth= 186.10', Capacity at Flood Depth= -3,188.63 cfs Bank-Full Depth= 1.25', Capacity at Bank-Full= 5.15 cfs

15.0" Diameter Pipe, n= 0.013 Length= 305.6' Slope= 0.0063 '/' Inlet Invert= 180.39', Outlet Invert= 178.45'

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 25

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 26

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Summary for Reach 13R: 15"

 Inflow Area =
 6.075 ac, 22.55% Impervious, Inflow Depth > 2.00" for 25-YR event

 Inflow =
 2.75 cfs @
 7.98 hrs, Volume=
 1.013 af

 Outflow =
 2.75 cfs @
 7.98 hrs, Volume=
 1.013 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 7.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.16 fps, Avg. Travel Time= 0.2 min

Peak Storage= 15 cf @ 7.98 hrs, 'Average Depth at Peak Storage= 0.44' Bank-Full Depth= 1.25', Capacity at Bank-Full= 10.28 cfs

15.0" Diameter Pipe, n= 0.013 Length= 39.9' Slope= 0.0253 '/' Inlet Invert= 181.60', Outlet Invert= 180.59'

Reach 13R: 15"

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 27

Summary for Reach WQ: WQ Swale

 Inflow Area =
 97.539 ac, 46.67% Impervious, Inflow Depth > 0.90" for 25-YR event

 Inflow =
 7.72 cfs @
 7.96 hrs, Volume=
 7.340 af

 Outflow =
 7.65 cfs @
 8.02 hrs, Volume=
 7.295 af, Atten= 1%, Lag= 3.6 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 0.44 fps, Min. Travel Time= 7.3 min Avg. Velocity = 0.33 fps, Avg. Travel Time= 9.6 min

Peak Storage= 3,341 cf @ 8.02 hrs, Average Depth at Peak Storage= 0.65' Bank-Full Depth= 3.00', Capacity at Bank-Full= 114.18 cfs

Custom cross-section, Length= 190.0' Slope= 0.0100 '/' (101 Elevation Intervals) Constant n= 0.240 Inlet Invert= 172.16', Outlet Invert= 170.26'

‡

Offset (feet)	Elevation (feet)	Chan.Depth (feet)
-21.25	3.00	0.00
-16.25	1.00	2.00
-12.25	0.00	3.00
12.25	0.00	3.00
16.25	1.00	2.00
21.25	3.00	0.00

Dept (fee	th End A et) (s	Area I sq-ft)	Perim. (feet)	Storage (cubic-feet)	Discharge (cfs)	
0.0	00	0.0	24.5	0	0.00	
1.0	00	28.5	32.7	5,415	16.09	
3.0	0 1	03.5	43.5	19,665	114.18	

Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Reach WQ: WQ Swale

3068 POST-DEVELOPED Prepared by AKS Engineering & Forestry, LLC.

HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Type IA 24-hr 25-YR Rainfall=3.90" Printed 5/9/2014 C Page 29

Summary for Reach WQMH: WQ Manhole

 Inflow Area =
 97.539 ac, 46.67% Impervious, Inflow Depth > 0.90" for 25-YR event

 Inflow =
 7.72 cfs @
 7.96 hrs, Volume=
 7.340 af

 Outflow =
 7.72 cfs @
 7.96 hrs, Volume=
 7.340 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 11.53 fps, Min. Travel Time= 0.0 min Avg. Velocity = 9.84 fps, Avg. Travel Time= 0.0 min

Peak Storage= 12 cf @ 7.96 hrs, Average Depth at Peak Storage= 0.80' Bank-Full Depth= 1.00', Capacity at Bank-Full= 7.94 cfs

12.0" Diameter Pipe, n= 0.013 Length= 18.1' Slope= 0.0497 '/' Inlet Invert= 172.65', Outlet Invert= 171.75'

