Exhibit L: Geotechnical Report

Willamette Water Supply Our Reliable Water	Willamette Water Supply Program
	WTP_1.0
	Geotechnical Engineering Report
	FINAL
	Prepared For:
	CDM Smith

May 12, 2020

This page intentionally left blank.

Table of Contents

1.0	Introd	uction	1
	1.1	General	1
	1.2	Project Description	1
	1.3	Purpose and Scope of Work	2
	1.4	Project Geotechnical Reports	2
	1.5	Authorization	3
2.0	Site E	xplorations	4
	2.1	General	4
	2.2	Field Explorations	4
	2.2.1	Exploratory Borings	4
	2.2.2	Air-Track Probe Holes	4
	2.2.3	Test Pits	4
	2.2.4	Geophysical Explorations	4
	2.2.5	Piezometers	5
	2.3	Laboratory Testing	5
	2.4	Previous Geotechnical Investigations	6
	2.4.1	SW 124 th Avenue Transmission Line (PLM_3.0)	6
	2.4.2	Pre-purchase Due Diligence 90-Acre Site Investigation	6
3.0	Site D	escription	7
	3.1	Surface Conditions	7
	3.2	Geology	7
	3.3	Subsurface Conditions	8
	3.4	Rock Mass Classification	11
	3.4.1	Rock Quality Designation (RQD)	11
	3.4.2	Rock Mass Rating (RMR) System	12
	3.5	Groundwater	12
4.0	Seism	ic and Geologic Hazard Evaluation	14
	4.1	General	14
	4.2	Regional Seismicity	14
	4.3	Site Classification	14
	4.4	Seismic Design Parameters	15
	4.5	Seismic Sources and Hazard Deaggregation	15
	4.6	Liquefaction	16

	4.7	Slope Stability	. 16
	4.8	Lateral Spreading	. 16
	4.9	Fault Rupture	. 16
	4.10	Buoyancy and Flotation	. 16
	4.11	Flood Hazard	. 16
	4.12	Abrupt Settlement	. 17
	4.13	Other Hazards	. 17
5.0	Desig	n Recommendations	. 18
	5.1	Foundation Design Recommendations	. 18
	5.1.1	Subgrade Preparation	. 21
	5.1.2	Minimum Footing Width and Embedment	. 21
	5.1.3	Bearing Capacity and Settlement	. 21
	5.1.4	Mat Foundations and Floor Slabs	. 22
	5.1.5	Lateral Resistance	. 22
	5.2	Embedded Walls and Lateral Earth Pressures	. 22
	5.3	Uplift and Flotation Considerations	. 23
	5.4	Underground Pipelines	. 24
	5.4.1	Pipeline Subgrade Support	. 24
	5.4.2	Pipe Zone Geotechnical Design Parameters	. 24
	5.4.3	Backfill Materials	. 25
	5.4.4	CLSM Backfill	. 25
	5.4.5	Soil Corrosion Characteristics	. 26
	5.4.6	Pipe Uplift and Floatation	. 26
	5.5	Retaining Walls	. 27
	5.6	SW Blake Street Design Recommendations	. 27
	5.6.1	Cut Slope Recommendations	. 27
	5.6.2	Fill	. 28
	5.6.3	Pavement	. 28
	5.7	Reuse of Excavated Rock	. 29
6.0	Const	ruction Recommendations	. 30
	6.1	Rock Excavation	. 30
	6.1.1	Trenching	. 30
	6.2	Temporary Cuts	. 30
	6.2.1	Soil Cuts	. 31
	6.2.2	Rock Cuts	. 31
	6.3	Temporary Shoring	. 31

	6.3.1	Trench Shoring	. 31
	6.3.2	Shoring Plans	. 32
6	.4	Groundwater Control	. 32
6	.5	Blasting Plan	. 33
6	.6	Fill Materials and Compaction Criteria	. 33
	6.6.1	On-Site Soils	. 34
	6.6.2	Structural Fill	. 34
	6.6.3	Embedded Walls and Retaining Wall Backfill	. 34
	6.6.4	Bedding and Pipe Zone Backfill	. 34
	6.6.5	Trench Backfill	. 35
	6.6.6	CLSM	. 35
6	.7	Engineered Fill and Embankment Construction	. 35
6	.8	Pavements	. 36
6	.9	Wet Weather Earthwork	. 36
7.0	Closu	re	. 37
8.0	Refere	ences	. 38

List of Tables

Table 2-1.	Piezometer Construction Detail	. 5
Table 3-1.	Summary of Test Pit Explorations	. 9
Table 3-2.	Summary of Geotechnical Borehole Explorations	10
Table 3-3.	Summary of Air-Track Probe Hole Explorations	11
Table 3-4.	Rock Quality Description Based on RQD	12
Table 3-5.	Rock Mass Classification Based on RMR System	12
Table 3-6.	Groundwater Measurements Summary	13
Table 4-1.	Seismic Design Parameters	15
Table 5-1.	Anticipated Subgrade Conditions and Recommendations for Subgrade Preparation	19
Table 5-2.	Pipeline Design Parameters	25
Table 5-3.	Summary of Soil Corrosivity Testing Results	26

List of Figures

- Figure 1 Vicinity Map
- Figure 2 Site Layout
- Figure 3 Exploration Plan
- Figures 4A through 4F Geologic Profiles
- Figure 5 Lateral Earth Pressure Diagrams
- Figure 6 Conceptual Underdrain System
- Figure 7 Lateral Earth Pressure Diagrams for Temporary Trench Shoring

Appendices

- Appendix A Geotechnical Explorations
- Appendix B Geophysical Exploration
- Appendix C Laboratory Test Data
- Appendix D Previous Explorations
- Appendix E Unconfined Compressive Strength and RQD Data
- Appendix F Fault Location Study Technical Memorandum
- Appendix G Geological Hazards Report (GHR)
- Appendix H Site Specific Site Response Spectrum for WTP_1.0
- Appendix I SW Blake Street 60-Percent Design Drawings

WWSP WTP_1.0

Acronyms and Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ASCE	American Society of Civil Engineers
ASTM	American Society of Testing and Materials
bgs	below ground surface
CLSM	controlled low strength material
CM/GC	Construction Manager/General Contractor
cm	centimeter
CRB	Columbia River Basalt
CSZ	Cascadia subduction zone
E'	modulus of soil reaction
FEMA	Federal Emergency Management Agency
Ft./sec	feet per second
GDR	Geotechnical Data Report
GER	Geotechnical Engineering Report
GHR	Geologic Hazards Report
IBC	International Building Code
kg	kilogram
Ма	millions of years before present
mg	milligram
mgd	million gallons per day
McMillen Jacobs	McMillen Jacobs Associates
mV	millivolts
ND	non detect
NGVD29	National Geodetic Vertical Datum of 1929
OAR	Oregon Administrative Rules
ODOT	Oregon Department of Transportation
OSHA	Occupational Safety and Health Administration
OSSC	Oregon Standard Specifications for Construction
pcf	pounds per cubic foot
рсі	pounds per cubic inch
psf	pounds per square feet
PGA	Peak Ground Acceleration
PGE	Portland General Electric
PGV	peak ground velocity
Project	WTP_1.0 Project
PSHA	probabilistic seismic hazard analysis
psf	pounds per square foot
psi	pounds per square inch
PVC	polyvinylchloride
RMR	Rock Mass Rating
RQD	Rock Quality Designation
SA	spectral acceleration
SEI	Structural Engineering Institute
S _{M1}	SA 1.0-sec period spectral acceleration
Sms	SA 0.2-sec period spectral acceleration

WWSP WTP_1.0

Geotechnical Engineering Report

Sta.	station
TVWD	Tualatin Valley Water District
UCS	unconfined compressive strength
WWSP	Willamette Water Supply Program
Ω	ohm

WWSP WTP_1.0

Distribution

To:	Greg Lindstadt, PE CDM Smith
	Michael Hyland CDM Smith
From:	Wolfe Lang, PE, GE McMillen Jacobs Associates
Prepared By:	Jeremy Fissel, PE McMillen Jacobs Associates
	Farid Sariosseiri, PE McMillen Jacobs Associates
Reviewed By:	Bryan Duevel, PE, GE McMillen Jacobs Associates

Revision Log

Revision No.	Date	Revision Description		
Final Submittal	May 12, 2020	Incorporated reviewers' comments		

1.0 Introduction

1.1 General

McMillen Jacobs Associates (McMillen Jacobs) has been retained by CDM Smith to provide geotechnical services for the Willamette Water Supply Program WTP_1.0 Project. Tualatin Valley Water District (TVWD) and the Cities of Hillsboro and Beaverton are the project owners. The project is located in Sherwood, Washington County, Oregon. The project location is shown in Figure 1 and the site layout is shown in Figure 2. This Geotechnical Engineering Report (GER) summarizes the results of the explorations, geotechnical analyses, and construction recommendations for the WTP_1.0 Project.

1.2 Project Description

The Willamette Water Supply Program (WWSP) is a drinking water infrastructure program being implemented by the TVWD and the Cities of Hillsboro and Beaverton to provide a seismically resilient water supply for their service area. The WWSP includes more than 30 miles of transmission pipelines, ranging from 24 to 66 inches in diameter, extending from the Willamette River in Wilsonville to the TVWD and Hillsboro service areas in Washington County, which includes the cities of Hillsboro and Beaverton. In addition to the new WTP_1.0, the WWSP also includes two 15-million-gallon water storage tanks, and a raw water pumping station. The new system elements are being designed to meet future demand and to provide redundancy in the event of an emergency.

The WWSP has been divided into multiple design packages and work is proceeding with a phased approach. The WTP_1.0 is a new water treatment plant with an initial treated water design capacity of 60 million gallons per day (mgd) and future build-out treated water design capacity of 120 mgd. The project is located within the City of Sherwood, Oregon. The primary structures of WTP_1.0 include facilities for filtration, ozone contactors, UV reactors, ballasted flocculation, solids dewatering and transfer, a clearwell, gravity thickeners, and equalization/overflow basins. The WTP_1.0 elements are shown in Figure 2.

The project includes construction of several access roads within the water treatment plant as well as construction of a portion of SW Blake Street that extends from SW 124th Avenue to the plant's western property line. It is noted that preliminary plans show SW Blake Street to dead-end at the property's west border. Future plans to extend the roadway are not available at this time.

WTP_1.0 will need to be connected to the existing infrastructure including the raw water pipeline, treated water pipeline, sewer, and storm drain in SW Tualatin-Sherwood Road and SW 124th Avenue. Connection to the existing infrastructure will require coordination with PLM_4.0, the City of Sherwood, Washington County, and the developer of the parcel north of WTP_1.0 site.

The owners have selected a Construction Manager/General Contractor (CM/GC) project delivery method. The CM/GC contractor will be involved throughout the design from the preliminary design to the final detailed design phase. The construction is anticipated to begin in early 2022.

Construction of SW Blake Street, access roads, and most of the plant structures will require excavations on the order of 5 to 10 feet. Construction of the clearwell structure will require an excavation of up to 30 feet in depth.

FOR LAND USE PERMITTING (EXHIBIT B) WWSP WTP_1.0 Geotechnical Engineering Report

1.3 Purpose and Scope of Work

The purpose of our work is to evaluate the subsurface conditions within the footprint of the proposed development and to provide geotechnical engineering design and construction recommendations for subsequent use by the design team to develop construction documents. Specifically, the scope of our work includes the following:

- Characterization of subsurface conditions within the proposed treatment plant based on geotechnical explorations and laboratory testing;
- Geotechnical engineering assessments and design recommendations for foundations;
- Provide lateral earth pressure for retaining walls and embedded structures;
- Recommendations for bedding, backfill, and compaction criteria for foundations, piping, and retaining walls;
- Seismic hazard evaluation results and seismic geotechnical recommendations for the design of WTP_1.0 structures and piping;
- Identification of feasible excavation methods, temporary cut supports, and applicable lateral earth pressures;
- Cut-and-fill slope requirements;
- Recommendations for design and construction of cut slopes for SW Blake Street;
- Recommendations for design and construction of asphalt pavement for SW Blake Street;
- Recommendations for groundwater control methods; and
- Preparation of this Geotechnical Engineering Report.

1.4 Project Geotechnical Reports

This Geotechnical Engineering Report has been developed for the use of the design team and summarizes geotechnical analyses and recommendations in support of the Project design. Other related geotechnical documents have been developed for this project and are referred to in this report. These documents are as follows:

- Willamette Water Supply Program WTP_1.0 Geotechnical Data Report (McMillen Jacobs, 2019a)
- Willamette Water Supply Program WTP_1.0 Fault Location Study Technical Memorandum (McMillen Jacobs, 2019b)
- Willamette Water Supply Program –WTP_1.0 Geologic Hazards Report (McMillen Jacobs, 2020a)
- Willamette Water Supply Program WTP_1.0 Site-Specific Seismic Response Spectrum for WTP_1.0 (McMillen Jacobs, 2020b)
- Geotechnical Report Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington County, Oregon. (Shannon & Wilson, 2017)

The Fault Location Study Technical Memorandum, Geologic Hazards Report (GHR), and Site-Specific Seismic Response Spectrum for WTP_1.0 are included in Appendices F, G, and H, respectively.

FOR LAND USE PERMITTING (EXHIBIT B) WWSP WTP 1.0 Geotechnical Engineering Report

1.5 Authorization

The Tualatin Valley Water District authorized the WTP_1.0 project work on behalf of the Owners, under the terms and conditions of an agreement between the Owners and CDM Smith dated July 24, 2018. McMillen Jacobs has been retained by CDM Smith to provide geotechnical design services for, or in connection with, the Willamette Water Supply Program WTP_1.0 Project (Project) per their Subconsultant Agreement dated August 17, 2018.

2.0 Site Explorations

2.1 General

The subsurface exploration program in support of the WTP_1.0 project was performed between December 3, 2018 and February 15, 2019. A total of 12 exploratory borings, 15 air-track probe holes, 6 test pits, and a geophysical study consisting of three seismic refraction survey lines were completed within the limits of the proposed treatment plant. Details of the field investigation and laboratory testing program are included in the Geotechnical Data Report (GDR) for WTP_1.0 (McMillen Jacobs, 2019a). The approximate locations of the explorations are shown in Figures 2 and 3. The geotechnical exploration logs, geophysical survey results, and laboratory testing results are included in Appendices A, B, and C, respectively. The field exploration and laboratory testing programs are summarized in the following sections.

2.2 Field Explorations

2.2.1 Exploratory Borings

A total of 12 borings designated WTP_1.0-B-01 through WTP_1.0-B-12 were advanced for the project. Western States Soil Conservation, Inc. of Hubbard, Oregon, completed the borings using a track-mounted CME-850 drill rig. The depths of the borings ranged between 15 feet and 45 feet below ground surface (bgs). Borings were advanced using mud-rotary drilling techniques within soil material, and HQ-triple-tube wireline coring in rock material.

2.2.2 Air-Track Probe Holes

Fifteen air-track probe holes were advanced to approximately 35 feet bgs across the site. The probe holes were advanced using a track-mounted Furukawa HCR 900 ES drill, owned and operated by McCallum Rock Drilling of Chehalis, Washington. Probe holes are designated as WTP_1.0-P-01 through WTP_1.0-P-15 in this report.

The drill is powered by hydraulics which rotate the drill rods and provide down-pressure on the impact bit. Cuttings are blown from the borehole by compressed air injected down-hole through the drill rods. Depth to bedrock can be estimated by the rate of down-hole advancement of the bit, drill reaction, and by observation of the drill cuttings. Subsurface sampling is not a part of this exploratory method.

2.2.3 Test Pits

Six test pits were excavated using a Hitachi 210LC excavator owned and operated by Richter Logging Company of Forest Grove, Oregon. The test pits were excavated to identify the depth to bedrock and to evaluate the effort needed to excavate the rock. The test pits were terminated at depths where practical equipment refusal was encountered. The test pits were advanced to a maximum depth of 4.5 feet bgs. Test pit excavations are designated as WTP_1.0-TP-01 through WTP_1.0-TP-06 in this report.

2.2.4 Geophysical Explorations

Geophysical explorations were completed on February 15, 2019, by Siemens and Associates of Bend, Oregon. The testing included three seismic refraction tests and three shear wave micrometer (ReMi) profiles. Location of the geophysical lines are shown in Figure 3. Details of the geophysical exploration procedures and results are included in Appendix B. FOR LAND USE PERMITTING (EXHIBIT B) WSP WTP 1.0 Geotechnical Engineering Report

2.2.5 Piezometers

One-inch diameter "open-tube" polyvinylchloride (PVC) piezometers were installed in 5 borings to allow long-term measurements of groundwater levels. Key piezometer construction details are provided in Table 2-1. The results of groundwater level measurements are presented in Section 3.5 of this report.

Boring ID WTP_1.0-	Well Tip (feet)	Approximate Screen Interval (feet)
B-01	45.0	44.8 – 29.8
B-03	19.5	20 – 10
B-08	30.0	20 – 10
B-10	39.3	39.1 – 24.8
B-11	34.7	35 – 20

Table 2-1. Piezometer Construction Detail

Piezometers were constructed in accordance with requirements of the Oregon Water Resources Department (OAR 690-240 Construction, Maintenance, Alteration Conversion and Abandonment of Monitoring Wells, Geotechnical Holes and Other Holes in Oregon).

2.3 Laboratory Testing

Soil and rock samples obtained from the exploratory borings were re-examined in the McMillen Jacobs office and classified independently of the field boring log description to provide a quality control check of the field classifications. Representative samples were selected for laboratory testing, which included the following:

- Unconfined Compressive Strength of Intact Rock Core Specimens (ASTM D7012, Method C)
- Point Load Strength Index (ASTM D5731)
- Natural Moisture Content (ASTM D2216)
- Atterberg Limits (ASTM D4318)
- Corrosivity:
 - pH (ASTM G51/T289)
 - Resistivity (ASTM G57) Redox (ASTM G200)
 - Sulfides (Qualitative by Lead Acetate Paper)
 - Chlorides (ASTM D4327)
 - Sulfates (ASTM D4327)

Moisture content, Atterberg limits, and corrosivity tests were completed by Benchmark Geolabs of McMinnville, Oregon. Unconfined compressive strength tests on rock cores were completed by Northwest Geotech, Inc. of Wilsonville, Oregon, and point load tests were completed by McMillen Jacobs. The tests were completed in accordance with the above-referenced ASTM standards. The laboratory test results are presented Appendix C.

FOR LAND USE PERMITTING (EXHIBIT B) WWSP WTP_1.0 Geotechnical Engineering Report

2.4 Previous Geotechnical Investigations

Two previous projects that included geotechnical explorations have been completed in the immediate vicinity of the WTP_1.0 site. These include explorations completed by Jacobs Associates (now McMillen Jacobs Associates) for the SW 124th Transmission Line (PLM_3.0) project (Jacobs Associates, 2015) and the explorations completed by Geotechnical Resources Inc. (GRI) for pre-purchase assessment of a site located north of the WTP_1.0 site (GRI, 2016).

2.4.1 SW 124th Avenue Transmission Line (PLM_3.0)

In 2014, Jacobs Associates prepared the SW 124th Avenue Water Transmission Line Geotechnical Engineering Report, which included data from five soil borings with rock coring and two test pits along the segment of SW 124th Avenue that borders the eastern edge of the WTP_1.0 site. These explorations provide characterizations of the soil and basalt encountered directly east of the WTP_1.0 site. These borings and test pits (B-3 through B-7, TP-1, and TP-2) are shown in Figure 3. The explorations logs are provided in Appendix D.

2.4.2 Pre-purchase Due Diligence 90-Acre Site Investigation

In 2016, GRI conducted a preliminary subsurface investigation as part of a pre-purchase due diligence evaluation for the 90-acre property located at 12900 SW Tualatin-Sherwood Road. The investigation included 48 borings drilled using open-hole air-rotary impact drilling methods to estimate depth to rock, rock weathering, and rock hardness. Basalt was encountered in those explorations within the WTP_1.0 footprint at depths ranging from 0 to 18 feet bgs. Basalt hardness was observed as very soft (R1) to medium hard (R3) with zones of hard (R4). Weathering ranged from completely decomposed to fresh. Groundwater depth measurements varied and indicated perched groundwater conditions. A summary of exploration data along with a map showing these exploration locations are provided in Appendix D.

FOR LAND USE PERMITTING (EXHIBIT B) WWSP WTP_1.0 Geotechnical Engineering Report

3.0 Site Description

The WTP_1.0 is located on an approximately 35-acre site at 12900 SW Tualatin-Sherwood Road in Sherwood, OR. The project site is located south of Tualatin-Sherwood Road and west of SW 124th Avenue on a vacant and largely wooded parcel. The project's north property line is approximately 1,100 feet south of SW Tualatin-Sherwood Road; the intervening land, currently vacant, was formerly in agricultural use. SW 124th Avenue borders the project's eastern property boundary. The western boundary is largely bordered by vacant woodland and a construction contractor's equipment yard. The southern boundary is a woodland which is crossed diagonally, northwest to southeast, by a Portland General Electric (PGE) powerline easement. Figure 1 shows the location of the site relative to surrounding features.

A woodland and active agricultural land lie east of SW 124th Avenue opposite the northern portion of the project site. An active rock quarry operation is present east of SW 124th Avenue opposite the southeastern portion of the project site. A former, and now reclaimed, rock quarry site is present south beyond the southern property line. Currently, access to the site is via a narrow gravel driveway which formerly served the now removed farmhouse at the above address. The surface conditions and geology of the site are described below.

The layout of the WTP_1.0 facilities and adjacent site features are shown in Figures 2 and 3. Elevations in this report are based on National Geodetic Vertical Datum 1929 (NGVD29).

3.1 Surface Conditions

The existing ground surface elevation varies across the proposed WTP_1.0 site footprint with a maximum elevation of approximately 285 feet near the center of the site and a minimum elevation of approximately 210 feet. Most of the proposed WTP_1.0 site and immediate adjacent areas are wooded with thick underbrush, including large thick patches of Himalayan blackberry and pervasive poison oak. The over story incudes numerous large Douglas fir, Oregon white oak, madrone, and other tree species. Several decomposing saw-cut stumps suggest that the site was logged in the past. An existing farmhouse and several out-buildings were located near the northern edge of the property during the field explorations but have since been removed.

Bare rock outcrops were noted at several locations near the WTP_1.0 site and a prominent rock face with approximately a 10-foot step down was observed north of the WTP_1.0 footprint. Although difficult to see through the thick underbrush, this rock face appears to be continuous from the northeast corner of the site westward and around to the southwest corner. Seven wetland areas have been identified by others within the site. Two small wetland areas, one northeast of the WTP_1.0 footprint and another near the midpoint of the WTP footprint were saturated at the time of our explorations in December 2018 and February 2019.

3.2 Geology

Regionally, the site lies within the Willamette lowland, a structural lowland between uplifted marine rocks of the Coast Range and volcanic rocks of the Cascade Range. The Coast Range, to the west of the lowland, consists of several thousand feet of Tertiary marine sandstone, siltstone, shale, and associated volcanic and intrusive rocks. The Cascade Range, to the east of the lowland, consists of volcanic lava flows, ash-flow tuffs, and pyroclastic and epiclastic debris. Marine and continental strata interfinger beneath and adjacent to the Willamette Lowland.

EOR LAND USE PERMITTING (EXHIBIT B) WWSP WTP_1.0 Geotechnical Engineering Report

Four major depositional basins are present within the Willamette Lowland. These depositional basins include: the southern Willamette basin, northern Willamette basin, Portland basin, and the Tualatin basin. These basins, separated in most places by folded or faulted uplands of Columbia River Basalt bedrock, have locally accumulated more than 1,600 feet of fluvial sediment derived from adjacent uplifted blocks of Columbia River Basalt, the Cascade and Coast Ranges, and transported into the region by the Columbia River.

Locally, WTP_1.0 lies on the broad summit of the Parrett Mountain uplift which forms the boundary between the Tualatin Valley and the northern Willamette Valley. Parrett Mountain is an uplifted block of Columbia River Basalt. During the period of slow upward movement, exposed surficial basalt gradually developed a deep profile of weathering that graded from decomposed silt and clay soils at the surface through iron-stained and open-jointed weathered rock to relatively fresh dark gray basalt at depth. In the late Pleistocene, about 15,000 to 12,000 years ago, a series of catastrophic floods occurred as a result of periodic flooding released from Glacial Lake Missoula. These flood waters inundated the Columbia River system and back flooded up the Willamette River. The flood waters also surged through the Tualatin Mountains ("Portland Hills") gap at Lake Oswego, dumping boulders and coarse gravel at the mouth of the gap. This coarse flood debris grades westward to sand and then to micaceous, clayey to fine sandy silt across the Tualatin Valley. Many of the floods that entered the Tualatin Valley were sufficiently large enough to overtop the Parrett Mountain ridge crest. The flood waters then cascaded south into the Willamette Valley, scouring and eroding the soil and weathered basalt surface of the ridge crest in the process. This area of flood-scoured over-flow channels is now referred to as the Tonquin Scabland. The proposed WTP 1.0 is located on the Parrett Mountain ridge crest and within the area overtopped and scoured by the catastrophic floods.