Reach WQMH: WQ Manhole

Summary for Pond 1P: EX. CMP & NEW INLET

Inflow Are	a =	99.494 ac, 4	5.87% Impervious, Inf	low Depth > 2.47	7" for 25-YR event
Inflow	=	56.50 cfs @	7.98 hrs, Volume=	20.494 af	
Outflow	=	54.15 cfs @	8.05 hrs, Volume=	20.493 af, /	Atten= 4%, Lag= 4.2 min
Primary	=	25.76 cfs @	8.05 hrs, Volume=	17.288 af	
Secondar	/ =	28.39 cfs @	8.05 hrs, Volume=	3.206 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 165.55' @ 8.05 hrs Surf.Area= 4,391 sf Storage= 5,014 cf

Plug-Flow detention time= 0.2 min calculated for 20.493 af (100% of inflow) Center-of-Mass det. time= 0.2 min (722.8 - 722.6)

Volume	Inver	t Avail.Sto	orage Stora	age Description
#1	160.00	90,4	22 cf Cust	tom Stage Data (Prismatic)Listed below (Recalc)
Elevatio (fee	on S et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	e Cum.Store (cubic-feet)
160.0	00	0	0) 0
161.0	00	19	10) 10
162.0	00	109	64	74
163.0	00	415	262	336
164.0	00	948	682	1,017
165.0	00	2,992	1,970	2,987
166.0	00	5,541	4,267	7,254
167.0	00	8,174	6,858	3 14,111
168.0	00	11,058	9,616	23,727
169.0	00	13,793	12,426	36,153
170.0	00	16,474	15,134	51,286
171.0	00	19,548	18,011	69,297
172.0	00	22,701	21,125	90,422
Device	Routing	Invert	Outlet Dev	vices
#1	Primary	160.04'	21.0" Vert	EX. 21" CMP, Orifice Inlet C= 0.620
#2	Secondary	/ 161.25'	24.0" Vert	. 24" CPP, Orifice Inlet C= 0.620
#3	Device 1	160.04'	4.00' x 4.0	0' Horiz. 4'x4' Grate Limited to weir flow C= 0.620
#4	Device 2	161.25	4.00' W x	4.00' H Vert. 4'x4' Grate C= 0.620

Primary OutFlow Max=25.76 cfs @ 8.05 hrs HW=165.55' (Free Discharge) 1=EX. 21" CMP, Orifice Inlet (Orifice Controls 25.76 cfs @ 10.71 fps) 3=4'x4' Grate (Passes 25.76 cfs of 186.84 cfs potential flow)

Secondary OutFlow Max=28.39 cfs @ 8.05 hrs HW=165.55' (Free Discharge) 2=24" CPP, Orifice Inlet (Orifice Controls 28.39 cfs @ 9.04 fps) 4=4'x4' Grate (Passes 28.39 cfs of 116.08 cfs potential flow)

Pond 1P: EX. CMP & NEW INLET

Type IA 24-hr 25-YR Rainfall=3.90" Prepared by AKS Engineering & Forestry, LLC. HydroCAD® 8.50 s/n 005096 © 2007 HydroCAD Software Solutions LLC

Printed 5/9/2014 Page 32

Summary for Pond 4P: Flow Splitter

Inflow Area = 97.539 ac, 46.67% Impervious, Inflow Depth > 2.51" for 25-YR event Inflow 56.14 cfs @ 7.96 hrs, Volume= 20.365 af = 7.96 hrs, Volume= 7.96 hrs, Volume= 20.365 af, Atten= 0%, Lag= 0.0 min Outflow 56.14 cfs @ = Primary = 7.72 cfs @ 7.340 af 48.41 cfs @ 7.96 hrs, Volume= Secondary = 13.025 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 177.83' @ 7.96 hrs Flood Elev= 179.40'

Routing	Invert	Outlet Devices
Secondary	173.61'	36.0" x 56.3' long Culvert RCP, square edge headwall, Ke= 0.500
		Outlet Invert= 173.44' S= 0.0030 '/' Cc= 0.900 n= 0.013
Primary	173.16'	12.0" x 18.0' long Culvert CPP, square edge headwall, Ke= 0.500
		Outlet Invert= 172.85' S= 0.0172 '/' Cc= 0.900 n= 0.013
	Routing Secondary Primary	RoutingInvertSecondary173.61'Primary173.16'

Primary OutFlow Max=7.72 cfs @ 7.96 hrs HW=177.83' TW=173.45' (Dynamic Tailwater) 2=Culvert (Inlet Controls 7.72 cfs @ 9.83 fps)

Secondary OutFlow Max=48.35 cfs @ 7.96 hrs HW=177.83' TW=174.47' (Dynamic Tailwater) -1=Culvert (Barrel Controls 48.35 cfs @ 6.84 fps)

Pond 4P: Flow Splitter

APPENDIX E CURVE NUMBERS FROM TECHNICAL RELEASE 55 URBAN HYDROLOGY FOR SMALL WATERSHED

Table 2-2a

Runoff curve numbers for urban areas \mathcal{V}

			Curve n	umbers for		
Cover description	States and and and	_	hydrologic soil group			
	Average percent					
Cover type and hydrologic condition	impervious area 2/	A	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) 2:						
Poor condition (grass cover < 50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	
Good condition (grass cover > 75%)		39	61	74	80	
Impervious areas:		1020	1000	and a second		
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)		98	98	98	98	
Streets and roads:	CONTRACT	100	(and)			
Paved: curbs and storm sewers (excluding						
right-of-way)		98	98	98	98	
Payed: open ditches (including right-of-way)		83	89	92	93	
Gravel (including right-of-way)		76	85	89	91	
Dirt (including right-of-way)		72	82	87	89	
Western desert urban areas:		15	01	U1	00	
Natural desert landscaping (pervious areas only) 4		63	77	85	88	
Artificial desert landscaping (per risual areas only) = initialian		00		00	00	
desert shrub with 1- to 2 inch sand or gravel mulch						
and basin borders)		96	96	96	96	
Urban dietricte		00	00	00	00	
Commercial and husiness	85	80	09	94	05	
Industrial	79	81	94	01	09	
Residential districts by average lot size	12	01	00	31	00	
1/9 ages on loss (town houses)	85	77	95	00	02	
1/8 acre of less (lowin flouses)	00	61	75	90	94	
1/9 acre	20	57	70	00	01	
1/D acre		54	70	01	00	
1/2 acre	20	51	10	70	00	
1 delle antonominationalitat	19	10	00	18	04	
2 acres	12	40	GÐ	11	82	
Developing urban areas						
Newly graded areas						
(pervious areas only, no vegetation) 5/	Hereitan -	77	86	91	94	
Idle lands (CN's are determined using cover types						
similar to those in table $9.2c$						

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Estimating Runoff

Table 2-2h	Runoff curve numbers for	cultivated agricultural lands	:V
THOIC P PD	realion curve numbers for	cultivated agricultural matter	

		Curve numbers for ————————————————————————————————————				
	cover description	Hydrologic		nymologie s	on Broup	
Cover type	Treatment 2/	condition 3/	A	В	С	D
Fallow	Bare soil	-	77	86	91	94
	Crop residue cover (CR)	Poor Good	76 74	85 83	90 88	93 90
Row crops	Straight row (SR)	Poor	72	81	88	91
	SR + CR	Good Poor	67 71	78 80	85 87	89 90
	Contoured (C)	Good Poor	64 70	75 79	82 84	85 88
	C + CR	Good Poor	65 69	75 78	82 83	86 87
	Contoured & terraced (C&T)	Good Poor	64 66	74 74	81 80	85 82
	C&T+ CR	Good Poor	62 65	71 73	78 79	81 81
		Good	61	70	77	80
Small grain	SR	Poor Good	65 63	76 75	84 83	88 87
	SR + CR	Poor Good	64 60	75 72	83 80	86 84
	С	Poor Good	63 61	74 73	82 81	85 84
	C + CR	Poor Good	62 60	73 72	81 80	84 83
	C&T	Poor Good	61 59	72 70	79 78	82 81
	C&T+ CR	Poor Good	60 58	71 69	78 77	81 80
Close-seeded or broadcast	SR	Poor Good	66 58	77 72	85 81	89 85
legumes or rotation	C	Poor Good	64 55	75 69	83 78	85 83
meadow	C&T	Poor Good	63 51	73 67	80 76	83 80