3.3 Subsurface Conditions

We identified several geological units at the site consisting of Topsoil, Missoula Flood Deposits, Residual Soil, and Columbia River Basalt. These units were identified based on their geologic origin, stratigraphic position, engineering properties, and their distribution in the subsurface. Variations in subsurface conditions may exist between the locations of the borings.

Brief descriptions of the identified geologic units are provided below. Detailed descriptions of the units and accompanying laboratory test data are included in the GDR for WTP_1.0 (McMillen Jacobs, 2019a).

- **Topsoil**: Present on the ground surface and consists predominantly of 3 to 12-inches of very soft, dark brown to black, low plasticity organic silt.
- **Missoula Flood Deposits**: Consists of two facies: (1) Valley Fill deposits; which consist of stiff, moist, slightly yellow to orange-brown mottled silt and occur at lower elevations in the former agricultural field at the northeast corner of the project site, and (2) Channel Fill deposits; which consist of soft to stiff, slightly yellow-brown silt with scattered subangular cobbles and boulders and occur in the flood-scoured uplands in and adjacent to the areas now occupied by wetlands.
- **Residual Soil**: Generally, consists of very dense or stiff to hard mixtures of silt with trace sand and scattered to numerous angular, iron-stained gravel- to cobble-sized rock fragments.
- Columbia River Basalt (CRB): Basalt was typically within 6 feet of the ground surface, except near the northern limit of the site (proposed SW Blake Street), where basalt was encountered

between 6 and 16 feet bgs. The Columbia River Basalt (CRB) Unit includes basalt that is highly weathered to fresh. The basalt ranges from weak to very strong and moderately to intensely fractured with iron-stained joint surfaces. Unconfined compressive strengths (UCS) ranged from approximately 12,000 psi to 34,000 psi, with an average of 22,000 psi. Corrected Point Load Strength Index ($I_{S(50)}$) ranged from approximately 450 psi to 1,860 psi, with an average value of 1,440 psi. This correlates to an approximate average UCS of 25,000 psi using a site-specific correlation factor of 17.5. Calculation of the site-specific correlation factor is provided in Appendix C. The results of UCS and point load tests indicate 90 percent of tested samples have UCS of greater than 16,000 psi suggesting very strong rock (R5). A histogram of UCS test data is included in Appendix E.

A summary of the depth to rock in each exploration location is provided in Tables Table 3-1 through Table 3-3 below.

Exploration ID, WTP_1.0-	Approximate Ground Surface Elevation (feet) ¹	Exploration Depth (feet)	Depth to Rock (feet)	Rock Surface Elevation (feet) ²
TP-1	239	4.5	2.0	237
TP-2	265	4.0	4.0	261
TP-3	234	4.0	2.0	232
TP-4	251	4.0	0.8	250
TP-5	271	3.0	0.8	270
TP-6	276	0.5	0.2	275

Table 3-1. Summary of Test Pit Explorations

Notes:

1. Elevations are based on survey data.

2. Elevations rounded to the nearest foot.

Exploration ID, WTP_1.0-	Approximate Ground Surface Elevation (feet) ¹	Exploration Depth (feet)	Depth to Rock (feet)	Rock Surface Elevation (feet)
B-01	236	45	4	232
B-02	238	40	10	228
B-03	244	20	1	243
B-04	269	15	3	266
B-05	256	15	1	255
B-06	262	15	4	258
B-07	253	20	2.5	250.5
B-08	276	30	0.5	275.5
B-09	272	31.5	1	271
B-10	265	40	1.5	263.5
B-11	263	35	3	260
B-12	257	30	5	252

Table 3-2. Summary of Geotechnical Borehole Explorations

Note:

1. Elevations are based on survey data rounded to the nearest foot.

Exploration ID, WTP_1.0-	Approximate Ground Surface Elevation (feet) ¹	Exploration Depth (feet)	Depth to Bedrock (feet)	Rock Surface Elevation (feet)
P-01	237	35	6	231
P-02	254	35	5	249
P-03	268	35	2	266
P-04	260	35	5	255
P-05	243	35	6	237
P-06	264	35	6	258
P-07	233	35	16	217
P-08	232	32	9	223
P-09	234	35	7	227
P-10	232	35	6	226
P-11	238	35	0	238
P-12	230	35	3	227
P-13	238	35	2	236
P-14	247	35	6	241
P-15	253	35	7	246

	Table 3-3.	Summary o	f Air-Track Probe	Hole Explorations
--	------------	-----------	-------------------	--------------------------

Note:

1. Elevations are based on survey data rounded to the nearest foot.

Six cross sections depicting the subsurface geology at the site have been provided in Figures 4A through 4F.

3.4 Rock Mass Classification

Two rock mass classification systems were used to evaluate and characterize rock mass conditions for evaluating ground behavior, excavation methods, and design of retaining structures and rock cuts. The classification methods included Rock Quality Designation (RQD) and Rock Mass Rating (RMR). These classification systems were originally developed for tunneling but are useful in characterizing slopes and rock excavatability as well.

3.4.1 Rock Quality Designation (RQD)

RQD is a relationship between the total length of recovered core pieces equal to or longer than 4 inches to the total length of the individual core run (Bieniawaski, 1989). RQD is presented as a percent with higher percentages representing more intact and higher quality rock. Values of RQD are graphically shown on the boring logs in Appendix A. The RQD for the borings ranged from 0 to 100 percent, indicating "very poor" to "excellent" rock quality. The average RQD is 58 percent, indicating a "fair" rock quality. RQD of rock cores varied through depth of the boreholes. Table 3-4 presents the correlation of RQD to rock quality and percentage of core runs that fall within each of these ranges. Graphs of percentage of core run

versus RQD range, and percentage of total core footage versus RQD for each borehole are provided in Appendix E.

RQD Value (percent)	Description of Rock Quality	Percentages of Core Runs (percent)
<25	Very Poor	25
25 – 50	Poor	21
51 – 75	Fair	17
76 – 90	Good	18
>90	Excellent	19

Table 3-4. Rock Quality Description Based on RQD

3.4.2 Rock Mass Rating (RMR) System

The RMR is a rating system that considers various rock mass parameters including the strength of intact rock, RQD, joint spacing, condition of joints, and groundwater conditions (Bieniawaski, 1989). Each of these parameters is given a numerical rating based on relative importance of the specific parameter on the behavior of the rock mass. This rating is adjusted to account for joint orientation depending on the favorability of the joint orientation for the specific project. The overall rating of rock mass, termed RMR, is calculated as the sum of the individual rating of the parameters minus the adjustment for joint orientation (if applicable). Based on the final RMR, the rock mass is classified. Rock mass classification determined from RMR is presented in Table 3-5. Based on the conditions encountered in the borings, the RMR ranged between 55 and 65 indicating "fair" to "good" rock conditions.

RMR Rating	Class No.	Rock Mass Description
<20	I	Very Poor
21 – 40	II	Poor
41 – 61	III	Fair
61 – 80	IV	Good
81 - 100	V	Very Good

Table 3-5. Rock Mass Classification Based on RMR System

3.5 Groundwater

Groundwater measurements were made between December 2018 and November 2019 at locations where piezometers were installed. Results of the groundwater measurements are provided in Table 3-6.

	Depth to Groundwater(feet)									
Boring ID WTP_1.0-	12/27/2018	12/28/2018	01/03/2019	02/07/2019	02/08/2019	02/14/2019	05/06/2019	07/01/2019	11/05/2019	Groundwater Elevation Range (feet)
B-01	-	2.0	1.7	3.0	-	01	4.5	7.1	8.3	227.7 – 236
B-03					6.7	1.8	9.9	12.7	15.2	228.8 – 242.2
B-08						14.4	17.1	See N	Note 2	<256 - 261.6
B-10	33.0	-	34.0	35.7	-	34.9	35.5	36.1	37.6	227.4 – 232
B-11						9.7	13.9	16.2	25.8	237.2 – 253.3

Table 3-6. Groundwater Measurements Summary

Notes:

1. The monument was underwater, groundwater assumed at the ground surface.

2. Groundwater was below piezometer screen interval.

Evaluation of nearby water well logs indicate static groundwater levels to be approximately 100 feet below the ground surface. However, water levels measured in the borings (see Table 3-6) range from near zero to a maximum of 37.6 feet below the ground surface. In our opinion, groundwater levels measured in the piezometers represents perched groundwater surfaces.

Groundwater permeability in basaltic lava flows is often greater parallel to the flow units than perpendicular to them. The upper and lower surfaces of individual flow units are usually more vesicular, fractured, and brecciated than the internal portions of the units which tend to be more massive or blocky. Although vertical jointing is usually present through the flow interiors, the joint apertures are often narrow or gradually become in-filled with fine-grained surface soils that migrate downward with the infiltration of surface water and with the products of weathering and decomposition of the rock. In our opinion, precipitation ponds on the rock surface or infiltrates to shallow rock layers with low permeability during the wet season and then evaporates or slowly seeps downward to deeper low-permeability layers during the dry season.

Groundwater level across the site will likely coincide with water level in the wetlands during wet season and varies between elevations EL. 227 and EL. 237 feet during dry season. Groundwater levels can vary with precipitation, the time of year, and/or other factors. Generally, groundwater highs occur near the end of the wet season in late spring or early summer and groundwater lows occur near the end of the dry season in the early fall.

4.0 Seismic and Geologic Hazard Evaluation

4.1 General

Seismic and geologic hazards are discussed in detail in the Geologic Hazards Report (GHR, McMillen Jacobs, 2020a) and are summarized in this section. The GHR is included in Appendix G. Detailed discussion of local faults and seismic sources are presented in the WTP_1.0 Fault Location Study Memorandum (McMillen Jacobs, 2019b), included in Appendix F.

The seismic hazards evaluation has been performed in general accordance with the IBC 2018 and ASCE's Minimum Design Loads for Buildings and Other Structures, 2016 Edition (ASCE/SEI 7-16). Design ground motions presented herein are based on the system-wide Probabilistic Seismic Hazard Analysis (PSHA) performed for the Willamette Water Supply Program (Shannon & Wilson, 2017). Project design criteria (WWSP, 2017) require designing the new facilities (i.e. structures and pipelines) for the 2,475-year return period seismic event.

4.2 Regional Seismicity

The Pacific Northwest is a seismically active region that has three principle seismic sources: (1) the Cascadia Subduction Zone (CSZ) megathrust, which represents the interface between the subducting Juan de Fuca plate and the overriding North American plate; (2) faults located within the Juan de Fuca plate (referred to as CSZ intraplate or intraslab sources); and (3) crustal faults principally in the North American plate (Wong and Silva, 1998). Faulting and seismicity associated with Cascade volcanoes are also potential sources of seismicity, though they generally don't impact sites in the Willamette Valley. Seismic sources are further described in the WTP_1.0 Fault Location Study Memorandum (McMillen Jacobs, 2019c). These sources are all considered in the system-wide PSHA (Shannon & Wilson, 2017)

4.3 Site Classification

The project site was assigned a seismic site class following code-based procedures in ASCE/SEI 7-16, Chapter 20 (2017). Site class is used to categorize common subsurface conditions into broad classes to which ground motion attenuation and amplification effects are assigned. Site class accounts for the conditions encountered at the upper 100 feet of subsurface profile. Shallow bedrock was encountered during the subsurface investigation. The proposed structures are supported on bedrock, fill placed over bedrock, or fill placed on a relatively thin layer of soil over bedrock. Considering the measured shear wave velocity of bedrock and assuming a shear wave velocity of 1,500 feet per second for crushed aggregate fill, a Site Class B is appropriate for design purposes.

However, since the project PSHA does not include seismic parameters for Site Class B, we recommend using seismic parameter values for Site Class B/C included in PSHA. Note that some of the structures will be supported on fill placed on top of the rock. Assuming fill will be consisted of compacted crushed aggregate and considering the shear wave velocities measured during geophysical testing, using Site Class B/C is appropriate for structures within the fill area (and therefore all structures required for the project).

4.4 Seismic Design Parameters

A system-wide PSHA has been performed for the WWSP (Shannon & Wilson, 2017). The Uniform Hazard Spectra for a 2,475-year return period event for WTP_1.0 assuming a 5-percent damping ratio is presented in Table 4-1. The full Mean Uniform Hazard Response Spectrum for a 2,475-year return period event for both 5 and 0.5-percent damping ratios and vertical response spectrum are provided in the Site-Specific Site Response Spectrum (McMillen Jacobs, 2019d), included in Appendix H.

Parameter	Value
Soil Profile Class	B/C
Peak Bedrock Acceleration (g)	0.463
SA Peak Ground Acceleration (g)	0.463
SA 0.2-sec Period Spectral Acceleration (S_{MS})	1.062
SA 1.0-sec Period Spectral Acceleration (S_{M1})	0.400
SA 2.0-sec Period Spectral Acceleration	0.175
SA Peak Ground Velocity (PGV) (cm/sec)	40

Table 4-1.	Seismic	Design	Parameters
	OCISIIIC	Dealgh	i arameters

Note: All spectral accelerations are adjusted for site class.

4.5 Seismic Sources and Hazard Deaggregation

The PSHA produces a mean source event that generates the spectral accelerations included in Table 4-1. For the 2,475-year seismic event and over the range periods between 0 and 5 seconds, the mean magnitude ranges from 7.8 to 8.7 and mean source-to-site distance ranges from 51 to 86 km.

As a part of the system-wide PSHA for the WWSP, seismic hazard deaggregation was performed (Shannon & Wilson, 2017). The deaggregation data identify the earthquake sources, magnitudes, and distances that contribute to the ground motion hazard for a particular return interval and spectral period. The deaggregation results indicate that multiple earthquake sources are significant contributors to the ground motion hazards. The seismic sources and the percentage of relative contribution of the three primary sources are listed below:

- Large megathrust events (between magnitudes 8.6 and 9.4) at distances of 50 to 150 km: 60-65% contribution to hazard;
- Shallow crustal events (up to magnitude 7.5) at distances of less than 25 km: 30-35% contribution to hazard; and
- Deep intraslab CSZ events (up to magnitude 7.5) at distances of about 45 to 100 km: <5% contribution to hazard.

The relative contribution of the different earthquake sources may be used in the development of time histories for detailed seismic analyses, including site specific response analyses, if required.

4.6 Liquefaction

Liquefaction is a phenomenon affecting saturated, loose sandy and non-plastic silty soils in which cyclic rapid shearing from an earthquake results in a drastic loss of shear strength and a transformation from a solid mass to a viscous, heavy fluid mass. The results of soil liquefaction potentially include loss of shear strength, loss of soil through sand boils, flotation of buried chambers/pipes, and post liquefaction settlement.

The site is underlain by shallow bedrock basalt, which is not susceptible to liquefaction. Therefore, liquefaction is not considered a hazard.

4.7 Slope Stability

The site is underlain by shallow bedrock and the majority of structures are founded below grade on the rock. Most areas surrounding the site are relatively flat. Therefore, slope stability is not considered a hazard.

4.8 Lateral Spreading

Lateral spreading is a liquefaction related phenomenon that results in ground displacement during an earthquake and occurs in sloping ground or flat ground with free face. Liquefaction is not anticipated at the site. Therefore, lateral spreading is not considered a hazard.

4.9 Fault Rupture

There are no known active faults that cross the site. The nearest faults, the Sherwood-Lake Oswego and Canby-Mollala faults, are located about 2 kilometers north and 8 kilometers east of the site, respectively. We consider the risk of fault rupture across the WTP_1.0 to be negligible.

4.10 Buoyancy and Flotation

When pipes or hollow structures are installed under the groundwater table it is possible that they can float if the upward buoyant forces on the pipe exceed the downward gravitational forces from the soil cover or weight of the structures. Recommendations regarding buoyancy and floatation are included in Section 5.3 and 5.4.6 for structures and piping, respectively.

4.11 Flood Hazard

The Federal Emergency Management Agency (FEMA) has published maps with estimated flood inundation limits in the project area for 100-year and 500-year floods. These maps indicate 100-year and 500-year floodwater elevations between 140 and 150 feet. The lowest floor slab elevation (clearwell) in the treatment plant will be an elevation of approximately 229 feet. Therefore, the risk of precipitation induced flooding is negligible and is not considered a hazard.

A breach of Scoggins Dam would result in a large outflow of water and flooding along the Tualatin River due to the rapid draining of Henry Hagg Lake. The flood elevation resulted from the breach of Scoggins dam is anticipated to be near 500-year flood elevation, which is lower than the lowest point in the

treatment plant. Therefore, the risk of flooding due to a dam break is negligible and is not considered a hazard.

4.12 Abrupt Settlement

Abrupt settlement generally occurs due to liquefaction or where structures (i.e. buildings and pipelines) are founded on the transition between soil and rock. Liquefaction is not anticipated at the site. Recommendations for subgrade preparation of structures bearing within the transition between soil and rock are provided in Section 5.1.1. Abrupt settlement is not considered a hazard.

4.13 Other Hazards

No significant geologic hazards such as landslides, slope instabilities, tsunamis, seiches, debris flows, expansive soils, or collapsible soils were identified within the proposed WTP_1.0 area.

5.0 Design Recommendations

The WTP_1.0 includes a 60 mgd treatment facility with future expansion to 120 mgd. The project also includes construction of SW Blake Street that connects SW 124th Avenue near the northeast corner of the site to a point at the southwest corner of the site. Construction of SW Blake Street and most of the WTP_1.0 structures will require excavations on the order of 5 to 10 feet and fill on the order of 2 to 8 feet. Up to 30 feet of excavation may be required for construction of the clearwell structure. The site finish grade will be between elevations of 255 and 265 feet.

The existing ground surface elevation varies across the site with a high point at approximately 285 feet near the plant and the ground descending in all directions away from the plant to a low point at an approximate elevation of 210 feet. Geotechnical explorations encountered basalt bedrock at various depths across the site. Basalt was typically within 6 feet of the ground surface, except near the northern limit of the site (proposed SW Blake Street), where basalt was encountered between 6 and 16 feet bgs. According to 60-percent project plans, excavations for most of the planned structures will extend into the basalt bedrock.

There are more than 24 new structures associated with the project, as shown in Figure 2. Geotechnical design recommendations for the structures, associated piping system, and planned roadway are presented in the following sections. All specifications referenced in this section refer to the Oregon Standard Specifications for Construction (ODOT, 2018). These specifications are referred to as OSSC hereafter.

Note that the site layout and buildings configuration are based on the 60-percent design and some details were incomplete at the time this report was prepared. If site configuration is modified or additional details become available, McMillen Jacobs should be contacted to update recommendations, as appropriate.

5.1 Foundation Design Recommendations

Based on the conditions encountered in the explorations and anticipated loading conditions, the proposed structures can be supported on shallow foundations (i.e. continuous and spread footings or mat foundations) bearing on rock or prepared subgrade. Based on discussions with the design team underdrains may be used under several structures. A summary of the proposed structures with the bottom of foundation elevation and anticipated subgrade condition is presented in Table 5-1.

Area Description	Structure Description	Bottom of Footing Elevation (feet)	Finished Grade Elevation (feet)	Foundation Type	Anticipated Bearing Pressure ¹ (psf)	Anticipated Subgrade Condition (Fill/Soil/Rock)	Recomm
Administration	Steel Building	259.0	260.7	Spread	2,000	Fill over Soil	Excavate the s compacted stru
Standby Generators	Equipment	257.0	259.0	Mat	1,000	Soil	Excavate the s compacted stru
Equipment Storage Shed	Steel Building	256.0	258.0	Spread	2,000	Fill over soil	Excavate the s compacted stru
Flash Mix	Steel Building	259.0	260.7	Spread	2,000	Rock	Place a min. 6 concrete
Ballasted Flocculation	Concrete Tank	257.0	260.7	Mat	2,800	Rock	Place a min. 6 concrete
Ozone Generation	Interior Building	258.0	260.7	Strip	2,000	Rock	Place a min. 6 concrete
Ozone Contactor	Concrete Tank	257.0	260.7	Mat	2,800	Rock	Place a min. 6 concrete
Filtration	Concrete Tank	252.0	260.7	Mat	2,800	Rock	Place a min. 6 concrete
Maintenance & Primary Switchgear	Steel Building	259.0	260.7	Spread	2,000	Rock and Fill over soil (Mainly on rock)	Excavate rock excavate the s compacted stru
Ultraviolet Disinfection	Concrete Tank	242.0	260.7	Mat	550	Rock	Place a min. 6 concrete
Clearwell Overflow	Concrete Tank	236.0	257.0	Mat	2,800	Rock	Place a min. 6 concrete
Exterior Chemicals	Vertical and Horizontal Steel Storage Tanks	259.0	260.7	Spread	2,000	Rock	Place a min. 6 concrete
Chemical Building	Steel Building	257.0	260.7	Spread/Mat	2,000	Rock	Place a min. 6 concrete
Clearwell	Concrete Tank (Prestressed & CIP)	221.0	256.0 to 252.0	Mat/Membrane	3,500	Rock	Place a min. 6 concrete
Equalization/Overflow Basins	Concrete Tank	230.0	256.7 to 255.0	Mat	1,750	Rock	Place a min. 6 concrete
Recycle Pump Station Electrical Building	Steel Building	253.0	255.0	Spread	2,000	Soil or Fill over soil	Excavate the s compacted stru

 Table 5-1. Anticipated Subgrade Conditions and Recommendations for Subgrade Preparation

mendation for Subgrade Preparation^{2,3}

surficial soil to firm subgrade condition, place uctural fill

surficial soil to firm subgrade condition, place uctural fill

surficial soil to firm subgrade condition, place uctural fill

inches of compacted structural fill or leveling

to 2 feet below the bottom of foundation and soil to firm subgrade. Backfill the area with uctural fill

inches of compacted structural fill or leveling

surficial soil to firm subgrade condition, place uctural fill

Area Description	Structure Description	Bottom of Footing Elevation (feet)	Finished Grade Elevation (feet)	Foundation Type	Anticipated Bearing Pressure ¹ (psf)	Anticipated Subgrade Condition (Fill/Soil/Rock)	Recom
Gravity Thickeners	Concrete Tank	246.2	259.0	Mat	1,650	Tank No. 1 is likely on rock, Tank No. 2 is likely on Fill over soil	Assuming Tan Place a min. 6 concrete unde surficial soil to structural fill. I rock and soil: foundation and the area with o
Gravity Thickeners	Stairs/Splitter Box	257.0	259.0	Spread	2,000	Fill over soil	Excavate the s
Dewatering Building	Concrete & Steel Building	257.0	259.0	Spread/Strip	2,000	Soil	Excavate the s compacted str
Thicken Sludge Storage	Concrete Tank	255.2	259.0	Mat	1,250	Rock or thin soil over rock	Excavate the s structural fill. A concrete is red
Thicken Sludge Pump Station	Concrete Tank	243.7	259.0	Mat	1,250	Rock	Place a min. 6 concrete
Finish Water Pump Station	Steel Building	256.0	258.0	Spread	2,000	Soil and Fill over soil	Excavate the s compacted str
Finish Water Wetwell	Concrete Tank	220.0	258.0	Mat	3,500	Rock	Place a min. 6 concrete
Surge Tanks	Horizontal Steel Tanks	254.0	258.0 to 252.0	Spread/Mat	2,000	Soil and Fill over soil	Excavate the scompacted str

Notes:

1. Anticipated bearing pressure provided by CDM Smith.

2. Structural fill should consist of ³/₄-inch minus Dense-Graded Aggregates conforming to OSSC Section 02630.10.

3. The structural fill should be compacted within +/-2 percent of the optimum moisture content value and to a minimum of 100 percent of the maximum dry density determined by ASTM D698 (Standard Proctor).

mendation for Subgrade Preparation^{2,3}

hk No. 1 is on rock and Tank No. 2 is on Soil: 6 inches of compacted structural fill or leveling er Tank No.1. For Tank No. 2: Excavate the o firm subgrade condition, place compacted If one of the tank foundations supported on Excavate the rock 2 feet below the bottom of d excavate the soil to firm subgrade. Backfill compacted structural fill

surficial soil to firm subgrade condition, place ructural fill

surficial soil to firm subgrade condition, place ructural fill

surficial soil to rock, backfill with compacted A min. 6 inches of structural fill or leveling quired under the foundation

inches of compacted structural fill or leveling

surficial soil to firm subgrade condition, place ructural fill

inches of compacted structural fill or leveling

surficial soil to firm subgrade condition, place ructural fill

5.1.1 Subgrade Preparation

Satisfactory subgrade support for spread footings or mat foundations associated with the proposed structures can be achieved on basalt bedrock, a well-compacted and well-constructed base drainage layer, or on imported structural fill that is properly placed and compacted on the bedrock or firm subgrade (i.e. undisturbed soil). Structural fill beneath foundations, if used, should extend a minimum of 12 inches beyond the edge of the foundation. For foundations supported on compacted structural fill with a thickness greater than 12 inches, the structural fill should extend beyond the edge of the foundation a distance equal to the height of the fill or 3 feet, whichever is less. Recommendations for structural fill are provided in Section 6.6.2 of this report.