¹ Average runoff condition, and I_a=0.2S

² Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good ≥ 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c

Runoff curve numbers for other agricultural lands 1/

Cover description		-	Curve nu - hydrologic	Curve numbers for hydrologic soil group -	
Cover type	Hydrologic condition	A	В	C	D
Pasture, grassland, or range-continuous	Poor	68	79	86	89
forage for grazing. ^y	Fair Good	49 39	69 61	79 74	84 80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	-	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. ^{3/}	Poor Fair Good	48 35 30 4⁄	67 56 48	77 70 65	83 77 73
Woods—grass combination (orchard or tree farm). 회	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79
Woods. 🖗	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	9.2	59	74	82	86

¹ Average runoff condition, and $I_a = 0.2S$. ² *Poor:* <50%) ground cover or heavily grazed

Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

³ Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

⁶ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Runoff curve numbers for arid and semiarid rangelands $\mathcal V$

Cover description		1	Curve numbers for hydrologic soil group —			
Cover type	Hydrologic condition ^{2/}	A 3/	В	c	D	
Herbaceous-mixture of grass, weeds, and	Poor		80	87	93	
low-growing brush, with brush the	Fair		71	81	89	
minor element.	Good		62	74	85	
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79	
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63	
and other brush.	Good		30	41	48	
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89	
grass understory.	Fair		58	73	80	
	Good		41	61	71	
Sagebrush with grass understory.	Poor		67	80	85	
	Fair		51	63	70	
	Good		35	47	55	
Desert shrub—major plants include saltbush,	Poor	63	77	85	88	
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86	
palo verde, mesquite, and cactus.	Good	49	68	79	84	

¹ Average runoff condition, and $I_{at} = 0.2S$. For range in humid regions, use table 2-2c.

2 Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover. Good: > 70% ground cover.

а. Curve numbers for group A have been developed only for desert shrub.

Table 2-2d

APPENDIX F USDA SOIL SURVEY OF WASHINGTON COUNTY

MAP LEGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Units Soil Ratings A A/D B B/D C C/D	Map Scale: 1:8,740 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soll Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov
D Not rated or not available Political Features	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Washington County, Oregon
Cities Water Features	Date(s) aerial images were photographed: 8/4/2005
Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Aloha silt loam	C/D	89.8	31.3%
11B	Cornelius and Kinton silt loams, 2 to 7 percent slopes	С	8.4	2.9%
11C	Cornelius and Kinton silt loams, 7 to 12 percent slopes	С	56.4	19.7%
11D	Cornelius and Kinton silt loams, 12 to 20 percent slopes	с	3.5	1.2%
21A	Hillsboro loam, 0 to 3 percent slopes	В	2.5	0.9%
21B	Hillsboro loam, 3 to 7 percent slopes	В	11.8	4.1%
21C	Hillsboro loam, 7 to 12 percent slopes	В	7.4	2.6%
22	Huberly silt loam	C/D	12.2	4.3%
28B	Laurelwood silt loam, 3 to 7 percent slopes	в	7.7	2.7%
28C	Laurelwood silt loam, 7 to 12 percent slopes	в	5.2	1.8%
30	McBee silty clay loam	с	8.5	3.0%
37A	Quatama loam, 0 to 3 percent slopes	С	24.9	8.7%
37B	Quatama loam, 3 to 7 percent slopes	С	21.7	7.6%
37C	Quatama loam, 7 to 12 percent slopes	С	2.5	0.9%
38C	Saum silt loam, 7 to 12 percent slopes	С	0.1	0.0%
41	Urban land		7.6	2.7%
42	Verboort silty clay loarn	D	0.8	0.3%
44C	Willamette silt loam, 7 to 12 percent slopes	В	7.2	2.5%
46F	Xerochrepts and Haploxerolls, very steep	В	8.8	3.1%
Totals for Area of I	nterest		286.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Natural Resources Conservation Service