For foundations directly supported on rock, we recommend a minimum of 6 inches, but not more than 12 inches of leveling course be placed on rock to minimize stress concentrations under the foundation. Alternately, rock surface beneath foundations may be leveled with a leveling concrete or grout layer. If an underdrain system is used, we recommend 18 inches of underdrain aggregate under 6 inches of structural fill leveling course.

For foundations supported on soil (i.e. no rock), we recommend excavating surficial soil to a firm subgrade condition. A minimum 12 inches of compacted structural fill should be placed below the foundation. The subgrade should be evaluated by proof rolling using a loaded haul vehicle (i.e. water truck or dump truck) in accordance with ODOT Test Method 158. If the area is not accessible by proof roll equipment, the soil subgrade should be evaluated by the Geotechnical Engineer prior to placement of steel reinforcement or concrete forms.

For foundations located within the transition between soil and rock, we recommend excavating rock to 2 feet below the bottom of foundation and excavate the soil to firm subgrade. The excavated areas should be backfilled with compacted structural fill.

5.1.2 Minimum Footing Width and Embedment

For at-grade structures, the minimum spread footing widths should be in conformance with 2019 Oregon Structural Specialty Code. As a guideline, we recommend individual spread footings have a minimum width of 24 inches, and continuous wall footings have a minimum width of 18 inches. Bottom of footings should be founded at least 18 inches below the lowest permanent adjacent grade to develop lateral capacity and for frost protection.

5.1.3 Bearing Capacity and Settlement

Bearing capacity for structures will depend on depth of foundations and locations on site. Based on the condition of rock observed in the geotechnical explorations, footings founded directly on rock or on rock with leveling course should be proportioned for a net allowable bearing pressure of 20,000 pounds per square foot (psf) (FHWA, 2002). This bearing pressure is a net bearing pressure and applies to the total of dead and long-term live loads. Settlement is anticipated to be negligible.

Footings supported on soil and prepared subgrade should be proportionated for a net allowable bearing pressure of 2,000 psf. Total settlement for the bearing pressure of 2,000 psf will be less than 1 inch

WWSP WTP_1.0

assuming the subgrade is prepared based on the recommendations provided in this report. The differential settlement is anticipated to be on the order of one-half of the total settlement between adjacent footings or across a mat foundation.

The allowable bearing pressure may be increased by one-third for transient loading such as wind or seismic loads.

5.1.4 Mat Foundations and Floor Slabs

For mat foundations and floor slabs supported on rock or on prepared subgrade overlaying rock, we recommend using a modulus of subgrade reaction of 450 pounds per cubic inch (pci). For foundations supporting on prepared subgrade overlaying undisturbed soil, we recommend using a modulus of subgrade reaction of 250 pci. The subgrade modulus values represent anticipated values, which would be obtained in a standard in situ plate test with a 1-foot square plate. Use of this subgrade modulus for floor slab design should include appropriate modifications based on dimensions as necessary.

5.1.5 Lateral Resistance

Lateral resistances for the foundations can be provided by frictional resistance between the subgrade (i.e. soil or rock) and the bottom of the foundations, and by passive resistance around the footings. For the base frictional resistance, we recommend using an ultimate friction coefficient of 0.7 for cast-in-place concrete on rock and a coefficient of 0.6 for cast-in-place concrete on crushed aggregate. A coefficient of 0.4 may be used for pre-cast concrete foundations (i.e. vaults and manholes) on crushed aggregate.

Lateral resistance can also be provided by passive resistance of the foundations, especially for below ground structures. Utilizing full passive resistance for a foundation backfilled with compacted aggregate will require lateral displacement on the order of 2 percent of foundation depth. For example, a foundation embedded 20 feet bgs, will require approximately 5 inches of displacement to utilize full passive resistance. Large displacements may not be tolerable by structures. Therefore, at-rest conditions may be assumed on the resisting side (USACE, 1989). We recommend using an equivalent fluid density of 55 pcf for foundations above groundwater level, and an equivalent fluid density of 30 pcf for foundations below groundwater. Note, that these values are not factored. The designer should include an appropriate factor of safety.

For passive resistance of the foundations placed directly against rock, we recommend using a uniform passive pressure of 10,000 psf. This value includes a factor of safety of 3.0.

5.2 Embedded Walls and Lateral Earth Pressures

Backfill material placed behind foundations, walls, and retaining structures should consist of free-draining crushed aggregate conforming to OSSC 00510.12. Backfill placed within 5 feet of structure walls should be compacted to not more than 95% of the dry density determined by the Standard Proctor test (ASTM D698). This is to limit compaction pressure on the wall that would be greater than the at-rest pressure and potentially damage the wall. Large and heavy equipment, particularly compaction equipment, should not be allowed to operate near the walls during construction. The compaction equipment used within 5 feet of the wall should be hand compaction equipment, walk-behind, or self-propelled rollers not weighing more

than 1,000 pounds. Loose lift thickness may need to be reduced where hand compaction equipment is used when placing and compacting fill.

The retaining structures and walls should be designed based on the lateral earth pressure diagrams provided in Figure 5. Active and at-rest lateral earth pressures were developed assuming a soil friction angle of 36 degrees and unit weight of 135 pcf. Seismic lateral earth pressure was calculated based on recommendations provided by Wagner et al., (2017) assuming a PGA 0.463g. WWSP (2018) requires designing below grade walls based on the worse of the two conditions in stiff soil:

- At-rest earth pressures (i.e. non-yielding condition)
- Active earth pressures combined with the seismic increment of earth pressures

The structural designer will select appropriate earth pressure based on wall stiffness.

As discussed previously, using full passive earth pressure for lateral resistance will require large displacements that may not be tolerable by the structure. Therefore, we recommend using lateral earth pressure equal to at-rest conditions the resisting side of the walls. We recommend using an equivalent fluid density of 55 pcf for portion of the walls above groundwater level, and an equivalent fluid density of 30 pcf for portions of the walls below groundwater.

5.3 Uplift and Flotation Considerations

Below-grade structures should be designed to resist uplift forces during periods of high groundwater. Based on groundwater levels measured during our field investigation, we recommend using a design groundwater level equal to the ground surface. This is due to potential for the collection of groundwater in wall backfill and subgrade. Although runoff will likely dissipate into the bedrock, the dissipation rate may be slower than collection rate leading to temporary hydrostatic and uplift pressure below structure foundations.

Uplift force is resisted by the weight of the structure itself, the weight of the backfill projected vertically above the outside edge of foundations extending beyond the vertical walls, and the friction force within backfill or between backfill and the excavation interface. However, for structures with a large footprint relying on structure and backfill weight to counteract uplift may not be sufficient or may not be structurally favorable for the base slab design. In these cases, an underdrain system or tie-down anchors may need to be considered.

Based on the foundation elevations and anticipated groundwater elevations, in most cases the weight of the structure and the weight of backfill on the outside edge of the footings is sufficient to resist the anticipated uplift force. The exception to this is the clearwell structure and the overflow basin, where the uplift force is larger than the weight of the structure and backfill. We anticipated uplift mitigation will be required for these structures. Uplift mitigation may include construction of an underdrain system or tie-down anchors.

WWSP WTP_1.0

If an underdrain or perimeter drain system is to be considered during design, we recommend that the system consist of an 18-inch thick layer of drain rock underlain by 6 inches of leveling course below the foundations and slabs, with 4-inch diameter perforated pipes located at the mid-height of the drainage layer. The pipes should be connected to a manhole with a pump system. The pump system can be turned on prior to maintenance for hydrostatic pressure relief and dewatering. The underdrain system can also be used as leak detection system under structures. A typical underdrain system is shown in Figure 6. More details about the underdrain system will be provided in the project plans and specifications, if an underdrain system is to be utilized.

Tie-down anchors include small diameter (typically 1 to 1.5-inch diameter bars) grouted anchors that are post-tensioned. The tie-down anchors may be used to reduce concrete slab thickness and excavation volume. However, tie-down anchors may cause stress variations in slabs and it can be difficult to construct a watertight connection at the anchor-structure interface. If tie-down anchors are utilized, we recommend the following for preliminary design:

- A minimum unbonded anchor length of 10 feet and a minimum bonded anchor length of 5 feet;
- An allowable grout to ground bond strength of 200 psi.

Tie-downs will be anchored in bedrock. More details about tie-down anchors (i.e. spacing, length, and construction details) will be incorporated in the project plans and specifications, if tie-down anchors are to be utilized.

5.4 Underground Pipelines

5.4.1 Pipeline Subgrade Support

Materials within the pipe zone are anticipated to consist of basalt bedrock, residual soil, or Missoula Flood Deposits consisting of medium stiff to stiff silt. These materials can adequately support the pipelines without modification.

5.4.2 Pipe Zone Geotechnical Design Parameters

Flexible pipes derive their load carrying capacity from their interaction with the pipe zone backfill as the pipe deflects under load and pushes laterally against the soil. Load carrying capacity depends on the depth of the pipe, the surrounding soil conditions, the type and density of the backfill, and the thickness of compacted pipe zone backfill between the pipe and the native soil/rock in the trench wall. Based on the anticipated subsurface soil types and relative densities, we have developed geotechnical design parameters to be used for pipeline design. These are provided in Table 5-2.

Property	Native Soil	Basalt Bedrock	Granular Backfill	CLSM
Moist Unit Weight, m (pcf)	120	165	135	125
Saturated Unit Weight, _{//sat} (pcf)	125	165	140	125
Friction Angle, ϕ (degrees)	30	45	38	34
Modulus of Soil Reaction, E' (psi)	700	>10,000	2400	3,000

The design parameters presented in Table 5-2 are appropriate for use in the Iowa Deflection formula (Spangler, 1941) and are consistent with American Water Works Association Manual M11 (2004).

5.4.3 Backfill Materials

We recommend that the pipe bedding and pipe zone in the trench be constructed with imported, wellgraded crushed rock, such as ³/₄- inch minus crushed aggregate conforming to OSSC Section 02630.10, Dense Graded Aggregate. We recommend a minimum 6 inches of bedding below pipe invert. Pipe bedding and pipe zone backfill should be compacted to 95 percent of the Standard Proctor maximum dry density, except the portion directly below the pipe that should be leveled without compaction. This will allow for uniform pressure distribution under the pipe invert.

In zones where pipes are installed within soil and below groundwater, fines from the trench sidewall will migrate into the bedding and pipe. This may lead to loss of lateral support and surface settlement. We recommend wrapping the pipe bedding and pipe zone in a separation geotextile to minimize fines migration. The separation geotextile should consist of a "needle-punch", non-woven separation fabric meeting the requirements for non-woven subgrade (separation) geotextile, as shown in Table 02320-4 Section 02320."

The trench width should extend a minimum of 18 inches beyond the side of the pipe. This will allow for the use of mechanical compaction equipment and placing backfill behind the pipe haunch.

Where the pipeline is located below paved areas or structures, trench backfill above the pipe zone should consist of imported granular aggregates, meeting the requirements of Class B or Class C materials per OSSC Section 0405.14.

5.4.4 CLSM Backfill

CLSM may be used as an alternative to granular fill in pipeline trenches. CLSM fill mixtures are typically composed of a combination of cement, water, fine aggregate, and fly ash. The material is flowable and self-leveling, which greatly simplifies placement around pipelines. The material typically is specified to have unconfined compressive strength of 50 to 200 psi. CLSM materials should meet the requirements of OSSC Section 00442.00, Controlled Low Strength Materials. Per WWSP (2017), the trench width should extend at least 6 inches beyond each side of the pipe (i.e. pipe outside diameter + 12 inches + trench protection).

WWSP WTP_1.0

We recommend using CLSM as pipe bedding and pipe zone backfill in pipe connection areas (i.e. pipe connecting to manholes and vaults, pipe junctions) and areas where the subgrade transitions from rock to soil. This will alleviate difficulties associated with backfill and compaction of aggregate in tight areas. In addition, it reduces the risk of differential settlement and problems resulting from poor compaction.

5.4.5 Soil Corrosion Characteristics

Corrosion index testing was performed on soil samples collected from borings and test pits. The average and range of the results of the laboratory testing for chlorides, sulfates, sulfides, pH, and soil resistivity are presented in Table 5-3.

Test	Average Value	Range
Oxidation-Reduction Potential (mV)	512	502 – 520
Water Soluble Chloride (mg/kg)	9	7 – 14
Water Soluble Sulfate (mg/kg)	14	2 – 36
Sulfide (mg/kg)	ND ¹	
pH (pH units)	6.2	5.9 – 6.3
Soil Resistivity (Ω –cm) ²	5,100	2,300 – 7,900

Table 5-3.	Summary	v of Soil	Corrosivity	/ Testing	Results
	•••••••••••••••••••••••••••••••••••••••	,			,

Notes:

1. ND: Non-detect.

2. Three soil resistivity tests were performed. Resistivity of one of the samples reported as 79,679 Ω -cm. Although the integrity of test was confirmed by the lab, we did not include this value assuming it is not a typical value for soils present at the site.

Considering the resistivity of soil ranging between 2,300 and 7,900 Ω -cm, the soil across the site is classified as moderately corrosive, based on the criteria provided by WWSP (2017).

Note that the values provided in Table 5-3 are for soil samples only and not representative of rock. If desired, further evaluation would need to be provided by a corrosion specialist.

5.4.6 Pipe Uplift and Floatation

Groundwater levels vary across the WTP_1.0 site. During dry season, groundwater is anticipated to be between elevation 227 feet and 237 feet across most of the site (i.e. deeper than 20 feet below the finished grade). During wet season, runoff may accumulate in trenches before dissipating into ground. For evaluation of pipe uplift and flotation, we conservatively assumed the groundwater level at the ground surface.

Section 2.2 of WWSP (2017) requires a minimum factor of safety of 1.5 against pipe flotation and requires a minimum cover of 4 feet in open country, 6 feet in collector streets, 7 feet in arterial streets,
and 6 feet in developed areas. We evaluated flotation for pipes up to 84 inches in diameter. The results indicated factor of safety of 1.5 or greater for the minimum 4-foot cover.

For pipe diameter smaller than 48-inches, the minimum factor of safety of 1.5 against flotation can be achieved by depth of cover equal to pipe diameter. However, the construction live load and traffic load during the project life should be considered in the design.

5.5 Retaining Walls

The site development for the treatment plant requires construction of several retaining walls on the order of 10 to 15 feet. The retaining wall details were not available at the time this report was prepared. Recommendations for design and construction of the retaining walls will be provided in a supplemental report.

5.6 SW Blake Street Design Recommendations

SW Blake Street extends west from SW 124th Avenue. The road turns south near the northwest corner of the site and continues to the southwest corner of the site. The road is slightly over ¹/₄-mile long and consists of a 45-foot wide paved area with approximately 15-foot wide shoulders on either side. Construction of SW Blake Street will require cut and fill heights on the order of 6 and 8 feet, respectively. 60-percent Design Drawings of SW Blake Street is provided in Appendix I.

Based on our explorations, fine grained soils are anticipated along the east end of the SW Blake Street alignment between Sta. 18+00 and 25+00 and along the south end of the alignment between Sta. 10+00 and 15+00. Basalt bedrock is expected to be excavated along the south shoulder of the road where the alignment transitions between north-south and east-west from approximately Sta. 15+00 to 17+00 where a cut of about 6 feet is shown (note: stationing is based on preliminary drawings).

5.6.1 Cut Slope Recommendations

Cut slopes are planned for the construction of SW Blake Street. Preliminary drawings show up to a 14-foot cut near Sta. 17+00, north of the WTP_1.0 structures. Based on our explorations, this excavation is expected to be through basalt bedrock.

A 1H:1V (horizontal:vertical) permanent slope is shown on preliminary plans along the south and east side of SW Blake Street and has its greatest vertical relief, approximately 14 feet, near Sta. 11+00. In this region we encountered basalt bedrock at a depth of approximately 6 feet below the existing ground surface. Bedrock is overlain by fine-grained soils. The resulting cut slope face would include the exposed fine-grained soils overlying basalt bedrock. We consider the rock slopes to be globally stable, however the overlying fine-grained soils could become unstable over time.

For preliminary purposes, at permanent cut slopes we recommend cutting exposed fine-grained soils of the cut to a slope of no steeper than 2H:1V. Rock may be cut at ½H:1V. We recommend constructing a 5-foot wide (minimum) ditch at the base of the cut slopes to catch any sloughing debris.

5.6.2 Fill

Construction of the westbound lane of SW Blake Street will require fill placement on the existing slopes. Most of the alignment will require fill heights on the order of 2 to 3 feet. Fill height on the order of 4 to 8 feet is anticipated from Sta. 12+50 to 15+50, and from Sta. 17+50 to 19+50.

It is anticipated that the project will generate an excessive amount of excavated material (soil and rock) associated with treatment plant facilities. Much of this material is anticipated to be acceptable for use as embankment material. Embankment material should be free of organics and deleterious material. Since topsoil (generally upper 3"-12" of the soil profile) consists of predominantly organic material, the topsoil is poorly suited for use as fill and should be removed from the site or used in a nonstructural fashion (such as landscaping). The maximum particle size in excavated material used for fill should be limited to 6 inches. The slope of embankments constructed using this material should not be steeper than 2H:1V. The top of fill elevation should allow for a minimum of 12 inches of base aggregate for pavement construction.

Alternatively, the rock generated from the excavation of the treatment plant facilities can be processed and used in construction of the embankments. The rock should meet the requirement of stone embankment material provided in OSSC 00330.16. If stone embankment material is used, embankment slopes can be constructed as steep as 1.5H:1V.

Recommendations for embankment construction are provided in Section 6.7.

5.6.3 Pavement

An estimated traffic count was not available at the time this report was prepared. Washington County requires a minimum of 3-inch thick asphaltic concrete for the new roads within the county. Considering SW Blake Street is located within an industrial area, heavy truck traffic is anticipated in future. Therefore, we recommend flexible pavement section for the proposed SW Blake Street to consist of a minimum of 7 inches of asphaltic concrete underlain by 12 inches of base rock consistent with SW 124th Avenue pavement section.

Most of the access roads within the treatment plant will be paved with asphaltic concrete. We recommend using a minimum 6-inch thick asphaltic concrete underlain by 12 inches of base rock.

Base rock should meet the requirements of OSSC Section 2630.10 for ³/₄-inch minus. Per Oregon Department of Transportation's Pavement Design Guide (ODOT, 2019), we recommend a Level 3, ¹/₂-inch dense graded hot mix asphalt with PG 64-22 asphalt binder.

An area to east of the chemical building will be paved with Portland Cement Concrete Pavement. Areas immediately outside of dewatering building also may be paved with concrete pavement. Following the procedures provided in AASHTO (1993) for low volume roads, we recommend using a minimum 6-inch thick concrete pavement underlain by 12 inches of base rock. The concrete should be Class $4000 - 1\frac{1}{2}$ paving concrete. Longitudinal and transvers bars should be selected following the recommendations of

ODOT Standard Drawings DET1600 and DET1602 for dowelled and undowelled plain concrete pavement, respectively.

Recommendations for pavement construction are provided in Section 6.8.

5.7 Reuse of Excavated Rock

Excavation for the proposed structures and roads (including SW Blake Street and access roads within the plants) will likely generate large volumes of rock that potentially can be used as structural fill aggregate if processed. The aggregates should meet the requirements of OSSC Section 02630.

There is an active quarry near the site east of SW 124th Avenue and we understand the rock excavated during construction of PLM_3.0 was processed and used as aggregate for backfill and construction of SW 124th Avenue. We anticipate the rock excavated at the treatment plant can be used as source of aggregate if processed.

6.0 **Construction Recommendations**

6.1 Rock Excavation

Construction of the WTP_1.0 elements will generally require 5 to 10 feet of excavation. The exception are the equalization/overflow basins, where up to 20 feet of excavation is anticipated and the clearwell and finished water pump station and wetwell structures, where up to 30 feet of excavation is anticipated. Most of the explorations within the treatment plant encountered rock within 5 feet of the ground surface. Therefore, most excavations will encounter rock. Based on the conditions encountered in the explorations, the rock is anticipated to consist of weak (R2) to very strong (R5), fresh to highly weathered, moderately to intensely fractured basalt. RQD of the rock ranged between 0 and 100 percent, with an average value of 58 percent. The results of laboratory testing indicate unconfined compressive strength of rock ranged between 12,000 and 34,000 psi, with an average value of 22,000 psi. The results of the geophysical explorations indicate the upper 10 to 15 feet of rock typically exhibit compression wave velocities of 6,000 to 8,000 feet per second (ft./sec). However, compression wave velocities up to 12,000 ft./sec were measured near the rock surface at several locations.

Deep excavation of the basalt will likely require controlled blasting in conjunction with the use of pneumatic breakers. Expansive grout may be used in sensitive areas.

The contractor should be responsible for selecting appropriate rock excavation techniques to prevent damage to the existing structures (i.e. PGE transmission lines and the exiting utilities in SW 124th Avenue) and minimize over-break or over-cut beyond the structure footprint. PGE will need to be notified with the proposed construction plan, including blasting plan, for a field supervisor to review. In addition, the selection of excavation methods and procedures should consider the impact to the foundation subgrade preparation and backfill placement.

Protruding rock of more than 3 inches above the specified subgrade elevation or 3 inches into the designated pipe zone should not be allowed unless approved by the engineer. Any large protrusions should be removed.

6.1.1 Trenching

Trench excavations to install subsurface piping are anticipated to be up to 15 feet deep. Trench excavations will be advanced into rock. Excavations may be completed using specialized equipment such as a hydraulic hammer attachment mounted on an excavator, nonexplosive methods such as hydraulic and chemical splitting, line drilling and/or drilling and blasting.

6.2 Temporary Cuts

Temporary slope recommendations do not consider site constraints such as groundwater, surcharge, or nearby structures. Temporary slopes should be evaluated on a case-by-case basis and incorporate groundwater conditions, soil classification, and site constraints. Slopes should be inspected and maintained as required by Occupational Safety and Health Administration (OSHA). Maintenance of safe working conditions, including temporary excavation stability, is the responsibility of the contractor and all excavations must comply with current federal, state, and local requirements.

We understand in general, construction of the proposed structures will require 5 to 8 feet of horizontal clearance between the edge of cut and structure.

6.2.1 Soil Cuts

In general, near surface soil within the project area consists of soft to medium stiff silt and stiff residual soil. In accordance with OSHA, the soils throughout the project are classified as Type C. For excavations up to 20 feet, the maximum allowable temporary slope for Type C soils is 1.5H:1V (horizontal: vertical), if fully dewatered.

The stability of temporary unsupported cut slopes can be significantly reduced with time, the presence of shallow groundwater, and precipitation. Therefore, temporary slopes kept open for construction activities should be protected from erosion by installing a surface water diversion ditch or berm at the top of the slope and covering the cut face with well-anchored plastic sheets. In addition, the contractor should monitor the stability of the temporary cut slopes and adjust the construction schedule and slope inclination accordingly.

6.2.2 Rock Cuts

In general, the basalt present across the project area is considered to be "stable rock" per OSHA and will stand at a vertical orientation for excavations less than 20 feet deep. However, since anticipated depths of excavations for some of the WTP_1.0 structures are greater than 20 feet and we anticipate contractor personnel at the bottom of the excavations during construction, we recommend the following for planning temporary excavations through basalt:

- For rock cuts 20 feet in depth or less, cuts may be sloped at 1/4H:1V;
- For rock cuts greater than 20 feet in depth, cuts may be sloped 1/4H:1V which includes a 4-foot wide bench at the mid-height. Benching reduces the overall slope angle and helps to protect the work area at the base of the slope from rockfall debris.

Considering global stability, rock cuts of up to 30 feet will be stable. However, minor rockfall from open cuts should be anticipated. Rockfall can be minimized by using controlled blasting along the perimeter of the excavation, and scaling cuts after excavation. Within the basalt bedrock, occasional and randomly-occurring weak zones or highly fractured zones are anticipated. These zones may locally destabilize the excavation and may require support. Potential support methods may include rock bolts or a shotcrete facing. Alternatively, wire mesh pinned to the face of the slope using short dowels can be used to reduce rockfall debris into the excavation.

Ultimately, design of rock cuts and temporary support measures are the responsibility of the contractor.

6.3 Temporary Shoring

6.3.1 Trench Shoring

Trench excavation for pipes and utilities will encounter near surface soil consisting of silty and clayey soil with cobbles and boulders to a maximum depth of 10 feet, underlain by basalt bedrock.

WWSP WTP_1.0

It is anticipated that the near-surface soils will be sloped down to the rock line (rather than vertically shored) before rock excavation. Cut slopes are discussed in Section 6.2.1. If vertical shoring is used, earth pressures shown in Figure 7 should be used for shoring design. A lateral earth pressure of 100 psf is recommended for rock material in order to account for localized weak and fractured zones and possible rockfall.

Within continuous rock material, it is anticipated that near-vertical slopes will stand unsupported. However, minor rockfall from trench sidewalls should be excepted. We recommend using a trench box or other measures in all trench excavations to protect workers and materials from sloughing and rockfall.

6.3.2 Shoring Plans

Temporary shoring systems in soil should be designed considering the earth pressures shown in Figure 7. Any equipment or traffic surcharge should be additive to these earth pressures. Additional safety systems will be required for deep trenches to protect workers from rockfall.

Selection of the shoring system and the safety of temporary excavation and cut slopes is solely the responsibility of the contractor. The contractor must submit an excavation and shoring plan to the Engineer prior to construction. The plan should show the design of the shoring, bracing, sloping, or other provisions to be made for worker protection from the hazard of caving ground for any trench or excavation over 5 feet in depth in soil. The contractor should be aware of, and familiar with, applicable local, state, and federal safety regulations including the current OSHA Excavation and Trench Safety Standards. The shoring plan must be prepared and stamped by a registered Civil or Structural Engineer in the State of Oregon.

6.4 Groundwater Control

We recommend completing excavations during summer and early fall when groundwater is typically at its lowest, and while minimal ponded water is present at the wetlands.

The groundwater measured in the piezometers and observed in our test pit explorations represent a perched groundwater condition at the site. Considering the depth of excavations and the measured groundwater elevations within piezometers, excavation for the majority of the proposed structures may not encounter groundwater. The excavation for the clearwell, finished water pump station wetwell and equalization/overflow basins structures will likely encounter groundwater.

If encountered, groundwater in excavations can be adequately controlled by a sump pump system. Large excavations (i.e. the Clearwell structure) may require installing several sump pump systems. A sump pump system consists of a groundwater control system in which the groundwater is allowed to enter the excavation. The water is then diverted to a sump area where it is collected and pumped out. Groundwater control should be continued until the structures are completed. The pumped water should be collected in tanks and properly disposed into a drainage system that would not recharge into the excavation.

We recommend constructing ditches or berms to divert any surface runoff from entering the excavation. Ponding water on the site and near the excavations should be prevented. Ponded water may infiltrate into the ground and act as a recharge source for groundwater seepage into excavations.

6.5 Blasting Plan

Based on the conditions encountered in our explorations, the contractor is likely to select drilling and blasting methods for excavation for some of the planned structures. The drilling and blasting should conform to the requirements of Section 00335.00 of the OSSC at a minimum. The contractor must submit a blasting plan prepared by a person qualified and experienced in blasting work at least 28 days before beginning of drilling and blasting work. The blasting plan must provide details of drilling and blasting pattern, vibration, flyrock, noise reduction methods, blast area security measures, and traffic control.

Drilling and blasting excavation methods generate vibrations. Blast designs must be developed to limit vibrations to levels that do not adversely affect existing nearby structures. Blast designs involve interrelated parameters including round length, blast hole size, spacing, location, explosive strength, and the delay and firing sequence. Delays are used to detonate fractions of seconds after blast initiation to make sure each charge will fire into a cavity created by an earlier charge.

If blasting is used, nearby structures, such as houses and commercial buildings within a 300 feet radius of the blast, should be pre-surveyed for documenting the existing conditions. Seismographs that are specifically designed to monitor construction blasting should be used during construction to monitor blast vibrations to verify that actual vibration levels are within an acceptable range at critical structures. If a blast results in unacceptable vibrations, special modifications to the blasting procedures should be made, such as using different delay patterns, reduction in size of individual blasts, shorter and/or smaller diameter blast holes, closer spacing of blast holes, reduction of explosives, or a combination thereof as necessary to improve results.

Temporary closure of SW 124th Avenue may be required during blasting. The contractor should coordinate with the Washington County and provide the county with plans for review and approval prior to any blasting.

As discussed previously, blasting will require coordination and approval of plans by PGE prior to any blasting near PGE structure. The Contractor should schedule the work accordingly to allow sufficient time for PGE review.

6.6 Fill Materials and Compaction Criteria

We anticipate that various fill materials will be used for the construction of this project and that their specific locations and placement criteria will be described in the construction plans and specifications. The following sections include fill criteria that are subject to modification under specific design recommendations and the development of construction plans and specifications.

The specified compaction criteria and optimum moisture in the following sections is in accordance with ASTM D698 (Standard Proctor), unless otherwise specified.

6.6.1 On-Site Soils

The surficial soils excavated for the proposed structures are expected to consist of predominantly finegrained soils and include rock fragments in various sizes ranging from gravel to boulders. Some organic matter, such as root zones, are also expected within the excavation of surficial soils.

When processed, the on-site soils can be used as general purpose, non-structural fill. This fill is intended in landscaping areas or general embankment not subjected to surface loading. General purpose fill soils should not include particle sizes larger than 6 inches, should be free of organic matter, and should be moisture conditioned to allow for mechanical compaction.

It is possible that the basalt bedrock excavated can be processed for use as structural fill. This will likely involve crushing the larger rock fragments, processing them into various particle sizes, stockpiling the processed material on site, and a mixing and blending operation to create the recommended grading for structural fill.

6.6.2 Structural Fill

Structural Fill should consist of ³/₄-inch minus Dense-Graded Aggregates conforming to OSSC Section 02630.10 in settlement-sensitive areas, beneath structures, and pavement (not requiring high permeability).

The structural fill should be compacted within +/-2% of the optimum moisture content value and to a minimum 98 percent of the maximum dry density. Loose lift thickness should be 8 inches or less, and each lift of compacted structural fill should be tested by a qualified representative of a testing agency prior to placement of subsequent lifts. Ultimately, minimum lift thicknesses are dependent on the type of compaction equipment available and can be revised accordingly.

6.6.3 Embedded Walls and Retaining Wall Backfill

Backfill placed within 5 feet of retaining walls or embedded foundations should be compacted to not more than 95 percent of the maximum dry density to limit compaction pressure on the wall that could exceed the recommended at-rest pressure. Large and heavy equipment, particularly compaction equipment, should not be allowed to operate near the walls during construction. The compaction equipment used within 5 feet of the wall should be hand compaction equipment or walk-behind or self-propelled rollers with a static weight of less than 1,000 pounds. Loose lift thickness may need to be reduced where hand compaction equipment is used.

6.6.4 Bedding and Pipe Zone Backfill

We recommend that the pipe bedding and pipe zone in the trench be constructed with imported, wellgraded crushed rock material such as ³/₄-inch minus crushed aggregate as specified in OSSC Section 02630.10, Dense-Graded Aggregate. The material must be suitable for compaction and be able to be worked under the curvature of the pipe.

Above pipe bedding, imported crushed rock aggregate should be used for the pipe zone, which typically extends at least 12 inches above the top of the pipe. Bedding and pipe zone materials should be compacted to at least 95 percent of the maximum dry density, except the portion of bedding directly underneath the pipe that should be leveled without compaction effort.

6.6.5 Trench Backfill

Where the piping system is located below paved areas or structures, trench backfill above the pipe zone should consist of structural fill in accordance with Section 6.6.2 of this report. Similarly, trench backfill in these areas should be compacted to at least 95% of the maximum dry density.

For areas outside of the paved areas or below structures, trench backfill may consist of imported granular aggregates, meeting the requirements of Class B or Class materials as defined by OSSC 00405.14. Trench backfill in these areas should be compacted to 90 percent of maximum dry density per ASTM D698. The upper 18 inches of the trench should be backfilled with topsoil to allow for vegetation growth.

Trench backfill should be tested for compaction every 2 vertical feet and up to 50 linear feet of trench. All sampling and testing should be performed by an independent testing laboratory. Where trench depths or conditions preclude density testing because of worker safety concerns, trench backfill placement and compaction should be observed and documented on a full-time basis by the contractor's approved testing agency until the backfill reaches an elevation at which density testing can commence.

6.6.6 CLSM

CLSM is a self-compacting, cementitious material that is typically considered when backfilling localized areas. Due to its flowable characteristics, CLSM typically can be placed in restricted-access excavations where placing and compacting fill is difficult. If chosen for use at this site, we recommend the CLSM conform with Section 00442.00 of OSSC.

6.7 Engineered Fill and Embankment Construction

Construction of fill and embankments should be completed according to OSSC Section 00330.00. We recommend that the embankment footprint be cleaned and grubbed to an extent of 10 feet beyond the toe of the fill. Roots, tree stumps and other vegetation should be removed to a depth of 6 inches. The holes resulted from grubbing should be backfilled with clean fill. Clearing and grubbing should be performed in accordance with OSSC Section 00320.00. For slopes with 5H:1V or less, which is the case for SW Blake Street, we recommend roughening or scarifying the surface to positively bond embankment material with the existing ground. For slopes steeper than 5H:1V, existing ground should be benched in accordance with OSSC Section 00330.42.

Fill should be placed in horizonal layers. Fill material that is moisture-density testable should be placed in layers not exceeding 8 inches and compact to 95 percent of relative density. Moisture content of the fill at the time of compaction should be within minus 4 percent to plus 2 percent of optimum moisture content.

For fill materials that are non-moisture density testable due to rock fragments, the material should be placed in near horizontal layers with thickness not exceeding 12 inches. Each layer should be compacted

with a minimum of four full coverages using a 20,000 lbs. or larger smooth drum vibratory roller. At a minimum, one deflection test for each layer should be performed in accordance with ODOT TM 158.

6.8 Pavements

Asphaltic concrete should be placed in lifts 3-inch thick or less. Aggregate base course should be compacted to 95 percent of the maximum dry density determined by ASTM D1557 (Modified Proctor). Hot mix asphalt should be compacted to 92 percent of the theoretical maximum density as determined by ASTM D2041 (Rice Specific Gravity). A minimum of one field density test should be performed for each compacted lift of pavement material every 50 linear feet. Asphaltic concrete pavement should be constructed according with OSSC 00744.00 Asphalt Concrete Pavement.

Portland Cement concrete pavement within the area east of the chemical building should be constructed according with OSSC Section 00756.00 Plain Concrete Pavement.

6.9 Wet Weather Earthwork

Soil conditions should be evaluated in the field by the geotechnical engineer or his representative at the initial stage of site preparation to determine whether the recommendations within this section should be incorporated into construction. If earthwork is performed during extended periods of wet weather or in wet conditions, we recommend the following:

- Trench areas should be protected from surface water runoff by placing sandbags or by other means to promote runoff of precipitation away from work areas and to prevent ponding of water in trenches;
- Plastic covers, sloping, ditching, sumps, dewatering, and other measures should be employed in work areas and slopes as necessary to permit timely completion of work. Bales of straw and/or geotextile silt fences should be used to control surface soil movement and erosion;
- Trench excavation should be completed in small sections and backfilled at the end of each day to reduce exposure to wet conditions; and
- The size and type of construction equipment used may have to be limited to prevent soil disturbance.

Geotechnical Engineering Report

7.0 Closure

This Geotechnical Engineering Report has been prepared for the Willamette Water Supply Program WTP_1.0 Project located in Sherwood, Oregon. The data, analyses, conclusions and recommendations presented in this report are based on the subsurface conditions at the time that the geotechnical investigation for the project was completed. This report also contains information and data collected from other relevant studies, as well as our site reconnaissance and our professional experience and judgement.

In the performance of geotechnical work, specific information is obtained at specific locations at specific times, and geologic conditions can change over time. It should be acknowledged that variations in soil conditions may exist between exploration and exposed locations and this report does not necessarily reflect variations between different explorations. The nature and extent of variation may not become evident until construction. McMillen Jacobs Associates is not responsible for the interpretation of the data contained in this report by anyone; as such interpretations are dependent on each person's subjectivity. If, during construction, conditions different from those disclosed by this report are observed or encountered, McMillen Jacobs Associates should be notified at once so we can observe and review these conditions and reconsider our recommendations where necessary.

The site investigation and this report were completed within the limitations of the McMillen Jacobs Associates approved scope of work, schedule, and budget. The services rendered have been performed in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same area. McMillen Jacobs Associates is not responsible for the use of this report in connection with anything other than the project at the location described above.

MCMILLEN JACOBS ASSOCIATES

Farid Sariosseiri, PE Associate Engineer

Jeremy Fissel, PE Project Engineer

8.0 References

- American Association of State Highway and Transportation Officials (AASHTO), 1993, *Design of Pavement Structures*, AASHTO, Washington DC.
- American Water Works Association (AWWA), 2004, Steel Pipe A Guide for Design and Installation, Manual of Water Supply Practices, M11.
- American Society of Civil Engineers (ASCE), 2017, *Minimum Design Loads for Buildings and other Structures*. ASCE/SEI Standard 7-16.
- Bieniawski, Z.T., 1989, Engineering Rock Mass Classifications, John Wiley and Sons, New York, 251 p.
- FHWA, 2002, *Geotechnical Engineering Circular No.* 6 *Shallow Foundations*. US Department of Transportation, Federal Highway Administration.
- Geotechnical Resources, Inc. (GRI), 2016, *Geotechnical Investigation: Preliminary Subsurface* Investigation for Pre-purchase Due Diligence 90-Acre Site. April 13, 2016.
- Jacobs Associates, 2015, SW 124th Avenue Water Transmission Line Project Geotechnical Engineering Report, March 13, 2015.
- McMillen Jacobs Associates, 2019a, *Willamette Water Supply Program, WTP_1.0 Geotechnical Data Report.* May 2019.
- McMillen Jacobs Associates, 2019b, Willamette Water Supply Program, WTP_1.0 Fault Location Study Memorandum. December 2019.
- McMillen Jacobs Associates, 2020a, *Willamette Water Supply Program, WTP_1.0 –Geologic Hazards Report.* May 2020.
- McMillen Jacobs Associates, 2020b, Willamette Water Supply Program, WTP_1.0 Site-Specific Seismic Response Spectrum Memorandum. May 2020.
- Moser, I. P., 2001. Buried Pipe Design, 2nd Edition, McGraw Hill.
- Oregon Department of Transportation, 2018, Oregon Standard Specifications for Construction (OSSC).
- Oregon Department of Transportation, 2019, ODOT Pavement Design Guide. January 2019.
- Shannon & Wilson, Inc., 2017, Geotechnical Report Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington County, Oregon. August 3, 2017.
- Spangler, M. G., 1941, *The Structural Design of Flexible Pipe Culverts*. Iowa Engineering Experiment Station Bulletin No. 153.
- U.S. Army Corp of Engineers (USACE), 1989, *Retaining and Flood Walls*, Engineering Manual 1110-2-2502, Department of the Army, September 1989.
- Wagner, N., Candia, G., Mikolah, R. G., and Sitar, N., 2017, Seismic Earth Pressures Experiments and Analyses. Conference Paper, Performance-based Design in Earthquake Geotechnical Engineering (PBD-III), Vancouver, BC.

WWSP WTP_1.0

Willamette Water Supply Program (WWSP), 2017, Pipeline Design Guide. March 31, 2017.

- Willamette Water Supply Program (WWSP), 2018, Seismic Guidelines and Minimum Design Requirements. June 8, 2018.
- Wong, I. G., and Silva, W. J., 1998, Earthquake Ground Shaking Hazards in the Portland and Seattle Metropolitan Areas. American Society of Civil Engineering Geotechnical Special Publication ASCE, no. 75, Vol. 1, p. 66-78.

Figures

LEGEND:

WTP_1.0-P-	1 O	AIR-TRACK DRILLING PROBE LOCATION
WTP_1.0-B-	1 🔶	BOREHOLE LOCATION
WTP_1.0-TP-	-1-	TEST PIT LOCATION
B-1	\oplus	BOREHOLE COMPLETED AS PART OF PLM_3
TP-1	\bigtriangleup	TEST PIT COMPLETED AS PART OF PLM_3.
		SPACE RESERVED FOR FUTURE EXPANSION

MAY 2020

LEGEND:			NOTES:	
WTP_1.0-P-1	0	AIR-TRACK DRILLING PROBE LOCATION	1. BASE MAP PROVIDED BY CDM SMITH IN NOV 2019.	
WTP_1.0-B-1	•	BOREHOLE LOCATION	2. EXPLORATION LOCATIONS ARE APPROXIMATE.	
WTP_1.0-TP-1	-	TEST PIT LOCATION		WILLAME
B-1	⊕	BOREHOLE COMPLETED AS PART OF PLM_3.0		
TP-1	\triangle	TEST PIT COMPLETED AS PART OF PLM_3.0		GEO
SR-1		GEOPHYSICAL EXPLORATIONS		

DTECHNICAL ENGINEERING REPORT EXPLORATION PLAN

FIG.3

MAY 2020

NOTES:

NOTES:

LATERAL EARTH PRESSURES ON EMBEDDED WALLS & STRUCTURES SURCHARGE, <u>BACKFIL</u>L SEISMIC BACKFILL **SURCHARGE GROUNDWATER** COMPONENT COMPONENT **COMPONENT** COMPONENT CRUSHED ROCK Ž BACKFILL MATERIAL Т +++Ť

GROUNDWATER

Ā

62.4H_W

NON-YIELDING EMBEDDED WALLS & STRUCTURES

YIELDING EMBEDDED WALLS & STRUCTURES

NOTES:

- EVENT.

LEGEND:

Н	HEIGHT	OF	
Ηw	HEIGHT	OF	١
$\mathbf{\Sigma}$	ASSUME	D G	
ą	UNIFORM	/ SL	

1. LATERAL EARTH PRESSURES WERE DEVELOPED ASSUMING UNIT WEIGHT OF 135 PCF AND FRICTION ANGLE OF 36 DEGREES FOR BACKFILL MATERIAL.

2. ACTIVE EARTH PRESSURE COEFFICIENT SHOULD BE SELECTED BASED ON BACKFILL SLOPE FROM TABLE PROVIDED IN THIS DRAWING

3. SEISMIC EARTH PRESSURE BASED ON 2,475-YEAR RETURN INTERVAL

BACKFILL ABOVE THE BASE OF EXCAVATION WATER ABOVE BASE OF THE WALL ROUNDWATER LEVEL JRCHARGE LOAD IN PSF

TABLE. ACTIVE EARTH PRESSURE COEFFICIENT FOR VARIOUS BACKFILL SLOPF

BACKFILL	
SLOPE (H:V)	Ka
FLAT	0.26
4:1	0.30
3:1	0.32
2:1	0.38

GEOTECHNICAL ENGINEERING REPORT LATERAL EARTH PRESSURE DIAGRAM FIG.5

MAY 2020

Appendix A

Geotechnical Explorations

Key to Boring Logs WWSP WTP 1.0

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS based on ASTM D2487 & D2488) MAJOR DIVISIONS GROUP/SYMBOL TYPICAL DESCRIPTION **** CLEAN GRAVELS (less GW WELL-GRADED GRAVEL COARSE-GRAINED SOILS (50% or more retained by No. 200 sieve) than 5% fines) GP POORLY GRADED GRAVEL WELL-GRADED GRAVEL WITH GW-GM SILT GRAVELS WELL-GRADED GRAVEL WITH \$\$ (more than GRAVELS GW-GC CLAY 50% retained (with 5 to POORLY GRADED GRAVEL WITH 12% fines) GP-GM on No. 4 SILT sieve) POORLY GRADED GRAVEL WITH GP-GC CLAY GRAVELS WITH GM SILTY GRAVEL FINES (more than 12% fines) GC CLAYEY GRAVEL SW CLEAN WELL-GRADED SAND SANDS (less than 5% fines) SP POORLY GRADED SAND SW-SM WELL-GRADED SAND WITH SILT SANDS (less WELL-GRADED SAND WITH SANDS (with SW-SC than 50% CLAY 5 to 12% retained on POORLY GRADED SAND WITH SP-SM . fines) No. 4 sieve) SILT POORLY GRADED SAND WITH SP-SC CLAY SANDS WITH SM SILTY SAND FINES (more than 12% fines) SC CLAYEY SAND Р ML SILT SILTS & FINE-GRAINED SOILS (50% of more passes No. 200 sieve) INORGANIC CLAYS CL LEAN CLAY (liquid limit LOW PLASTICITY ORGANIC less than 50) ORGANIC OL CLAY SILTS AND MH ELASTIC SILT CLAYS INORGANIC (liquid limit CH FAT CLAY greater than HIGH PLASTICITY ORGANIC ORGANIC OH 50) CLAY SILT/CLAY (liquid limit 12 -25; PI 4-7) INORGANIC CL-ML CLAYEY SILT/SILTY CLAY PRIMARILY ORGANIC HIGHLY <u>~~~~</u> PT PEAT ORGANIC SOILS MATTER

Note:

Dual symbols (symbols separated by a hyphen, e.g. SP-SM) are used for soils between 5% and 12% fines or when liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.

Coare-Grained Soils

Relative Density	N, SPT Blows/Foot
Very Loose	0 - 4
Loose	5 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	> 50

Fine-Grained Soils

Relative Consistency	N, SPT Blows/Foot
Very Soft	< 2
Soft	2 - 4
Medium Stiff	5 - 8
Stiff	9 - 15
Very Stiff	16 - 30
Hard	> 30

AL	Atterberg Limit	
MC	Moisture Content	
SA	Sieve Analysis	
LL	Liquid Limit	
PL	Plastic Limit	
Sam	ple Symbols	
X	SPT Sample 2" OD	
	Shelby Tube Sample	
rage.	Grab Sample	
Ν	Blows/ft	
Well and Backfill Symbols		
	Bentonite Chips	
	Concrete	
	Sand	
	Asphalt	
	Gravel	
	Grout	
	Observation Well - Solid Interval	
	Observation Well - Screened Interval	
	Vibrating Wire Piezometer	
¥	Measured groundwater level	

Test Symbols

	Blows/Ft
0	Moisture Content
H	Liquid Limit/Plastic Limit

Modifiers & Percentages

Trace	Component is present at less than 5% of the less than 3- inch portion.
With (Sand or Gravel)	Coarse particles present at levels estimated at 12-30%.
Sandy or Gravelly	Coarse particles present at levels estimated at 30-50%.

Moisture Content

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp, but no visible water
Wet	Visible free water, usually soil is below water table

Abbreviations

FOR LAND USE PERMITTING (EXHIBIT B) Key to Boring Logs - Rock WWSP WTP_1.0

Rock Strength Approximate Uniaxial Term Grade Compressive Strength (psi) R0 <100 Extremely Weak R1 100 - 1,000 Very Weak R2 Weak 1,000 - 4,000 Medium Strong R3 4,000 - 8,000 8,000 - 16,000 Strong R4 R5 Very Strong >16,000

Core Recovery Calculation (%)

RQD Calculation (%)

Rock Weathering

Residual Soil	Entirely decomposed to secondary minerals; material can be easily broken by hand
Completely Weathered	Almost entirely decomposed to secondary minerals; material can be granulated by hand
Highly Weathered	More than half of the rock is decomposed
Moderately Weathered	Rock is discolored and noticeably weakened, but less than half is decomposed
Slightly Weathered	Rock is slightly discolored, but not noticeably lower in strength than fresh rock
Fresh	Rock shows no discoloration, loss of strength, or other effect of weathering or alteration

Rock Fracturing

Intensely Fractured	Fractures spaced less than 2 inches apart
Highly Fractured	Fractures spaced 2 inches to 1 foot apart
Moderately Fractured	Fractures spaced 1 foot to 3 feet apart
Slightly Fractured	Fractures spaced 3 feet to 10 feet apart
Massive	Fractures spaced greater than 10 feet apart

Lithology Graphics

Basalt	
--------	--

Surface Roughness

Slickensided	Surface has smooth, glassy finish with visual evidence of striations
Smooth	Surface appears smooth and feels so to the touch
Slightly Rough	Asperities on discontinuity surfaces are distinguishable and can be felt
Rough	Ridges and side-angle steps are evident, surface feels very abrasive
Very Rough	Near vertical steps and ridges occur on discontinuity surface

Discontinuity Type

J	Joint
FJ	Joint along foliation
S	Shear
F	Fault
HJ	Healed joint
MB	Mechanical break
В	Joint along bedding

Sample Symbols

HQ3 Rock Coring

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	Date(s) Drilled Dec 03 2018 - Dec 05 2018 Client CDM Smith Logged By J Fissel Checked K Elliott												
Rig Type	etho	J/	Mounted	Contractor	estern	States	Soil Co	nserv	ation, Inc.	of Borehole 45	5.0 ft.		
Hole Dian	neter	5.0	0 in.	Hammer Weight/Dro	p (lb/in.)	/Type	140 ll	o / 30	in / Automatic	Elevation/Datum	236.0 ft.		
Location			Sherwood, OR	Coordinates 45	.36541	0 -122	2.80637	0		(%)	y		
Elevation (ft.)	Water Level (ft.)	(; ti D Material Description				Sample Type	Sample No.	Backfill		ion Resistance, N (blo cent Fines (< 0.075 mr ercent Water Content istic Limit - Liquid Limi 40 60	RQD (%) ws/ft) n) t 80 1(N Value	Remarks and Tests
- - - -	Y	1 — 2 — 3 —	Very dense, moist, red-brown Poorly-Graded GRAVEL with c boulders, clay, and sand (GP-C gravel-, cobble-, and boulder- fragments, fine-to-coarse san- fines. [Residual Soil]	and gray, obbles, GM); angular size rock d, low plasticity		X	S1					81	At 1.0 ft bgs, constant drill chattering (rock drill with tricone bit 4 to 5 ft)
 231 		4 — 5 — 6 —	BASALT, very strong (R5), fresh fractured, gray; fine-grained n widely scattered plagioclase p to about 0.2 in.	n, moderately natrix with henocrysts up			R1	-					PLT est 25,691 psi At 7.0 ft bgs, drill rods obstructed
 226 		7 — 8 — 9 — 10 — 11 —	[Columbia River Basalt] From 5 to 23 ft bgs, joints are ~ undulating, smooth; ~50°, plan. and, ~75°, undulating, rough, ir stained; typical apertures 0.04- Below 9.7 ft bgs, becomes slig highly to intensely fractured.	-25°, ar, smooth; ron-oxide 0.08 in. htly weathered,			R2						during removal. PLT est 28,285 psi UCS 27,467 psi PLT est 24,651 psi PLT est 32,459 psi
 221 221 		12 — 	Below 12 ft bgs, core loss gene distributed over runs. From 17.6 to 21.3 ft bgs, becor moderately strong, moderately	erally nes weak to weathered.			R3						At 16.5 ft bgs,
- - - -	-	L7 — L8 — L9 — –					R4	_					hole caving, flow contact.
— 216 - 		20 — - 21 — -	From 21.3 to 30 ft bgs, become (R5), fresh, highly fractured; fin matrix with scattered plagioclas up to 0.5 in.	es very strong e-grained se phenocrysts			R5 R6	_					
		22 — 23 — 24 — 25 —	From 23 to 30 ft bgs, joints are undulating, rough, with minor ir and, near vertical, undulating, r oxide stained. From 23.3-23.8 ft bgs, zone of and dark brown banded texture	~15° and 30°, on-oxide stain; rough and iron- f light brown a.			R7						
	M	<u>_N/II</u>	IEN										
			ILLIN DBS ATES							Bori	n g WTP Sheet 1	1.0 L of 2	-B-01

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	De	ec 03 2	018 - Dec 05 2018	DM Smith				Log Bv	^{ged} J Fissel		Checked By	< Ellio	tt
Drilling N Big Type	leth	od/	HQ Wireline/CME 850 Track	Drilling Contractor	Western S	States	Soil Co	nservati	ion, Inc.	Total Depth	5.0 ft.		
Hole Diar	nete	er 5.0	0 in.	Hammer Weight,	/Drop (lb/in.),	/Type	140 II	b / 30 in	/ Automatic	Ground Surface	236.0 ft.		
Location			Sherwood, OR	Coordinates	45.36541	0 -122	2.80637	0		Hammer Efficienc	ÿ		
Elevation (ft.)	Water Level (ft.)	Depth (ft.)	Material Descript	tion	Graphic	Sample Type	Sample No.	Backfill Information	Recc Penetratii Percv Percv Plast 20	overy (%) on Resistance, N (ble ent Fines (< 0.075 m crcent Water Content stic Limit - Liquid Lim 40 60	RQD (%) pws/ft) m) it 80 100	N Value	Remarks and Tests
- - - - - - - - - - - - - - - - - - -		26	BASALT, continued, very stron highly fractured; fine-grained scattered phenocrysts up to 0 [Columbia River Basalt] From 30-32 ft bgs, moderately completely altered, highly to int fractured, dark brown with fine- brown and dark brown horizont texture; undulating high-to-low- joints. From 32 to 32.3 ft bgs, hard, "v habit with slickensides. From 32.3 to 42.2 ft bgs, becor and multi-colored, gray-brown- with occasional 3-4 inch long vesicular basalt; fractures not a core is "disked" (likely from drill fragment from 1 to 3 in. long; v	g (R5), fresh, matrix with 0.5 in. 9.5 in. 9 in. 9 in. 9 in. 9.5 in. 9			R8						At 32.0 ft bgs lost water.
- - - - - - - - - - - - - - - - - - -		40	Below 42.2 ft bgs, weak to mou highly weathered, highly to inte fractured.	derately strong insely			R10						PLT est 32,459 psi
- - - - - - - -		46 — 47 — 48 — 49 — 50 —											Borehole completed at 45ft. below ground surface (bgs).
	Boring WTP_1.0-B-01												
JACOBS ASSOCIATES											Sheet 2	of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Conting Nethods HQ Witching/CME 350 Tack Drilling (a) Toce Description Total Data (a) Toce <	Date(s) Drilled		D	ec 11 2018	DM Smith				Lo _i Bv	^{gged} KE	lliott, A H	avekost	Checked Bv	K Ellio	tt
Balline Distriction Distreton <thdistreton< th=""> <th< td=""><td>Drilling M</td><td>letho</td><td>od/</td><td>HQ Wireline/CME 850 Track</td><td>Drilling W</td><td colspan="6">Western States Soil Conservation, Inc.</td><td>tal Depth</td><td>0.0 ft.</td><td></td><td></td></th<></thdistreton<>	Drilling M	letho	od/	HQ Wireline/CME 850 Track	Drilling W	Western States Soil Conservation, Inc.						tal Depth	0.0 ft.		
Construction Sherwood, OR Coordinates 45.355550-122.00730 Deamter floating data Deamter floating data (a) (a) <td< td=""><td>Hole Dian</td><td>nete</td><td>er 5.0</td><td>0 in.</td><td>Hammer Weight/Dr</td><td>op (lb/in.)</td><td>/Type</td><td>140 lk</td><td>o / 30 ir</td><td>n / Autom</td><td>atic Gro</td><td>ound Surface</td><td>238.0 ft.</td><td></td><td></td></td<>	Hole Dian	nete	er 5.0	0 in.	Hammer Weight/Dr	op (lb/in.)	/Type	140 lk	o / 30 ir	n / Autom	atic Gro	ound Surface	238.0 ft.		
Condition Shewood, OK Conditions 43.58.580 / LL2.07300 [%] Image: State of the state of				Channed OD					,	.,	Ele Ha	evation/Datum Immer Efficienc			
Up of an operation Up operation	Location			Sherwood, OK	Coordinates 4:	Hates 43.303630 -122.60/330)			
Diginary Edition Diginary Edition <th< td=""><td>ť.)</td><td>ť.</td><td>~</td><td></td><td></td><td></td><td>e</td><td>÷</td><td>Ę</td><td></td><td>Recovery</td><td>/ (%)</td><td>RQD (%)</td><td></td><td></td></th<>	ť.)	ť.	~				e	÷	Ę		Recovery	/ (%)	RQD (%)		
Open Subset Subset Material Description Book Book Book Description Book Book Description Subset Book Description Subset Subset	n (f	<u>vel</u>	÷			hic	ž	ž	atio	▲Pe	enetration R	ion Resistance, N (blows/ft)		lue	Remarks
a go b construction const	atio	r Le	pth	Material Descript	ion	rap	ble	nple	ack		Percent F	ines (< 0.075 m	m)	Va	and
u 3 1 Stiff, moist, slightly orange-brown mottled 1 Sill (ML); low-plasticity, 2 - 3 - 4 At 4 ft bgs, grades to yellow to slightly orange-brown, mottled 5 - 6 - 7 Stiff to hard, moist, orange-brown, mottled 8 - 6 - 7 Stiff to hard, moist, orange-brown, mottled 8 - 10 S-4 is very dense, gray, weathered 9 - 10 S-4 is very dense, gray, ROCK CHIPS; with 11 trace orange-brown mottled Silt, trace fine-to-medium gray; fine-grained ground mass with 11 trace orange-brown mottled Silt, trace fine-to-medium gray; fine-grained ground mass with 12 BASAIT; very strong (RS), fresh to slightly weathered, highly to intensely factured, 13 (Columbia River BassIt) 15 From 12 to 24 ft ft bgs, strong, fresh to highly weathered, highly to intensely factured, 14 phenocrysts up to 0.2 in. 15 From 12 to 24 ft bgs, strong, fresh to highly weathered, highly to intensely factured, 16 - <td>Elev</td> <td>ate</td> <td>De</td> <td></td> <td></td> <td>G</td> <td>Sam</td> <td>San</td> <td>Info</td> <td></td> <td>Percent Plastic L</td> <td>t Water Content .imit - Liguid Lim</td> <td>iit</td> <td>z</td> <td>lests</td>	Elev	ate	De			G	Sam	San	Info		Percent Plastic L	t Water Content .imit - Liguid Lim	iit	z	lests
Stiff, moist, slightly orange-brown mottled 1 Stiff, moist, slightly orange-brown mottled 1 [Missoula Flood Deposits] 2 3 4 At 4 fl bgs, grades to yellow to slightly orange-brown with frace roots. 6 51 7 Stiff to hard, moist, orange-brown, mottled Silt, trace fine, gray, weathered Gravel. 9 52 7 Stiff to hard, moist, orange-brown mottled Silt, trace fine, gray, weathered Gravel. 9 53 10 S-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine, gray, weathered Gravel. 11 trace orange-brown mottled Silt, trace fine, gray, meathered fine, gray, meathered first are -d? 9 54 11 Frace orange-brown mottled Silt, trace fine, gray, meathered first are -d? 12 BASAIT; very stong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray, fine-grained ground mass with diffy and texture and are a plagioclase first are -d? 13 [Columbia Rive Passit] 14 phenocrysts up to 0.2 in. 15 From 12 to 24 ft ggs, intact joints are -d? 16 -n: inon tains cost surfaces and penetrate up to 0.4 in in some joints. 17 Below 17 ft bgs, strong; fresh to		3								0 20	0 40	60	80 10 I	00	
1 -SLI (MU); low-plasticity, (Missoula Flood Deposits] 2 - 3 - 4 At 4 ft bgs, grades to yellow to slightly orange-brown with trace roots. 13 6 - 7 Stiff to hard, moist, orange-brown, mottled slit (ML) 52 8 - 7 Stiff to hard, moist, orange-brown, mottled slit (ML) 8 - 7 Stiff to hard, moist, orange-brown, mottled slit (ML) 8 - 9 - 7 Stiff to hard, moist, orange-brown, mottled slit (ML) 8 - 9 - 9 - 9 - 9 - 10 S-4 is very dense, gray, ROCK CHIPS; with trate orange-brown mottled Silt, trace fine- to-medium sand. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phorory: services 30.04 for -in, iron stains coal surfaces and penetrate up to 0.4 in isome joints. 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. 18 - 19 Below 17	_		-	Stiff, moist, slightly orange-bro	own mottled										
 2 - [Initiation in food deposits] 2 - [Initiation in food deposits] 2 - [Initiation in food deposits] 3 - [Initiation in food deposits] 3 - [Initiation in food deposits] 2 - [Initiation in food deposits] 3 - [Initiation in food deposits] 3 - [Initiation in food deposits] 2 - [Initiation in food deposits] 3 - [Initiation	-		1 —	SILI (ML); IOW-plasticity.											
23 3 4 At 4 ft bgs. grades to yellow to slightly orange-brown with trace roots. 13 (3-6-7) 233 5 - 13 (6-7-6) 7 Stiff to hard, moist, orange-brown, mottled SILT (ML) 52 A 14 8 [Residual Soil] - 53 - 50 11 trace orange-brown mottled Silt, trace fine-to-medium sand. 53 - 50 12 BASALT; very strong (R5), fresh to slightly weathered mediance fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. in mosine joints are -40° and -60°, inuulating, rough, apertures 50.04 R1 R1 12 Below 17 ft bgs. strong, fresh to highly mattered. R1 R1 PLT est 29,340 psi 13 Below 17 ft bgs. vesicular with palagonite coalings. R2 R2 R2 R1			- 												
3 - At 4 ft bgs. grades to yellow to slightly orange-brown with trace roots. 13 (3-6-7) -233 5 - 5 - 13 (6-7-6) 6 - - 52 A tended 13 (6-7-6) 7 - Stiff to hard, moist, orange-brown, mottled 51 - 13 (6-7-6) 8 [Residual Soil] - - 53 - 50 At 8.0 ft bgs rods rate to gravel. - 228 10 5-4 is very dense, gray, ROCK CHIPS; with trace rone-dium sand. - 50 At 8.0 ft bgs rods rate to gravel. - 228 10 5-4 is very dense, gray, ROCK CHIPS; with trace rone-dium sand. - 50 At 12.0 ft bgs. switch to rock coring. 11 trace orange-brown mottled Silt, trace fine-to-medium sand. - 54 100 (50/2") 223 15 - - - - - - 12 BASAIT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, thin; iros sins cost surfaces and penetrate up benocrysts up to 0.2 in. R1 - - - - - - - </td <td>_</td> <td></td> <td>Z _</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_		Z _						-						
4 At 4 ft bgs, grades to yellow to slightly orange-brown with trace roots. 5 5 5 13 (6-7-6) 7 Stiff to hard, moist, orange-brown, mottled SILT (ML) 8 Residual Soil] 13 (6-7-6) 9 - 50 At 8.0 ft bgs rods rattle. 50 At 8.0 ft bgs rods rattle. 13 (6-7-6) 228 10 5-4 is very dense, gray, weathered Gravel. 53 - 50 At 8.0 ft bgs rods rattle. 100 (50/2") 11 Trace orange-brown mottled Silt, trace fine- to-medium sand. 54 100 (50/2") 100 (50/2") 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, and -60", undulating rough; gentures 50 d ind -60", undulating ro			3 —				Y	S 1						13	
4 4 4 ft bgs, grades to yellow to slightly orange-brown with trace roots. 13 (6-7-6) 233 5 6 52 A Image: brown with trace roots. 13 (6-7-6) 7 Stiff to hard, moist, orange-brown, mottled SlitT (ML) 8 Residual Soil] At 8.0 ft bgs, trace fine, gray, weathered Gravel. 53 50 At 8.0 ft bgs rods rattle. (6-50/6") 228 10 5-4 is very dense, gray, ROCK CHIPS; with 11 100 (50/2") 100 (50/2") 11 trace orange-brown mottled Silt, trace fine- to-medium sand. 54 100 (50/2") 100 (50/2") 12 BASAIT, very strong (RS), fresh to slightly weathered, moderately to highly fractured, filtytaktic texture and rare plagicalsae phenocrysts up to 0.2 in. (Columbia River Basalt) R1 R1 PIT est 30,889 psi UCS 16,746 psi PIT est 30,889 psi UCS 16,746 psi PIT est 22,741 psi PIT est 29,340 psi PIT est 29,340 psi 17 Below 19 ft bgs, vesicular with palagonite coatings. R2 R2 R2 R2	_		-					51						10	(3-6-7)
233 5 Outgeboom with the base holds. 233 5 Outgeboom with the base holds. 7 Stiff to hard, moist, orange-brown, mottled SLT (ML) 8 8 Residual Soil] At 8.0 ft bgs, trace fine, gray, weathered Gravel. 53 228 10 S-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine- to-medium sand. 54 12 BASALT; very storing (R5), fresh to slightly weathered, moderately to highly fractured, diktytaktic texture and rare plagioclase 14 100 (50/2") 12 BASALT; very storing (R5), fresh to slightly weathered, moderately to highly fractured, diktytaktic texture and rare plagioclase 14 R1 R1 16 From 15 to 24 ft bgs, intact joints are -40° and -60°, undulating, rough; apertures \$0.04 m, ir ion sains coast surfaces and penetrate up to 0.4 in in some joints. R1 R1 18 19 Below 19 ft bgs, vesicular with palagonite coatings. R2 R2	_		4 _	At 4 ft bgs, grades to yellow to	slightly										
6 - 52 - 13 (6-7-6) 7 Stiff to hard, moist, orange-brown, mottled SLT (ML) 50 At 8.0 ft bgs rods rattle. 50 At 8.0 ft bgs rods rattle. 9 - Gravel. 53 - 50 At 8.0 ft bgs rods rattle. 228 10 S-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine- to-medium sand. - 54 50 At 12.0 ft bgs, switch to rock coring. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. [Columbia River Basalt] R1 R1 R1 223 15 - From 12 to 24 ft bgs, intact joints are -40° in 0.4 in m some joints. R1 R1 PIT est 29,340 psi 18 - - - - - R2 - - 218 20 - - - - - - -	-233		5 —				╽┯┝		-				_		
6 7 Stiff to hard, moist, orange-brown, mottled SILT (ML) 8	-		-				Y	S2						13	(6-7-6)
7 Stift to hard, moist, orange-brown, mottled slit. (ML) 8 [Residual Soil] At 8.0 ft bgs, trace fine, gray, weathered Gravel. 9 2 228 10 5-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Slit, trace fine-to-medium sand. 10 5-4 is very storage (R5), fresh to slightly weathered moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. 10 [Columbia River Baslt] 17 Below 17 ft bgs, strong, fresh to highly weathered to 0.4 in in some joints. 17 Below 19 ft bgs, vesicular with palagonite coatings. 218 20	_		6 —				 ▲ _								
SILI (ML) Sili (ML) 8			7 —	Stiff to hard, moist, orange-br	own, mottled										
8 Iterstools John At 8.0 ft bgs, trace fine, gray, weathered Gravel. 53 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 53 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 53 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 54 50 At 8.0 ft bgs, trace fine, gray, meathered Gravel. 54 100 (50/2") 11 trace orange-brown mottled Silt, trace fine- to-medium sand. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, diktytaxitic texture and rare plagioclase and ~60°, undulating, rough; apertures \$0.04 in: irron stains coat surfaces and penetrate up to 0.4 in meanse joints. R1 R1 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2 R2 18 19 Below 19 ft bgs, vesicular with palagonite coatings. R2 R2	-		-	SILI (ML) [Residual Soil]			 ▼⊢		-						
9 Gravel. Gravel. Gravel. Gravel. 228 10 S-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine-to-medium sand. 100 (50/2") 11 trace orange-brown mottled Silt, trace fine-to-medium sand. 100 (50/2") 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. R1 R1 223 15 Clolumbia River Basalt] From 12 to 24 ft bgs, intact joints are ~40° and ~60°, indulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. R1 R1 18 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2 R2 218 20 21 R1 R2	_		8 —	At 8.0 ft bgs, trace fine, gray, w	reathered		▲L	\$3			•			50	At 8.0 ft bgs rods
-228 10 5-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine- to-medium sand. 100 (50/2") 11 trace orange-brown mottled Silt, trace fine- to-medium sand. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. Image: Columbia River Basalt] Image: R1 Ima			9 —	Gravel.											rattie. (6-50/6")
228 10 S-4 is very dense, gray, ROCK CHIPS; with trace orange-brown mottled Silt, trace fine-to-medium sand. 11	-		-												(0 30/0 /
11 trace orange-brown mottled Silt, trace fine-to-medium sand. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase At 12.0 ft bgs, switch to rock coring. 13 medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase Image: texture and rare plagioclase Image: texture and rare plagioclase 14 phenocrysts up to 0.2 in. [Columbia River Basalt] Image: texture and ~are plagioclase Image: texture and ~are plagioclase 223 15 From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures ≤0.04 in in some joints. Image: texture and rare plagonite Image: texture and rare plagonite 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. Image: texture and rare plagonite Image: texture and rare plagonite 18 Image: texture and rare plagonite Image: texture and rare plagonite Image: texture and rare plagonite 218 20 Image: texture and rare plagonite Image: texture and rare plagonite Image: texture and rare plagonite 214 214 214 Image: texture and rare plagonite Image: texture	- 228		10 -	S-4 is very dense, gray, ROCK (CHIPS; with		┇┻╞	S4						100	(50/2")
11 to-medium sand. 12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. At 12.0 ft bgs, switch to rock coring. 14 phenocrysts up to 0.2 in. Image: Columbia River Basalt] R1 223 IS From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. R1 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2 218 20 R2			-	trace orange-brown mottled S	Silt, trace fine-		1								
12 BASALT; very strong (R5), fresh to slightly weathered, moderately to highly fractured, medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. [Columbia River Basalt] At 12.0 ft bgs, switch to rock coring. PLT est 30,889 psi UCS 16,746 psi PLT est 22,741 psi PLT est 22,741 psi PLT est 29,340 psi -223 15 From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. R1 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2	-			to-medium sand.											
- weathered, moderately to highly fractured, switch to rock 13 - medium gray; fine-grained ground mass with diktytaxitic texture and rare plagioclase 14 - phenocrysts up to 0.2 in. [Columbia River Basalt] - 223 15 - From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. PLT est 29,340 psi 17 - Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2			12 —	BASALT; very strong (R5), fresl	h to slightly		∄∎ ∎ ⊢				<u> </u>				At 12.0 ft bgs,
13 Interforming ar, intergrammed ground mass with diktytaxitic texture and rare plagioclase phenocrysts up to 0.2 in. [Columbia River Basalt] PLT est 30,889 psi UCS 16,746 psi PLT est 22,741 psi and ~60°, undulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. PLT est 22,741 psi PLT est 29,340 psi 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R1 18 - - 19 Below 19 ft bgs, vesicular with palagonite coatings. R2	_		-	weathered, moderately to hig	hly fractured,										switch to rock
14 → phenocrysts up to 0.2 in. [Columbia River Basalt] [Columbia River Basalt] 15 From 12 to 24 ft bgs, intact joints are ~40° 16 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. 18 19 2218 20 218 20 218 20	_		13 -	diktytaxitic texture and rare n	lagioclase										CORING.
-223 15 - [Columbia River Basalt] R1 15 - From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures ≤0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. R1 PLT est 22,741 psi 16 - 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. R2 18 - 19 Below 19 ft bgs, vesicular with palagonite coatings. R2			14 —	phenocrysts up to 0.2 in.	lagioclase		ľ								UCS 16.746 psi
223 15 From 12 to 24 ft bgs, intact joints are ~40° and ~60°, undulating, rough; apertures \$0.04 in.; iron stains coat surfaces and penetrate up to 0.4 in in some joints. PLT est 29,340 psi 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. PLT est 29,340 psi 18 Image: strong stron	-		-	[Columbia River Basalt]			1	R1							PLT est 22,741 psi
16 16 Include all discrete solution and penetrate up to 0.4 in in some joints. Include all discrete solution and penetrate up to 0.4 in in some joints. 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. Include all discrete solution and penetrate up to 0.4 in in some joints. 18 Include all discrete solution and penetrate up to 0.4 in in some joints. Include all discrete solution and penetrate up to 0.4 in in some joints. 18 Include all discrete solution and penetrate solution and penetrate up to 0.4 in in some joints. Include all discrete solution and penetrate up to 0.4 in in some joints. 18 Include all discrete solution and penetrate up to 0.4 in in some joints. Include all discrete solution and penetrate up to 0.4 in in some joints. 18 Include all discrete solution and penetrate up to 0.4 in in solution and penetrate up to 0.	_ 223		15 -	From 12 to 24 ft bgs, intact join	ts are ~40°										
17 to 0.4 in in some joints. 17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. 18 Below 19 ft bgs, vesicular with palagonite coatings. 218 20 218 20			16 —	in.; iron stains coat surfaces an	d penetrate up		Į								PLT est 29,340 psi
17 Below 17 ft bgs, strong, fresh to highly weathered, highly to intensely fractured. 18	-		-	to 0.4 in in some joints.			Ľ								
18 18 19 Below 19 ft bgs, vesicular with palagonite coatings.	_		1/ -	Below 17 ft bgs, strong, fresh to	o highly										
- 19 - Below 19 ft bgs, vesicular with palagonite coatings. R2			18 —		ractureu.										
19 Below 19 ft bgs, vesicular with palagonite coatings. R2	-		-			ШШ	ļ.								
$\begin{array}{c} -218 \\ -21 \\ -21 \\ -21 \end{array}$	_		19 —	Below 19 ft bgs, vesicular with	palagonite		Ľ	R2							
	-218		20 —	coatings.				112							
	-		-				İ.								
			21 —												
	L		22 —	From 24 5 to 26 ft has become	moderately				-						
strong to strong, moderately weathered,	-		-	strong to strong, moderately we	eathered,		Į								
23 intensely fractured, slightly vesicular; joints			23 —	intensely fractured, slightly ves	icular; joints ating_rough		╢╻║	R3							
iron-oxide stain penetrating up to 0.08 in.			24 —	iron-oxide stain penetrating up	to 0.08 in.										
	-						╢╢┝								
			25 —				╵╸┛┤╴			8					
Boring W/TD 10 P 02		M	cMI	LEN					4	•		Por	ng \ \ /Tr	0 1 0	_B_02
IACORS			Δ	IRS								BOL	IIG VVIF	_1.0	-D-UZ
ASSOCIATES Sheet 1 of 2		AS	SSOC	IATES									Sheet 2	1 of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		D	ec 11 2018 Client C	DM Smith				Logg	ged K Ell	iott, A Have	ekost	Checked	K Ellio	tt
Drilling N	leth	od/	HQ Wireline/CME 850 Track	Drilling V	Vestern S	tates	Soil Cor	nservatio	on. Inc.	Total [Depth 4	0.0 ft.		
Rig Type			Mounted	Contractor		T	140 lb	/ 20 :	/	of Bor Grour	ehole d Surface	220.0.4		
Hole Diar	nete	er 5.0	ju in.	Hammer Weight/D	rop (ib/in.)/	Iype	140 lb	/ 30 in j	/ Automa	Elevat	ion/Datum	238.0 π.		
Location			Sherwood, OR	Coordinates 4	5.365850	-122	.807330)		Hamn (%)	her Elliciend	.у		
~	ĵ.					0				5 (9)				
Ľ,	el (1	ft.)			. <u>.</u>	ζ Δ	No.	ti or		Recovery (%)	RQD (%)	ē	Remarks
tior	Lev	th (Material Descript	tion	aph	le	ple	na ma	₽en	Percent Fines	s (< 0.075 m)	ows/π) m)	Valı	and
eva	ter	Dep			ۍ ا	ami	àam	lig B		Percent Wa	ater Content	,	z	Tests
	Š					S	0,	_	20	Plastic Limit	60	80 10	00	
_		_	BASALT, continued, medium s	trong to strong	g,	Π			: :					
<u> </u>		26 —	moderately weathered, inten	sely fractured,			R4							
-		-	slightly vesicular.											PLI est 9,309 psi
_		27 —				i i 🗆								
<u> </u>		28 —	-											
-		-	-				R5							
_		29 —												
208		30 —	-			-		-						
-		-	-											
_		31 —					R6							
L		32 —	Polow 22.0 ft has placialass	nhonoorusto		!!_								
-			and glomerocrysts up to 0.3 in	ches become										
<u> </u>		33 —	more abundant.											
<u> </u>		34 —	-				R7							
-		-	-											
203		35 —												
_		36 -				!! _								
-		-	BASALT breccia, weak, moder	ately			R8							
		37 —	dark grey, fragmented texture	e with healed		i i 🗆								
_		38 —	fragments, trace vesicles.											
-		-	At 37.0 ft bgs, 4 inch clay layer	r.			R9							
_		39 —												
- 198		40 —				_								
-		-	-											Borehole
_		41 -												completed at
		42 —	-											40ft. below
-		-	-											(bgs).
—		43 -												
<u> </u>		44 —	-											
-		-	-											
		45 —												
<u> </u>		46 —	-											
+		-	-											
_		47 —												
<u> </u>		48 —	1											
F		-												
F		49 -												
	$\left - \right $	50 —							<u> </u>			<u> </u>		
											_			
	IV										Bori	ng WTP	2_1.0	-В-02
		AUL SSOC	IATES									Sheet 2	2 of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		F	eb 07 2019	^{Client} (DM Smith				Lc B\	ogged /	A Havekos	st	Checked By	K Ellio	rtt
Drilling N	1eth	od/	HQ Wireline/CME	850 Track	Drilling	Western	State	s Soil Co	nserva	tion,	Inc.	Total Depth	20.0 ft.		
Rig Type	note	r 5.0	Mounted	1	Contractor Hammer Weight	/Dron (lb/in)	/Type					of Borehole Ground Surface	244 0 #		
	nete	. 5.0				/ DIOP (10/111.)	, iypc					Elevation/Datur Hammer Efficier	n 244.0 II.		
Location			Sherwood, OF	8	Coordinates	45.36485	0 -12	2.80685	2	-		(%)	icy		
£	ft.)	_					٩				Recov	/erv (%)	ROD (%)		
L) L	/el ((÷				j	Typ	2°			A Penetration	n Resistance N (t	olows/ft)	ne	Remarks
atio	. Le	pth	Mate	erial Descrip	tion	rapl	ple	ple	ack		Percer	nt Fines (< 0.075 i	mm)	Val	and
leva	ater	Del				Ū	am	San			● Pero	cent Water Conter	nt mit	z	Tests
ш	Š						0,			0	20	40 60	80 10	90	
_		-	Moist, red-browr	n, ORGANIC S	SILT (OL) with	ו									At 1 ft bgs. rod
<u> </u>		1 —	moss grading to I	Residual Soil			Ŧ								chatter then
-	¥	-	LIOP SOIL/Residua	ii Solij Vervistrong	slightly										consistent drilling
		2 -	weathered to fre	sh, intensely	to highly		1								up to 5 it bgs.
-		3 —	fractured, gray; s	cattered pla	gioclase		Ú								
-		-	phenocrysts up t	o 0.01 inche	s in length.										
_		4 —	[Columbia River I	Basalt]											
- 239		5 —	From 5 to 7 ft ba	s intenselv fr	actured zone		Ĭ∎ ∎⊦		-						
-		-		o, interioory in			Ļ	5.64							
_		6 —						RCI							
<u> </u>		7 —	From 7 to 10 ft b	qs, becomes	very to									1	
-		-	extremely strong	, fresh, model	rately fractured	ł.	l								
_		8 —	undulating, rough	h, iron-oxide s	tained; and,		Ĺ								
<u> </u>		9 —	~75°; undulating,	, rough, iron-o	xide stained.										UCS 18,552 psi
-		-					İ.	RC2							
234		10 -	From 10 to17 ft b	bgs, becomes	highly		1								
<u> </u>		11 -	fractured.				Ĩ								
-		-					I								
_		12 —							「目						
-		13 —													
-		-					Ī								
_		14 —						PC3							
- 229		15 —						NC3							
-		-													
_		16 —					1								
		17 —	Erom 17 to 20 ft	has strong a	liabtly to									l	
-		-	moderately weat	hered, intense	ely fractured,										UCS 34.089 psi
_		18 —	gray; vesicular.					RC4							
L		19 —						NC4							
- -														1	
224		20 —					┑╸ ┛┝							1	Borobolo
<u> </u>		21 -							1						completed at
╞		-												1	20ft. below
		22 —												1	ground surface
L		23 —													(bgs).
-														1	
F		24 —												1	
Ē		25 —							<u> </u>					<u> </u>	
											I			L	
	M		LLEN									Во	ring WTF	°_1.0	-В-03
	J	ACC	JBS										cl	1 - 5 1	
	A	SSOC	IATES										Sheet	1 01 1	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	ate(s) Feb 05 2019 Client CDM Smith						Lo _f By	Logged By A Havekost Checked By K Elliott								
Drilling M Big Type	letho	od/	HQ Wireline/CME	850 Track	Drilling Contractor	Western	State	s Soil Co	nservat	tion, I	Inc.	Total De	pth 1	5.0 ft.		
Hole Diar	nete	r 5.0	0 in.		Hammer Weight/I	Drop (lb/in.)/Type					Ground	Surface	269.0 ft		
Location			Sharwood OF		Coordinator	45 26200	7 17	000420				Hamme	n/Datum r Efficienc	y		
LOCATION			Sherwood, Ok		Coordinates	45.30380	57 - 12	2.80843	,			(%)			1	
÷,	(f t.)	~					e	÷	5		Reco	overy (%)		RQD (%)		
h (f	<u>l</u> e	Ę.				Typ Typ					▲ Penetratio	on Resista	nce, N (blo	ows/ft)	lue	Remarks
atio	r E	pth	Mate	erial Descrip	tion	rap	ble	nple	ack T		Perce	ent Fines (< 0.075 m	n)	S	and
lev	ate	De				G	Sam	San	Info B		●Pe ⊢Plas	rcent Wate stic Limit -	er Content Liquid Lim	it	Z	lests
в	≥									0	20	40	60	80 1	6 0	
_		_	Very wet, brown-	black ORGA	NIC SILT (OL),											
_		1 -	with roots; grade	s to Residua	l Soil.					8						Red-brown drill
-		-	[lop Soil/Residua	I Sol]												water and roots
		2 —														returned.
		3 —					∦ ∎∎⊦						: :			Rod chatter, gray-
-		-	BASALT, very stro	ng, fresh to	slightly											brown water and
		4 —	weathered, mode	erately fract	ured, gray,											basalt chips.
- 264		- 	plagioclase phen	ocrysts up to	0.8 in. long.			RC1								
		5 -	[Columbia River I	Basalt]												
		6 —	From 3 to 10 ft b	gs, highly to ii	ntensely		Шнн-		-						-	
-			undulating and ro	ange from 35 bugh; and, ~7	5°, heavily iron-											
_		/	oxide stained.	0, ,												
		8 —														
-		-						RC2								From 10.5-11 ft
		9 —														bgs, dropped core
- 259		10 —														was recovered in
-		- 10	After 10 ft bgs, jo	oints range fro a smooth iro	m 20° to 30°; n-oxide		İI .									Run 3.
		11 —	stained.	g, oinootii, no					-	8						
-		-	At 10.5 ft bgs, be	comes fresh, liktytaxitic	moderately											From 13.5-15 ft,
_		12 —	, inactarea, gray, a	intytaxilio.												core was stuck in
		13 —						RC3								hammered and
-		-														broke core.
		14 —														
254		15 —														
_																Borehole
		16 —														completed at
		- 17 —														15ft. below
-																ground surface
-		18 —														(bgs).
		-														
-		19 —														
- 249		20 —														
-		-														
		21 —													1	
		22 —														
-		-														
-		23 —														
		- 24 —														
-		- 24														
	\vdash	25 —					++				<u></u>	: :		: :	-	
		cMII	IFN						1	1					L	
	IVI												Bori	ng WTI	1.0_י	-В-04
														Sheet	1 of 1	
	AS	500	ALLS												• =	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	Fe	b 06 20	019 - Feb 07 2019	CDM Smith				Lo By	^{gged} A Have	ekost	Checked By	K Ellio	tt
Drilling M	etho	od/	HQ Wireline/CME 850 Track	Drilling W	estern	States	s Soil Cor	nservat	tion, Inc.	Total Depth	.0 ft.		
Holo Diam	noto	r E 0	Mounted	Contractor	on (lh/in)	/Tuno				Ground Surface	256.0.4		
	lete	5.0	0 III.	Traininer weight/Dir	op (ib/iii.)	l/ iype				Elevation/Datum	250.0 IL	•	
Location			Sherwood, OR	Coordinates 45	.36473	0 -12	2.807530)		(%)	/		
(t:)												
۲. ل	el (f	ft.)			<u>.</u>	, vp	No.		R	Recovery (%)	RQD (%)	e	Remarks
ion	e.	.) EP	Material Descrip	tion	hqt	le T	lel	ckfi mat	▲ Penet	ration Resistance, N (blo	ws/ft)	/alu	and
svat	erl	ept			Gra	a E	l me	Ba		Percent Fines (< 0.075 mn	1)	ź	Tests
Ë	Vat	-				Sa	ŝ	-		Plastic Limit - Liquid Limit	80 1	0	
	-		Maist brown-black OBGANIC	SILT (OL) with	++++++								
-		-	roots: grades to red Residual	Soil.									
_		1 -	[Top Soil/Residual Soil]		/	T							At 1 ft bgs, rod
		2 —	At 1.0 ft bgs, basalt boulder c	or block.									and kick Driller
-			BASALT, strong to very strong	, slightly to		Ĵ≖⊧	S-1					100	hammered 5-inch
		3 —	moderately weathered, highl	y to intensely		╢╸╻┝╴							casing down to
_			fractured, gray; vesicular; joir	nts are 30° and									2.5 ft bgs.
_		4 _	60°. I Columbia Diver Decelti										At 2.5 ft bgs, SPT
- 251		5 —	[Columbia River Basalt]			Ī	RC1		·····				attempted: 50
-		-				Ļ							blows for 2
		6 —	At 6.1 ft bgs, grades to non-ve	sicular.									inches.
				les fina a terma al									At 3 π bgs, driller
_		· _	zone.	ly fractured									coring
		8 —				<u> </u>	PC2						coring.
-		-	From 8.3 to 9.5 ft bgs, intense	ly fractured			RC2						
		9 —	At 9.0 ft bgs, becomes very str	rong, slightly									
-246		10 —	weathered, highly to intensely	fractured.		╢┇┇┝							At ~9.8 ft bgs,
-		- 10	below 10 ft bgs, joints range fr to 50°: apertures ≤0.04 in., uno	om about 30° dulating, iron-		Ī.	BC3						driller loses up to
		11 —	oxide stained.			Ļ	RCS						250 gallons of
-		-	From 11.5 to 11.6 ft bgs, intens	sely fractured									water; blocked
_		12 _	zone.			t I							оп.
		13 —					RC4						
-		-	From 13.4 to 14.4 ft bgs, inten	sely fractured.		Ï.							
		14 —	zone.										
- 		15 —					RC5						
		- 15											Borehole
		16 —											completed at
-		-											15ft. below
		17 —											ground surface
_		18 -											(bgs).
-													
-		19 —											
- 230		20 _											
_		21 —											
-		-											
-		22 —											
		<u>د</u> ع –											
-		24 —											
-		-											
		25 —								· · ·			
	M	cMI	LLEN							Borin	אס \\/דנ	0 1 0	-B-05
		ΔΩΓ	IRS							BUTH	18 44 11	_1.0	-0-05
	ASSOCIATES Sheet 1 of 1												
Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		Fe	eb 04 2019	^{Client} (DM Smith				Lo By	gged	A Havekos	st		Checked By	K Ellio	tt
Drilling M	letho	od/	HQ Wireline/CME	850 Track	Drilling	Western	State	s Soil Co	nserva	tion, In	ic.	Total Dep	oth 1	5.0 ft.		
Rig Type	aata		Mounted		Contractor)ron (lh /in	\/Turne				-	of Boreho Ground S	ole Jurface	262.0.4		
Hole Diar	nete	5.0	u in.		Hammer weight/L	nop (ib/in.)/ Type					Elevation	/Datum	262.0 π.		
Location			Sherwood, OR		Coordinates	45.36447	70 -12	2.80967	0			(%)	Enicienc	-y		
(t.)											(0())				
(Ħ.	el (f	ft.)				<u>.</u>	Υp.	Ňo.			Recov	very (%)		RQD (%)	٩	Remarks
ion	Lev	Ľ) EP	Mate	rial Descrip	tion	hqe	le 1	ole	ckfi		Penetration	n Resistan	ce, N (blo	ows/ft)	/alu	and
evat	ter	Jep		-		5 U	۲ ۲	am	Ba		Percer Percer	cent Water	Content	iii)	ź	Tests
E	Wat	-					S	S	<u> </u>	=	⊢Plasti 20	ic Limit - L 40	iquid Lim 60	it 80 10	0	
		1 -	Wet, orange-brow [Top Soil/Residua	vn ORGANIC I Soil]	SILT (OL).											
		-	Silty gravel- and c	obble-sized	rock fragment											
_		2 —	Residual Soil/Col	lumbia River	Basalt]											At 2.5 ft. rod
		3 —			,											chatter, gravel
-		-														chips returned.
_		4 —	BASALT, strong to	very strong	, slightly		Щ I									At 4 ft bgs, drilling
- 257		5 —	weathered to free	sh, highly fra	ctured, gray;		Ĭ∎∎⊦									smooth, rock,
-		-	vesicular, plagioc	lase phyric; j	oints range	4		D .01								changed bit.
		6 —	with black second	hanar, rougr darv mineral	s: iron-oxide			KC1								
		7 —	stained locally.		5. Holl oxide		<u> </u>		-							
-		-	[Columbia River E	Basalt]												
		8 —	From 6 to 12 ft be	gs, becomes l ured	highly to											
		9 —	Bolow 0 ff brook		opiqular											
-		-	Below 9 It bys, be	ecomes nonv	esicular.			RC2								UCS 23,467 psi
— 252		10 —														
		 11 —														
-							İ.									
		12 —											· · ·			
		_ 13 —		.,												
-			iron-stained vertic	ecomes inter cal and subve	ertical joints.			RC3								
		14 —														
		- 15 —														
-																Borehole
		16 —											:			completed at
_		- 17 —														15ft. below
-																ground surface
		18 —														(Dgs).
		- 19 —														
-																
- 242		20 —														
		- 21 —														
-																
		22 —														
		- 22 —														
-		2J -														
-		24 —														
_		- 25 —	1													
		2.5														
	M	CMI	LLEN										Bori	ng WTF	°_1.0	-В-06
	J	ACC	JBS											-	-	
	AS	SOC	IATES											Sheet 2	1 of 1	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		D	ec 10 2018	Client	CDM Smith				Log Bv	ged K Ellio	ott, A Havekost	Checked Bv	K Ellic	ott
Drilling M	leth	od/	HQ Wireline/CME	850 Track	Drilling	Western	States	s Soil Co	nservati	ion, Inc.	Total Depth	20.0 ft.		
Hole Diar	noto	r 50	Nounte No in	a	Hammer Weight	/Drop (lb/ip)	/Tune				Ground Surface	252.0.#		
	nete	. 5.0	,			/ DTOP (10/111.)	утурс				Elevation/Datun	n 233.0 II.		
Location			Sherwood, O	R	Coordinates	45.36512	0 -12	2.80951	0	1	(%)	icy	1	_
<u>.</u>	ť;						a		_		Recovery (%)			
u (£	/el (('				jc	Τ _V p	ñ	ii ii	▲ Pene	etration Resistance N (k	lows/ft)	ne	Remarks
tio	Le	Ę	Mat	erial Descrip	otion	apł	be	ple	ack		Percent Fines (< 0.075 r	nm)	Val	and
leva	ater	Del				Ū	am	Sam	la e		Percent Water Conter Plastic Limit Liquid Li	nt mit	z	Tests
Ξ	Š						S	•,	-	0 20	40 60	80 10	0	
_		_	Moist, dark brov	vn, SILT (ML)	; organic rich									
_		1 —	silty soil with sca	attered angu	lar rock									
-		-	fragments.											
_		2 —	[IOP SOIT RESIDUA				╢╻╻┝		_					At 2 5 ft høs
		3 —	BASALT, very we	ak, highly we	eathered,									switch to rock
-		-	intensely fractur	ed, with mo	derately stror	ng,								coring.
_		4 —	with iron-stained	d ioint surfac	cular core stor									
- 248		5 —	[Columbia River	Basalt]			Į.	R1						
-		-	From 2.5 to 12 f	t bgs, joint set	ts at $\sim 30^\circ$ and									
		6 —	stained.	iuuiaung, iuug	gii, iioii-oxide									
L		7 —	-				Ì							
-		-	From 7.5 to 12.5	5 ft bgs, becor	nes very strong	,			-					
_		8 —	(R5), slightly to I	moderately we	eathered, highly		I							At 8.0 ft bgs, drill
		9 —	aphanitic texture	turea, gray; fir Ə.	ne-grained									grav
-		-												UCS 18,990 psi
- 243		10 -						R2		·····				
		11 —		h	4		İ							
-			70°, undulating,	rough, iron-ox	ts at ~ 40° and kide stained;		Í							
		12 —	high angle joints	heavily stain	ed.									
		13 —	From 12.5 to 20) ft bgs becom	nes fresh to									
-			Signity weather	eu, mginy nac	luieu.		i,							PLT est 22,409 psi
		14 —	-											PLT est 27,771 psi
238		- 15	-				I	R3						
-														LICE 10 466 mai
		16 —												UCS 19,466 psi
		17 —												PLT est 22,822 psi
-									-					
		18 —												
		19 —	1					R4						
-														
- 233		20 —					╢┛┛┝							
		- 21 —												Borehole
-									1					20ft, below
		22 —	1						1					ground surface
Ľ I		- 	1											(bgs).
		23 -							1					
		24 —	-						1					
		- 25 —	1											
		25												
	M		LLEN								Bor	ring WTF	P_1.0)-В-07
	J	ACC	JBS									_	-	
	AS	SSOC	IATES									Sheet 2	L of 1	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		Fe	eb 05 2019	^{Client} C	DM Smith				L	_ogged	A Havekos	st	Checked By	K Ellic	ott
Drilling N	leth	od/	HQ Wireline/CME	850 Track	Drilling	Western	State	s Soil Co	nserv	ation.	Inc.	Total Depth	30.0 ft.		
Rig Type			Mounted	d	Contractor							of Borehole Ground Surfac	e		
Hole Diar	nete	er 5.0	0 in.		Hammer Weight/	Drop (lb/in.))/Type					Elevation/Datu	im 276.0 ft.	•	
Location			Sherwood, OR	र	Coordinates	45.36423	5 -12	2.80927	1			Hammer Effici (%)	ency		
_	t.)											(, -)			
Ĵ.	i (fi	í;				U	ype	٩.	_ .	<u>e 🗆</u>	Recov	/ery (%)	RQD (%)	a	Bomarks
ou	eve	h (f	Mate	erial Descrint	tion	phi	еŢ	le P	kfil	– lat	▲ Penetratio	n Resistance, N	(blows/ft)	alu	and
vati	er L	ept	Whate			Gra	du	du	Bac	<u>5</u> –	Percer	nt Fines (< 0.075	mm)	> z	Tests
Ele	Vat						Sa	ŝ	·	Ē	⊢Plast	tic Limit - Liquid	_imit		
	>		Vanumaist blad						+	ľ	20	40 60 I I	80 1 I	Ψ0	
_		-	Ton Soil/Residua	K URGAINIC S al Soill	ili (Ul).		Ī		10	24					
_		1 -	BASALT. strong to	o verv strong	. fresh to									-	At ~ 1 ft bgs,
		· 2 —	moderately weat	thered, highly	y to intensely										drilling water and
_		-	fractured, gray; v	esicular with	, vesicles up t	o									grav: rod chatter
		3 —	1 inch elongated	horizontally;	plagioclase										At \sim 2 ft bgs.
_			phyric.				1								smooth drilling.
		4 _	[Columbia River I	Basalt]											
- 271		5 —	From 5 to 14 ft h	as ininterana	e from about		Ĭ _{∎∎} ⊢		-					-	
_		_	30° to 40°; undul	lating, rough.	e nom about		L .								
		6 —					4	RC1							Losing water,
_							t l								2-250 gallon
_		· _					Ï								tanks.
		8 —					1								
_		-	From 8.5 to 9 ft b	bgs, vertical jo	int, iron-oxide										
_		9 —	stained.				1	PC2						-	
266		10 —						NCZ					·····		
_		-					Ĩ								
		11 —													
_		10 -					╇┫┫								
_		12 _	At 12.2 ft bgs, gr	ades to less v	esicular		İ.								
		13 —													
_		-					Î								
	T	14 —	Below 14 ft bgs,	joints range fr	om 40° to 75°;		Í	PC2							
<u> </u>		15 —	apertures <0.04 rough iron-oxide	to 0.08 in.; und stained	dulating, very			RC3							UCS 11,928 psi
_			, eagin, nen enae				I								
		16 —													
		17 _					Ľ								
_		1/ -													
		18 —												-	
L		-					Ĭ								
_		19 —					L .	RC4							
- 256		20 —						1104							
_							ti l								
		21 —													
- -							╢╻								
_			Bala::: 00 5 # 1		fread to all all all	, <u> </u>									
L		23 —	weathered, high	s, very strong, ly fractured.	iresri to slightlj										
-		-		-				RC5							
_		24 —												1	
		25 —					ų∎∎								
											I				
	MCMILLEN											Bo	ring WTF	2_1.C	-В-08
	J	ACC	JBS										-		
	AS	SSOC	ATES										Sheet	1 of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		Fe	eb 05 2019	^{Client} C	DM Smith				Log Bv	ged	A Hav	ekost			Checked Bv	K Ellio	tt
Drilling N	1eth	/bc	HQ Wireline/CME	850 Track	Drilling	Western	State	s Soil Cor	nservati	ion,	Inc.	Tota	al Depth	30.	.0 ft.		
Hole Dia	mete	r 5.0	0 in.		Hammer Weight	/Drop (lb/in.)	/Type					Gro	und Surf	ace	276.0 ft		
Location			Sherwood OR	1	Coordinates	45,36423	5 -12	2.809271	1			Har	nmer Effi	atum iciency			
Location	-				coordinates	45.50425		2.005271				(%)					
(J	۱. (ft	E.				ы	/pe	<u>.</u>	_ 5		R	Recovery	(%)		RQD (%)		Dementer
ion	eve	h (f	Mate	erial Descrip	tion	phic	e T	le N	kfill nati		▲ Penet	ration Re	sistance,	N (blow	vs/ft)	alue	and
svat	er L	bept				Gra	d m	amp	Bac		■ P	ercent Fi Percent	nes (< 0.0 Water Co	075 mm)	2 Z	Tests
Ē	Wat						Sa	Ň	<u> </u>	6	日 20	Plastic Li 40	mit - Liqui 60	id Limit ٤	30 1	0 0	
		_	BASALT, continue	d, very stror	ng, fresh to										<u> </u>		
<u> </u>		26 —	slightly weathere	d, highly fra	ctured, gray.					•						-	
										-							
-		27 -					l			•							
<u> </u>		28 —						RC6									
		29 —														-	
- 246		-															
- 240		30 -															Borehole
		31 —															completed at
–		32 —														-	30ft. below
-		-															(bgs).
-		33 _															
		34 —															
- 241		35 —															
<u> </u>		- 26 -															
-		50 -															
_		37 —															
-		38 —														-	
		- 39 —															
-		-															
- 236		40 —															
		41 —															
		42 —														-	
_		-															
-		43 _															
<u> </u>		44 —															
- 231		45 —															
_		-															
F		40 -															
_		47 —															
 		48 —															
È.		- 49 —															
-		-															
		50 -															
ľ	Boring WTP_1.0-B-08 JACOBS ASSOCIATES Sheet 2 of 2																

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		F	eb 06 2019	DM Smith				Log	^{ged} A Haveko	ost	Checked By	K Ellio	tt
Drilling M	etho	od/ M	ud Rotary and HQ Wireline/CME	Drilling N	/estern s	States	Soil Co	nservati	on, Inc.	Total Depth	1.5 ft.		
Hole Dian	nete	r 5.0	0 in.	Hammer Weight/Dr	op (lb/in.)	/Type	140 ll	o / 30 in	/ Automatic	Ground Surface	272.0 ft.		
Location			Sharwood OP	Coordinates 4	5 26/2/	9 12	90970	0	,	Elevation/Datum Hammer Efficienc	у		
LOCATION	_				5.30434	0-122	2.00070	•		(%)			
ft.)	Ë	÷				be	ė	5	Reco	very (%)	RQD (%)		
) uo	evel	۲ ۲	Matarial Deserio	Han	ohic	e T	le N	hati	▲ Penetratic	on Resistance, N (blo	ows/ft)	alue	Remarks
vati	er L	eptl	Material Descrip	lion	Gral	đ	du	Bac	Perce	ent Fines (< 0.075 m rcent Water Content	m)	N K	Tests
Ele	Wat	Δ				Sai	Sa	Ē	⊢Plas	tic Limit - Liquid Lim	it 80 1(n	
	-		Moist. rocky dark-brown ORG	ANIC SILT (OL)									
_		1 —	grading to Residual Soil.	(-)									At 1 ft bgs, rod
-		- -	[Top Soil/Residual Soil]										chatter; drill
		2 —	From 1 to 2.5 ft bgs, possible	boulder									water return is
		- -	encountered; SPI attempted	at 2.5 ft (50								100	brown.
_		3 _	DIOWS IOF 1 INJ.										At 2.5 ft bgs, lost
		4 —	-										mud; plugged
-		-	-										hole with
267		5 -	BASALT, very strong, fresh to	slightly		╢╻╻┝╴							drilled through
L		6 —	weathered, highly fractured,	gray; fin-			RC1						circulation
_		-	grained, diktytaxitic texture, v	esicular up to			-						restored.
_		7 —	1-1/4 in. long (many are elon	gated									At 5 ft bgs, drill
		o	nhenocrysts up to 0.8 in long	, incluse		ļ							water returned is
_		o -	[Columbia River Basalt]	•									gray-brown.
		9 —	From 5 to 11 ft bgs, +/- 30° joir	nts; undulating,									water returned is
-		-	From 10 to 11 ft bas. near vert	ical ioint:			RC2						gray.
_ 202		10 -	undulating, very rough; iron-ox	ide stained.									0 1
		11 -	From 8 to 11 ft bgs, grades to a to non-vesicular.	smaller vesicles		Ţ							
-		-	From ~9.25 to 9.4 ft bgs, inten	sely fractured									
_		12 —	zone. Below 11 ft bas_ioints ~60°. pl	anar to slightly									
		13 —	undulating with black seconda	y									
_			mineralization; and, joints ~30 undulating: iron-oxide stained.	; planar to		ļ							
		14 —											
- 257		-				İ.	RC3						
-		- 15	-										
		16 —	-										
-		-	From 16.5 ft bgs, BASALT bec	omes very to									
		1/ -	extremely strong, fresh, highly	to moderately									
- I		18 —	grained groundmass.										
-		-	-			Ī							
		19 —				l	DC4						
252		20 -					RC4						
-			-										
F		21 —	-										
E I		- 				┇╻							
			-										
⊢		23 —	-										
E		-	-				RC5						
–		24 -	-										
	_	25 —				┦┛┛┤							
	M											[
	IVI									Bori	ng WTF	P_1.0	-B-09
	J	AUL	JR9								Sheet '	l of 2	
	AS	500	IATES								Sheet.		

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		F	eb 06 2019	DM Smith		Log Bv	^{ged} A Have	kost	Checked By	K Ellio	tt		
Drilling N	1eth	od/ Mu	ud Rotary and HQ Wireline/CME	Drilling W	/estern S	tates	s Soil Co	nservati	on, Inc.	Total Dept	ີ 31.5 ft .		
Hole Diar	mete	er 5.0	0 in.	Hammer Weight/Dr	op (lb/in.)/	Туре	140 lk	o / 30 in	/ Automatic	Ground Su	rface 272.0 ft.		
Location			Sherwood, OR	Coordinates 4 !	5.364348	3 -122	2.80870	3		Hammer E	fficiency		
	.									(%)			
(H.)	el (fi	ft.)			Ŀ,	ſype	No.	tion	Re	covery (%)	RQD (%)	ē	Remarks
atior	Lev	oth (Material Descript	tion	raph	ple 7	alqr	ackfi	▲ Penetra ■ Per	cent Fines (< 0	e, Ν (blows/π) .075 mm)	Valı	and
Eleva	ater	Del			Ū	Sam	San	B	●F ⊢PI	Percent Water C astic Limit - Liq	Content uid Limit	z	Tests
	3		DACALT					() 20	40 60) 80 10	0	
		-	fresh, highly to moderately fr	tremely strong actured, gray;	, <u> </u>								UCS 19 240 pci
-		26 -	sparsely phyric with fine-grain	ned									0C3 18,249 psi
		27 —	groundmass. [Columbia River Basalt]			И							UCS 27,829 psi
<u> </u>		28 —											
<u> </u>		- 29 —											
-							RC6						
		30 —											UCS 22,316 psi
		31 —											
–		32 —											Borehole
													completed at
-		- 22											31.5ft. below ground surface
 -		34 —											(bgs).
- 237		35 —											
–		- 36											
		-											
-		37											
 -		38 —											
		39 —											
- 232		40 —											
-		-											
-		41 -											
<u> </u>		42 —											
-		43 —											
È.		44 —											
-													
- 22/		45 -											
F		46 —											
-		47 —											
<u> </u>		- 48 -	-										
-													
-		49 —											
		50 —									:::		
	M	cMI	LLEN		I						Boring WTP	1.0	-B-09
		ACC ssoc	DBS IATES								Sheet 2	of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		D	ec 07 2018	^{Client} C	DM Smith				Log By	ged	F Sarioss	eri, J Fis	ssel	Chec By	ked	K Ellio	tt
Drilling N Rig Type	letho	od/	HQ Wireline/CME Mounted	850 Track	Drilling V	/estern	State	s Soil Co	nservati	on, Ir	nc.	Total D	epth hole	40.0 ft.			
Hole Diar	nete	r 5.0	0 in.	a	Hammer Weight/D	op (lb/in.))/Type					Ground	d Surfac	ຼ 265.	0 ft.		
Location			Sherwood, OR	2	Coordinates 4	5.36453	0 -12	2.80859	0			Hamm	er Efficie	ency			
	<u>.</u>											(%)					
(L	el (fi	Ĵ.				. <u>.</u>	ype	Š.	= io		Reco	overy (%)		RQD	(%)	e	Remarks
ion	Le K	EP (Mate	erial Descript	tion	ihqe	le T	ple I	ckfi mat		A Penetrati	on Resist	ance, N	(blows/ft)		/alu	and
evat	ter	Dep				5 U	dme	aml	Ba		● Perci	rcent Wa	ter Conte	ent		ź	Tests
Ē	Wa	-					Š	S		2	⊢Pla: 20	stic Limit 40	- Liquid L 60	imit 80	10	0	
_		_	Moist, brown SILT	T (ML); some	e cobbles.												
		1 —	[Missoula Flood I	Deposits]													
_		-	BASALT														
_		2 —					ļ										
		3 —															
_		-					1										
_		4 —	From 5 to 12 5 ft	høs verv str	ong slightly												
- 260		5 —	weathered, highly	y fractured,	gray; sparsely		Ï, o o F		-								
_		-	vesicular, vesicula	ar, plagioclas	e phyric with												
_		6 —	glomerocrysts up	o to 0.5 in.; jo	pints range from	n		R1									
		7 —	30° to 50°, undul	lating, rough	i, Iron-oxide												
_		-	Columbia River E	Basalt]	ю III.		Ī										
_		8 _															
		9 —															
- 255		-						D 2									
- 200		10 -	At 11 ft bgs, verti	ical joint, undu d_anerture <0	llating, rough, 0.04 in		1	ΠZ									
		11 —	From 11.0-37.5 ft	t bgs, vesicles	absent.		Ļ										
		- 12 —		-													
_		12 -	Below 12.5 ft be	comes moder	ately to highly				-								
		13 —	fractured; phenod	crysts rare bel	low 13 ft.		ļ										
_		14 —	is planar to undul	lating, iron-ox	about every 3 π ide stained;												
-			another set at ±2	25°, undulating	, rough, and												
250		15 —		u.				R3									
_		16 —					ļ										PLT est 27,004 psi
_		-															UCS 31.235 psi
_		1/ —					▋▋▋										, -
		18 —															
–		- 10 —					Į										
-		- 11															
245		20 —						R4									
_		21 —															
-							ų I										
_		22 —															
		23 —															
-		-															PIT est 22 968 nsi
_		24 —															
	\square	25 —					╙╨┛┤										
		cMII	IFN						1	<u> </u>			_	• ••			
	IVI	υνιί Ληγ											Во	ring W	/TP	_1.0	-B-10
		SOCI	ATES											She	eet 1	of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		D	ec 07 2018	^{Client} (CDM Smith				Logg By	ed F Sario	sseri, J Fisse	I	Checked By	K Ellic	ott
Drilling N Rig Type	1eth	od/	HQ Wireline/CME Mounter	850 Track	Drilling Contractor	Western S	States	Soil Co	nservatio	on, Inc.	Total Dept of Boreho	th 40	.0 ft.		
Hole Diar	nete	er 5.()0 in.	a	Hammer Weigh	t/Drop (lb/in.),	/Type				Ground Su	urface	265.0 ft.		
Location			Sherwood OF	,	Coordinates	15 36/53	0 -122	808200	.		Hammer I	Efficiency	1		
Location	_			`	coordinates	43.30433		2.808330	, 		(%)				
Ĵ.	Ę.	-					be	·	E	Re	ecovery (%)		RQD (%)		
L) L	<u>vel</u>	Ë				hic	Σ	Ž	atio	▲ Penetra	ation Resistanc	e, N (blov	ws/ft)	lue	Remarks
atic	r Le	pth	Mate	erial Descrip	tion	ìrap	ble	ldu	act act	■ Pe	rcent Fines (<	0.075 mm	1)	l Za	and
Elev	/ate	ă					San	Saı	L E	● F ⊢ P	Percent Water lastic Limit - Li	Content quid Limit		2	lests
	>				<u> </u>		┢┓┢			20	40 6	50 	80 10	00	
-		-	BASALI, continue	d, very stror	ng, fresh to										
		26 -	fractured. grav.	u, mgmy to	inoueratery			R5							PLT est 25,925 psi
–		27 -													UCS 17,446 psi
-			-						┤┋╎						
-		28 -	-												
L		29 -	-												
-		- 25	-												
- 235		30 -						R6							
_		31 -	-												
-		-	-												
-		32 —	-												
_		22 -	-												
-			-												
-	▼	34 -	-												
230	T	25 -	-					R7							
- 200			-					117							
<u> </u>		36 -	-												
F		57	At 27 5 ft grada	to highly from	turadi										
<u> </u>		38 -	vesicular.	s to myrny nac	luieu,										
								R8							
F		- 39	-												
- 225		40 -				10 H I I I II									
È.		41 -													Borehole
\vdash		41 -	-												40ft below
-		42 -	-												ground surface
Ľ.		- ۱۰ –										ļ			(bgs).
F		45 -	-												
 		44 -	-												
220		45 -													
-			-												
 		46 -	-												
L		47 -										ļ			
F		-	-												
<u> -</u>		48 -	-												
Ē.		10 -	1												
-		-	-												
	-	50 -					++				: :	<u>: :</u>	: :		
		сMI	I I FN			1	1		1			Denin		1 1 0	
											л-8-10				
	A	SSOC	IATES										Sheet 2	2 of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		Fe	client C	DM Smith				Lo By	^{gged} /	A Havekos	st	Checked By	K Ellic	ott
Drilling M Rig Type	ethoo	d/ Mi	Id Rotary and HQ Wireline/CME 850 Track Mounted	Drilling Contractor	Western	States	Soil Co	nserva	tion, In	с.	Total Depth of Borehole	35.0 ft.		
Hole Dian	neter	5.0	0 in.	Hammer Weight/[Drop (lb/in	.)/Type	140 I	b / 30 iı	n / Auto	omatic	Elevation/Da	ace 263.0 f	t.	
Location			Sherwood, OR	Coordinates 4	45.36508	89 -122	2.80895	6	1		Hammer Effi (%)	ciency		1
(;)	Ĵ.	-				e	ė	5		Recov	very (%)	RQD (%)	,	
uo (t	evel	Ľ,	Motorial Descript	L'an	ohic	e Tyl	e N	kfill		Penetration	n Resistance,	N (blows/ft)	alue	Remarks
vati	erL	eptl	Wateriai Descript		Gral	n b	dme	Bac		Percer	nt Fines (< 0.0 cent Water Cor	75 mm) ntent	Ž	Tests
Ele	Wat					Sa	Š	2	φ	⊢Plast 20	ic Limit - Liquio 40 60	d Limit 80	100	
_		_	Moist, dark brown, organic SI	LT (OL) with										
-		1 —	scattered angular rock fragme	ents, grades to	>									
-		- 2 —	Top Soil/Residual Soil											
-		Z _	At 2.5 ft has SDT attempted:	50 blows for 2		╢ϫ╞	S-1						100	At 2.5 ft bgs,
		3 —	in.											driller said
		4 —	Silty gravel- and cobble-sized	rock fragment	ts 🔚									"refusal, in rock."
-			grading to highly weathered E	BASALT.										
- 258		5 _	BASALT, strong, slightly to mo	derately										switched to rock
		6 —	weathered, highly to intensel	y fractured,		Ш.	R1							coring.
		7 —	gray; elongated vesicles up to	0.02 in. long,		╔╢┫		_					_	
-		. –	between 15° and 30°, undula	rysts; joints ting and plana	ır. 🛄 🗐									
_		8 —	rough and iron-oxide stained.											
-		9 —	[Columbia River Basalt]											
- 253	◄	-					R2							
- 233	1				ЩШ									
	1	1 —	From 11 to 12 ft bgs, near verti	ical joint;										
	1	2 -	undulating, very rough, apertu in.: heavy iron-oxide staining.	re 0.04-0.08		<u> </u>								
-	-	-	From 11 to 26 ft bgs, joints up a	to ~30°; 0.04 in : some										
-	1	L3 —	light iron-oxide stained surface	S.										
	1	4 —	At 13.5 ft bgs, becomes slightly with smaller vesicles ~ 0.04 in.	/ weathered								····		
- 248	1						R3							
-		_												
_	1	L6 —	At 16 ft bgs, becomes very stro	ong, fresh to										
-	1	L7 —	slightly weathered, moderately fractured.	to nigniy									-	
_	1		At 16.5 ft bgs, intensely fractur ft. core loss at end of run.	ed zone; ~0.4										
-														UCS 15,053 psi
	1	.9 —					D4							
- 243	2	20 —	At 20 ft has becomes very to a	vtramely			Ν4							
-		-	strong, fresh, highly fractured.	xaemery										
-	4	- 12			ЩШ									
-	2	22 —						┤┋						
F	5	- 23 —												
-							R5							
F	2													
	-2	25 —											-	
	Mr	:MI	LEN		I			1	1		D	Roring \\/T	р 1 с	
	JL		DBS								Б		r_1.(-0-11
	AS	SOCI	ATES									Sheet	1 of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled		Fe	eb 08 2019	DM Smith				Log Bv	^{ged} A Ha	avekos	t		Checked Bv	K Ellio	ott
Drilling M	eth	od/ Mu	Id Rotary and HQ Wireline/CME	Drilling W	estern S	States	Soil Co	nservati	on, Inc.		Total Dep	oth 35	5.0 ft.		
Hole Diar	nete	er 5.0	0 in.	Hammer Weight/Dr	op (lb/in.),	/Type	140 li	o / 30 in	/ Automa	ntic	Ground S	Surface	263.0 ft.		
Location			Sherwood. OR	Coordinates 4 !	5.36508	9 -122	.80895	6			Hammer	Efficienc	ý		
	(.							-			(%)				
(t r.)	el (ft	ft.)			.u	ype	No.	= io		Recov	ery (%)		RQD (%)	e	Remarks
tion	Leve	th (i	Material Descript	ion	aphi	ole T	ple I	ickfi	▲ Pen	Percer	n Resistan	ce, N (blo	ws/ft)	Valu	and
leva	ater	Dep			פֿ	amp	Sam	Ba		Perc Plasti	ent Water	Content	+	ź	Tests
ш	Š					S) 20	Fiasu	40 1	60 1	80 10	0	
-		-	BASALT, continued, very to ex	tremely strong	,										
		26 —	highly fractured, gray, plagioc	lase											
		27 —	phenocrysts.												
-		- 28 -	[Columbia River Basalt] From 25-26 ft bgs, near vertica	l joint; ≤0.04 in.											UCS 27,911 psi
-		- 20	aperture, undulating, partly hea	led with black											
_		29 —	Below 26 ft bgs, joints near 60°	; undulating,			R6								
- 233		30 —	iron-oxide stained.	ts, irregular,		Ī							· · · · · · · · · · · · · · · · · · ·		
_															
-		-													
_		32 —						18							
		33 —													
_		34 —					R7								
-		-													
- 228		35 —													Borehole
		36 —													completed at
_		37 —													35ft. below
-		_													(bgs).
-		38 -													
_		39 —													
- 223		40 —													
_															
_		41 -													
		42 —													
		43 —													
-		44 —						1							
-															
- 218 -		45 —													
		46 —													
_		47 —													
-		-						1							
-		48 —													
<u> </u>		49 —													
								-							
	M	сMII	IFN					1				-			
	TVI 		IRS									Bori	ng WTP	_1.0	-В-11
	AS	SSOCI	ATES										Sheet 2	of 2	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	De	ec 05 20	018 - Dec 06 2018	DM Smith				Log By	^{ged} J Fissel		Checked By	K Ellio	tt
Drilling M	etho)/bc	HQ Wireline/CME 850 Track	Drilling We	estern	States	Soil Co	nservat	ion, Inc.	Total Depth 30).0 ft.		
Hole Dian	nete	r 5.0	0 in.	Hammer Weight/Dro	p (lb/in.)	/Type				Ground Surface	257.0 ft.		
Location			Sharwood OD	Coordinatos A E	26520	0 122	00700	<u> </u>		Elevation/Datum Hammer Efficiency	y		
Location			Sherwood, OR	Coordinates 45	.30538	0-122	.80786	,		(%)			
	(÷	<u>,</u>				e	ċ	5	Recov	very (%)	RQD (%)		
) u	lava	, (ft			hic	Ţ	e Z	fill	▲ Penetratio	n Resistance, N (blo	ws/ft)	lue	Remarks
/atic	er Le	epth	Material Descript	tion	Grap	hple	hpl	3ach	■ Perce	nt Fines (< 0.075 mn	n)	N Va	and
Elev	Vate	ă			0	San	Saı	l f	● Per Plasi	cent Water Content tic Limit - Liquid Limit	t	~	lests
	5								0 20	40 60	80 10	0	Duilla duraine 2.4
-		-	cobbles up to 10 inches	subangular									tanks (250
_		1 _	[Top Soil/Residual Soil]										gallons/ea.).
		2 -	. , , ,										Started with 4
_													1/2" casing,
—		3 —											advanced to 5 ft
													bgs.
_		4											
- 252		5 —	BASAIT yeny strong (BS) sligh	tly weathered		╡╸╻┝─	- S1	-				100	At 5.0 ft bgs. no
-			highly to moderately fracture	d. grav: joint		Ļ,	54						SPT recovery,
_		6 _	sets at 15°, 30°, and 40°, plana	ar, rough, iron-		4	RI						switch to coring.
		7 —	oxide stained, aperture ≤0.04	in.; another		I		-					
-		-	joint set vertical, undulating, r	rough, and iron		1							LICS 21 764 nsi
		8 —	stained, aperture 0.08-0.12 in	., minimal		I							
		9 —	penetration of iron-oxide stall	n into the rock.		L.							PLI est 22,237 psi
-		- -	[Columbia River Basalt]				R2						PLT est 30.339 psi
— 247		10 -							·····	· · · · · · · · · · · · · · · · · · ·			· _: cot co;cos po:
_		11 _				l							
_													
		12 —				1		-					
-		-											
_		13				1							PLT est 16,586 psi
		14 -				Ĺ					·		
-		-					R3						
242 		15 _											
		16 -				Ī.					. <u>.</u>		
-		-				Ľ.							
		17 —											
		18 —				İ.							
_													
<u>⊢</u>		19 —					D 4						
237		20				I	К4						
		20 -				╢╻║							UCS 10 622 pci
┝-		21 -											0C2 13'055 h2i
		<u></u>											
		<u> </u>											
		23 —											
⊢							R5						
		24				Щ							
		25 —			[(])]	Ϋ∎∎⊢							
	N /				I				<u> </u>				
	IV									Boriı	ng WTP	_1.0	-B-12
	J	AUU	IR2								Shoot 1	of 2	
	AS	SOCI	ATES								Sneet	. UI Z	

Project: WWSP_WTP_1.0

Project Location: Sherwood, OR Project Number: 5887.0

Date(s) Drilled	De	ec 05 2	018 - Dec 06 2018	DM Smith	^{ged} J Fisse	el	Checked By	iott					
Drilling N Rig Type	leth),bc	HQ Wireline/CME 850 Track Mounted	Drilling Contractor	estern S	States	Soil Co	nservat	ion, Inc.	Total Depth of Borehole 3	0.0 ft.		
Hole Diar	nete	r 5.0	0 in.	Hammer Weight/Dro	op (lb/in.)	/Type				Ground Surface Elevation/Datum	257.0 ft.		
Location			Sherwood, OR	Coordinates 45	.36538	0 -122	2.80786)		Hammer Efficiend (%)	су		
Elevation (ft.)	Water Level (ft.)	Depth (ft.)	Material Descript	ion	Graphic	Sample Type	Sample No.	Backfill Information	F Penel P P P 20	Recovery (%) tration Resistance, N (bl Percent Fines (< 0.075 m Percent Water Content Plastic Limit - Liquid Lim 40 60	RQD (%) ows/ft) m) it 80 100	Remarks and Tests	
- - - - - -		26 — 27 — 28 — 29 —	BASALT, very strong (R5), sligh highly to moderately fractured sets at 15°, 30°, and 40°, plana oxide stained, aperture ≤0.04 joint set vertical, undulating, I stained, aperture 0.08-0.12 in penetration of iron-oxide stain	itly weathered, d, gray; joint ar, rough, iron- in.; another rough, and iron I., minimal n into the rock.			R6	-				PLT est 25,824 psi	
		30	[Columbia River Basalt]									Borehole completed at 30ft. below ground surface (bgs).	
	50 50 Boring WTP_1.0-B-12 JACOBS Sheet 2 of 2												

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe Hole Exploration Points - Summary Field Logs

Date:	Date: All probe holes were drilled in one shift on								
	Decem	ber 7, 2018.							
Contr	actor:	McCallum Rock Drilling and Blasting							
Equip	oment:	Furukawa HCR 900 ES (air-track drill)							

Logged by: K. Elliott
Weather: 450 - 520 F; clear, becoming overcast

Probe Hole P-1

ſ

De	pth	Obser	vations	vations		epth	Obser	vations	Ter de ser de d'ann
From	То	Driller Log	MJA Log	Interpretation	From	То	Driller Log	MJA Log	Interpretation
0	1		Drown Soil	Ton Soil	0	1			
1	2		DIOWII SOII	100 2011	1	2	Dirt		Top Soil
2	3	Dint			2	3		Brown	grading to
3	4	Dift	Grav brown	Posidual Soil	3	4			Residual Soil
4	5		Olay-blowii	Iowii Kesiduai Soli	4	5			
5	6				5	6			
6	7				6	7			
7	8	Brown-gray			7	8			
8	9	mix			8	9	_		
9	10				9	10			
10	11				10	11			Moderately
11	12	Medium gray			11	12	Brown-grav	Light gray	weathered rock
12	13	-	Gray-brown	Moderately	12	13	mix		
13	14	-	5	weathered rock	13	14	4		
14	15	Brown-gray	Brown-gray		14	15			
15	16				15	16	-		
16	1/			16	1/	-			
1/	18				1/	18	-	Dad heaven	Weathand
10	20				10	20	-	Ked blowli	weathered
20	20				20	20	-		
20	21	Dirt			20	21	-		
21	23				21	22			
23	23			Moderate to	23	23	-		
24	25		Dark brown	highly	24	25	-		
25	26			weathered rock	25	26	-		
26	27				26	27	1	Light gray	Moderately
27	28	Brown-gray			27	28	Medium gray		weathered rock
28	29			Chille date also	28	29			
29	30		Dark gray	Chilled rock;	29	30			
30	31			basal contact?	30	31			
31	32	Medium gray			31	32			
32	33		gray Gray-brown w	Moderately	32	33			
33	34			weathered rock	33	34	Soft Black		
34	35				34	35	Soft Diack	Sl. Red-brown	Flow contact?

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe	Hole F	P-3			Prob	Probe Hole P-4					
De	pth	Obser	vations	Internetation	D	epth	Obser	vations	Internetation		
From	То	Driller Log	MJA Log	Interpretation	From	То	Driller Log	MJA Log	Interpretation		
0	1	Dirt		Top Soil	0	1					
1	2	Diit		100 300	1	2			Possible flood		
2	3				2	3	Dirt	Brown to	silt grading to		
3	4				3	4		yellow-brown	residual soil		
4	5		Grav rock: firm		4	5		soil with gray,			
5	6		but not hard	Moderately	5	6		soft broken			
6	7		but not natu	woothered reals	6	7		rock			
7	8			weathered fock	7	8					
8	9				8	9	Brown				
9	10				9	10	DIOWII	Gray rock;			
10	11				10	11			Residual soil		
11	12				11	12			grading to		
12	13				12	13			weathered to		
13	14			Slightly	13	14			relatively fresh		
14	15		Dark gray rock	weathered	14	15			rock		
15	16			rock	15	16			IOCK		
16	17				16	17					
17	18				17	18					
18	19	Medium gray			18	19					
19	20				19	20					
20	21				20	21					
21	22				21	22		Turning light			
22	23				22	23		gray at 21 ft			
23	24				23	24	Medium gray		Relatively		
24	25				24	25			fresh rock		
25	26		T · 1 / 1	Slightly to	25	26	-				
26	27		Light gray rock	moderately	26	27					
27	28			weathered rock	27	28					
28	29				28	29		1 urning			
29	30				29	30		gray-brown	Relatively		
30	31				30	31	4	at 28 ft	fresh rock with		
<u>31</u> 22	<u>52</u>				31	32	4		iron-stained		
32	33 24				32	24	-		joints		
33	54 25				24	25	-		-		
54	33		1		54	55	1	1			

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe	Hole F	P-5			Probe Hole P-6								
De	pth	Obser	vations	Interpretation		De	pth	Obser	vations	Interpretation			
From	То	Driller Log	MJA Log	interpretation		From	То	Driller Log	MJA Log	Interpretation			
0	1			Top Soil		0	1						
1	2			grading to		1	2			Top soil			
2	3	Dirt		Residual Soil;		2	3	Dirt	Brown soil	grading to			
3	4			numerous		3	4	Dift	DIOWII SOII	residual soil			
4	5			boulders on		4	5			Testuuai soit			
5	6			surface		5	6						
6	7					6	7						
7	8					7	8						
8	9					8	9						
9	10		Moss w/ trace			9	10						
10	11		Top Soil at			10	11						
11	12		surface: light			11	12						
12	13		gray hard			12	13						
13	14		gray, naro	Slightly		13	14						
14	15			weathered rock		14	15						
15	16			weuthered rook		15	16						
16	17					16	16 17						
17	18					17	18			slightly to			
18	19									18	19		
19	20	Medium grav					19	20	Medium gray L	Light gray fine to chunky rock	weathered.		
20	21	2,					20	21			highly to		
21	22					21	22		j i	intenselv			
22	23					22	23			fractured rock			
23	24		Brown	Weathered		23	24						
24	25					24	25						
25	26			011 - 1-11		25	26						
26	27		Medium gray	Slightly		26	27						
27	28			weathered rock		27	28						
28	29					28	29						
29	30					29	30						
30	31		Doult arrest	Doggible		30	31						
<u>51</u> 22	32		Dark gray	POSSIBLE		31	<u>52</u> 22						
<u>52</u> 22	55 24			chilled zone;		32	33						
<u> </u>	54 25	Dlaal-	Darker gray	basal contact?		24	54 25						
34	33	DIACK-gray	· · · · ·	I I		34	33						

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

DepiteObservationsHerpretationToObservationsInterpretationToObservationsInterpretation123121231123112311123311123311123311123311<	Probe	Hole P	P-7			Probe Hole P-8					
FromToDriller LogMJA LogInterpretation012233445567891011121314141515161617171818191920212223242425262727282930313233343435333434353334343533343435333434353435	De	pth	Obser	vations	Interpretation	De	pth	Observ	vations	Interpretation	
0 1 2 3 1 2 3 3 4 4 5 5 6 7 8 9 10 10 11 12 13 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 16 17 17 18 19 20 10 11 12 13 14 15 16 17 18 19 19 20 21 22 23 24 25 26 26 27 28 29 29 30 31 32	From	То	Driller Log	MJA Log	Interpretation	From	То	Driller Log	MJA Log	Interpretation	
1 2 3 4 5 6 7 8 8 9 9 1 2 3 4 4 5 6 7 8 8 9 9 10 11 12 1 2 3 3 4 4 5 6 7 7 8 8 9 9 10 11 12 13 14 4 5 6 7 7 8 8 9 9 10 11 12 13 14 15 16 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 13 14 14 15 16 15 16 15 16 16 17 17 18 19 20 21 22 23 24 25 26 22 23 24 25 26 27	0	1			Top Soil	0	1			Top Soil	
2 3 4 5 6 7 8 9 10 10 14 5 6 6 7 7 8 9 9 10 10 11 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 15 16 16 17 18 19 20 20 21 22 23 23 24 24 25 26 26 27 23 24 24 25 26 26 27 28 29 30 31 32 33 4 35 6ray rock Highly weathered; possible interflow zone 20 21 22 23 24 24 25 26 26 27 28 29 30 31 32 24 25 26 <td>1</td> <td>2</td> <td></td> <td></td> <td>Top Son</td> <td>1</td> <td>2</td> <td></td> <td>Brown soil,</td> <td></td>	1	2			Top Son	1	2		Brown soil,		
3 4 5 6 7 8 9 9 10 14 5 6 7 8 9 9 10 11 12 13 14 9 9 10 11 12 13 14 11 12 13 14 11 12 13 14 15 16 17 8 9 9 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 16 17 18 9 9 10 11 12 13 14 15 16 16 17 18 13 14 15 16 16 17 18 19 19 20 10 Brown-gray mix Moderately weathered and highly weathered; possible rock? 16 17 18 19 10 10 11 12 12 12 <	2	3				2	3		moist	grading to	
4 5 Oir Soil Integrand display Integrand display Dirt Flood Deposits	4		Yellow-brown	Fine grained	3	4			Missoula		
5 6 7 8 9 Dirt Presidual Solid 5 6 7 8 9 10 17 8 9 10 11 12 13 14 15 16 11 12 13 14 15 16 11 12 13 14 15 16 16 17 8 9 10 11 12 13 14 15 16 16 17 11 12 13 14 14 15 16 16 17 18 19 11 12 13 14 15 16 16 17 17 18 19 10 11 17 18 19 10 10 11 12 13 14 19 10 10 11 11 18 19 10 10 11 11 18 19 10 10 11 12 13 12 11 18	4	5		Soil	Missoula Elood	4	5	Dirt		Flood	
6 7 8 9 10 17 8 9 10 11 12 7 8 9 10 11 11 12 11 11 12 11 11 12 11 11 12 11 11 12 11 12 13 14 14 15 16 15 16 16 17 18 19 20 20 21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35 Gray Gray rock Gray rock Highly weathered and highly factured rock 31 32 23 24 25 26 16 17 17 18 19 Dirt 17 18 19 Dirt 19 20 Brown-gray mix Moderately weathered and intensely factured rock 23 24 25 26 27 28 29 20 21 22	5	6	Dirt		Denosita	5	6			Deposits	
7 8 9 10 1 7 8 9 9 10 11 12 13 14 12 13 14 15 16 11 12 13 14 15 16 16 17 11 12 13 14 15 16 16 17 17 18 13 14 15 16 17 18 19 20	6	7			Deposits	6	7				
8 9 10 Residual Soil 8 9 10 Residual Soil 9 10 11 12 11 12 13 14 15 11 12 13 14 15 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 15 16 16 17 18 19 9 20 Boulders or blocky-jointed rock? Moderately weathered and highly fractured rock 16 17 18 19 20 Brown-gray mix Moderately weathered and highly fractured rock 16 17 18 19 20 Brown-gray mix Moderately weathered and highly fractured rock 17 18 19 20 Brown-gray mix Moderately weathered and highly fractured rock 17 18 19 20 Brown-gray mix Moderately weathered and highly weathered; possible interflow zone 23 24 25 26 25 26 25 26 25 26 25 26	7	8				7	8			grading to	
9 10 10 11 12 13 14 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 14 15 16 17 18 19 20 20 20 16 17 16 17 16 17 16 17 16 17 18 19 19 20 Brown-gray mix Moderately weathered and highly fractured rock 16 17 18 19 19 20 Brown-gray mix Weathered; rock? Moderately weathered; possible fractured rock 21 22 23 24 25 26 26 27 28 29 20 Brown; bit methow mix Moderately weathered; possible fractured rock 22 23 24 25 26 27 28 29 30 31 32 31 32 31 32 31	8	9				8	9			Residual Soil	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	10				9	10	Brown grou			
11 12 13 14 14 14 15 16 13 14 14 15 16 13 14 14 15 16 13 14 14 15 16 16 17 15 16 15 16 15 16 15 16 15 16 17 18 19 15 16 17 18 19 20 20 21 22 23 18 19 20 16 17 18 19 10 20 8rown-gray Moderately weathered and highly fractured rock 16 17 18 19 20 8rown-gray Dark red-sone, possible flow contact 22 23 24 25 26 27 23 24 25 26 26 27 27 28 29 30 31 32 34 35 Gray rock Highly weathered; possible interflow zone 30 31 31 32 33 34 35 Gray rock Highly weathered; possible interflow zone 23 24 25 26 26	10	11				10	11	biowii-gray			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	12		Light Brown	Pasidual Soil	11	12	шіх	Gray rock	Moderately	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	13		Soil	Residual Soli	12	13		Glay IOCK	weathered rock	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	14				13	14	Gray-brown			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	15				14	15				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	16				15	16				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	17				16	17	Dirt			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	18			Moderately	17	18	Diit			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	19		Boulders or	weathered and	18	19			Highly	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	20		blocky-jointed	highly	19	20	Brown-gray		weathered	
$ \begin{array}{ c c c c c c c c } \hline 21 & 22 \\ \hline 22 & 23 \\ \hline 22 & 23 \\ \hline 23 & 24 \\ \hline 24 & 25 \\ \hline 25 & 26 \\ \hline 26 & 27 \\ \hline 27 & 28 \\ \hline 28 & 29 \\ \hline 29 & 30 \\ \hline 30 & 31 \\ \hline 31 & 32 \\ \hline 32 & 33 \\ \hline 34 & 35 \\ \hline 34 & 35 \\ \hline \end{array} \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	21		rock?	freatured reals	20	21		Dark red-	zone; possible	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	22	Brown-gray		fractured fock	21	22		brown	flow contact	
23 24 24 25 25 26 26 27 27 28 29 30 30 31 31 32 33 34 34 35	22	23	mix			22	23	Dirt			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23	24				23	24				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	25		Dark brown	Highly	24	25				
26272827282829293030313132323334353435	25	26			weathered:	25	26		Grav rock		
27282829293030313132323334353435	26	27			nossible	26	27		Oldy lock	Uichly	
2829293030313132323334353435	27	28		One to have	possible	27	28	Brown; bit		Highly weathered and	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	29		Orange-brown	Internow zone	28	29	plugged w/ soil		weathered and	
30313132323333343435	29	30				29	30	at 32 ft.		intensely	
3132Boulders or blocky-jointed rockModerately weathered; 	30	31				30	31]	Dorle brown	iractured rock	
32 33 34 35 Gray 33 34 35 Gray weathered; blocky-jointed rock	31	32		Boulders or	Moderately	31	32		Dark brown		
33 34 35 Gray blocky-jointed 34 35 Gray rock rock	32	33		blocky-jointed	weathered;						
34 35 Gray rock	33	34		rock	blocky-jointed						
	34	35	Gray		rock						

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe	Hole I	P-9				Probe Hole P-10																		
De	pth	Obser	vations	Interpretation		De	pth	Obser	vations	Interpretation														
From	То	Driller Log	MJA Log	Interpretation		From	То	Driller Log	MJA Log	Interpretation														
0	1			Top Soil		0	1		Red-brown	Top Soil														
1	2	Dirt				1	2			grading to														
2	3	Dirt	Slightly red-	grading to		2	3	Dirt	Soil	Besidual Soil														
3	4		brown soil	Residual Soil		3	4	Dirt		Kesiduai 5011														
4	5			Residual Soli		4	5		Grav	Residual Soil														
5	6					5	6		Gluy	Residual Soli														
6	7		Brown	Residual Soil		6	7																	
7	8				7	8			Slightly															
8	9	Medium grav				8	9		Light gray rock	weathered rock														
9	10	incontain gray				9	10	-		weathered fock														
10	11			Slightly to		10	11																	
11	12		Gray rock	moderately		11	12																	
12	13			weathered rock		12	13																	
13	14					13	14			Increased														
14	15					14	15		Brown rock	weathering														
15	16					15	16			weathering														
16	17					16	17	Medium gray																
17	18		Brown soil with brown rock;			17 18																		
18	19			Moderate to highly		18	19	-																
19	20				Moderate to highly		19	20	20 21 Li	Light gray rock	Moderately													
20	21						20	21																
21	22	Brown-gray				Moderate to highly	Moderate to highly	Moderate to highly	Moderate to	Inderate to 21	22		cnips	weathered rock										
22	23								highly	highly	highly	highly	highly	highly	highly	highly	highly	highly		22	23			
23	24										23	24		Slightly red-	Highly									
24	25			weathering		24	25		brown	weathered														
25	26		Bit plugged			25	26																	
26	27		w/brown silt at			26	27	1																
27	28		30 ft			27	28																	
28	29		50 II.			28	29			Highly														
29	30					29	30		Dark gray rock	weathered														
30	31					30	31	Soft grov min	chips with soil	rock; chilled														
31	32	Soft grov	Dark gray fina			31	32	Son gray mix		zone?														
32	33	Son, gray	rock outtings	Chilled zone?		32	33	J																
33	34		TOCK Cuttings			33	34																	
34	35					34	35																	

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe Hole Exploration Points - Summary Field Logs

Proho	Holo	P_11
Prope	пое	r-11

De	Depth Observations		vations	Internetation	De	pth	Obser	vations	Interpretation
From	То	Driller Log	MJA Log	Interpretation	From	То	Driller Log	MJA Log	Interpretation
0	1	Dirt			0	1		Brown soil w/	
1	2	Diit			1	2	Dirt	broken gray	Residual Soil
2	3				2	3		rock	
3	4	Medium gray			3	4			Moderately
4	5				4	5		Gray rock	woothered rock
5	6	Brown			5	6			weathered fock
6	7				6	7			
7	8				7	8			
8	9		Light gray rock		8	9			Increased
9	10		chips; no soil		9	10		Brown rock	weathering
10	11		cover		10	11	Medium grav		weathering
11	12				11	12	integrating surj		
12	13			C1 . 1 . 1	12	13			
13	14			Slightly to	13	14			
14	15			moderately	14	15			Significant iron-
15	16			weathered rock	15	16		Orange-brown	stained jointing
16	17			with thin	16	17			stanted jointing
17	18			highly	17	18			
18	19			weathered	18	19			
19	20	Medium gray		zones	19	20	Brown		
20	21		Bit plugged at		20	21			
21	22		23 ft but		21	22			
22	23		drilled		22	23			Moderately
23	24		consistent and		23	24			weathered rock
24	25		uniformly to 35		24	25	Medium gray		
25	26		uniformity to 55		25	26			
26	27		11.		26	27		Dark gray	
27	28				27	28			
28	29				28	29			
29	30				29	30			
30	31				30	31			
31	32				31	32	Soft. black		Chilled basal contact?
32	33				32	33			
33	34	Soft, black		Possible flow	33	34			
34	35	Sort, orack		contact	34	35			

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe Hole Exploration Points - Summary Field Logs

Ducho	Hala	D 12
Prope	Hole	P-13

De	nth	Obser	vations		Denth			Observations		
Enom	To	Duillon Log	MIALOG	Interpretation		Enom	րш То	Duillon Log	MIALOG	Interpretation
F rom	10	Driller Log	Prouve soil &		-	From	10	Driller Log	MJA Log	
0	1		brokii soli a	Residual Soil		0	1			
1	2	Diet	broken rock			1	2	Dirt	Drown soil	Top Soil
2	3	Dirt			-	2	3		brown son,	grading to
3	4		Light gray rock			3	4		broken rock	Residual Soil
4	5					4	5			
5	0					5	0			
0	/				-	0	/			
/	8				-	/	8			
<u> </u>	9				-	0	9			
9	10			Slightly to	-	9	10	Brown		Moderately
10	11			moderately		10	11			woothered rook
11	12			weathered rock		11	12			weathered TOCK
12	13					12	15			
13	14					13	14		Light gray	
14	15					14	15		rock; hard	
15	10					15	10			
10	17					17	17			
17	10					18	10			Slightly
10	20	Brown				10	20	Medium gray		weathered
20	20		Bit plugged at			20	20	- Wedduni gray		Rock
20	21		21 ft.			20	21			
21	22				-	21	22			
22	23					22	23			
23	25		Dark brown			23	25			
24	25		soil; soft			25	25			Moderate to
25	20			Moderately to		25	20		Brown soft	highly
20	28			highly		20	27		Drown, son	weathered rock
28	29			weathered rock		28	29	Brown-gray		weathered rock
29	30		Light brown,			29	30	mix		
30	31		soft			30	31			
31	32					31	32			Increased
32	33					32	33		Orange-brown	jointing with
33	34					33	34			iron stains
34	35	Medium gray	Gray, soft			34	35	1		

5887.0 Willamette Water Supply Program Water Treatment Plant 1.0

Probe Hole Exploration Points - Summary Field Logs

Depth		Obser	vations	Intonnatotica	
From	То	Driller Log	MJA Log	Interpretation	
0	1				
1	2	Div	~		
2	3	Dirt	Soil; orange-	D 1 . 1 C 1	
3	4		to brown	w/ broken rock	
4	5		10 010 011	w/ broken fock	
5	6				
6	7				
7	8				
8	9				
9	10				
10	11				
11	12		Light gray rock	Slightly	
12	13		Light gray fock	weathered rock	
13	14				
14	15				
15	16				
16	17				
17	18	Mat			
18	19	Medium gray			
19	20				
20	21				
21	22				
22	23				
23	24				
24	25			Moderate to	
25	26		Brown soft	highly	
26	27		biown, son	weathered rock	
27	28			weathered fock	
28	29				
29	30				
30	31				
31	32				
32	33				
33	34	Brown			
34	35	DIOWII			

Log of Test Pit WTP_1.0-TP-01

	Test Pit Depth: 4.5 feet Completed: 12/26/2018	Equipment: Hitachi 210LC Contractor: Richter Logging Co. Logged by: K. Elliott
Depth (feet, bgs)	Ma	aterial Description
0.0 to 1.0	Very soft, moist, dark brown ORGANIC SILT (OL); numerous fine roots, trace angular fine to coarse gravel-size rock fragments, low plasticity. (Top Soil)	
1.0 to 2.0	Soft, moist, slightly orange-brown SILTY GRAVEL with Cobbles (GM); angular coarse gravel- to cobble-size fragments of highly to completely weathered basalt with low plasticity fines. (Residual Soil)	
2.0 to 4.5	BASALT; moderately strong, highly weathered, moderately to highly fractured, joint apertures are moderately wide to wide and filled with orange-brown fines, iron oxide stains on the joint surfaces penetrate throughout fragments smaller than boulders; boulder-sizes up to about 3 feet (maximum dimension) of apparent strong and relatively unweathered rock were pulled from the excavation.	
Practical refusal of the equipment was rea excavator was no longer able to pull the b (Columbia River Basalt)		was reached at a depth of 4.5 feet when the ull the bottom of the test pit.

Log of Test Pit WTP_1.0-TP-02

		Contractor: Richter Logging Co.	
	Test Pit Depth: 4.0 feet	Equipment: Hitachi 210LC	
	Completed: 12/27/2018	Logged by: K. Elliott	
Depth (feet, bgs)	Material Description		
0.0 to 0.5	Very soft, moist, dark brown ORGANIC SILT (OL); numerous fine roots, trace subangular to subrounded fine to coarse gravel-size rock fragments, low plasticity fines. (Top Soil)		
0.5 to 3.0	Soft, moist, slightly orange- to red-brown SILTY GRAVEL with Cobbles (GM); subangular coarse gravel- to cobble-size fragments of highly to completely weathered basalt in a low plasticity silt matrix. (Residual Soil)		
	<i>Residual Soil, continued.</i> Sub angular to subrounded cobble- and boulder-sizes readily roll out of a soft soil matrix and into the excavation below 3.0 feet; side walls unstable.		
3.0 to 4.0 Ground water seeped into the excavation at 4.0 feet below ground su obscured the bottom of the pit; bottom felt hard; intact rock appears to the ground water seep.		avation at 4.0 feet below ground surface and tom felt hard; intact rock appears to be just below	
	Practical refusal of the equipment was reached at a depth of 4.0 feet when the excavator was no longer able to pull the bottom of the test pit.		

Log of Test Pit WTP_1.0-TP-03

	Test Pit Depth: 4.0 feet Completed: 12/27/2018	Equipment: Hitachi 210LC Contractor: Richter Logging Co. Logged by: K. Elliott
Depth (feet, bgs)	Material Description	
0.0 to 1.0	Very soft, moist, dark brown ORGANIC SILT (OL); low plasticity, numerous fine roots, estimate 60% coarse angular gravel- to cobble-size basalt rock fragments. (Possible Roadbed Fill)	
1.0 to 2.0	Soft, moist, slightly orange-brown SILTY GRAVEL with Cobbles (GM); angular coarse gravel- to cobble-size fragments of highly to completely weathered basalt in a low plasticity silt matrix. (Residual Soil)	
	BASALT; moderately strong, highly weathered, moderately to highly fractured, joint apertures are moderately wide to wide and filled with orange-brown fines, iron oxide stains on the joint surfaces penetrate throughout fragments smaller than boulders, boulder-sizes up to at least 3 feet of apparent strong and relatively fresh rock were pulled from the excavation.	
2.0 to 4.0 Between 2.0 and 2.5 feet an intact portion of rock was observed in t wall; interlocking, sharp, angular, fracture-bound, cobble-sized clast and photographed; fracture apertures were filled with low plasticity f		portion of rock was observed in the west side acture-bound, cobble-sized clasts were observed es were filled with low plasticity fines.
	as reached at a depth of 4.0 feet when the l the bottom of the test pit. (Columbia River	

Log of Test Pit WTP_1.0-TP-04

	Test Pit Depth: 4.0 feet Completed: 12/27/2018	Contractor: Richter Logging Co. Equipment: Hitachi 210LC Logged by: K. Elliott
Depth (feet, bgs)	Ma	iterial Description
0.0 to 0.8	Very soft, moist, dark brown ORGANIC SILT (OL); numerous fine roots, trace angular fine to coarse gravel-size rock fragments, low plasticity. (Top Soil)	
	Soft, slightly yellow-brown, moist, GRAVELLY SILT with Cobbles and Boulders (ML); subangular to subrounded coarse gravel- to boulder-sizes scattered in low plasticity fines.	
0.8 to 4.0	Groundwater began to seep into the excavation at 3.5 feet bgs; quickly filled the test pit to a level approximately 3.0 feet bgs; sidewalls unstable, cannot support the larger clasts; sidewalls slough; bottom of the test pit obscured by water, but a hard rock surface is present at 4.0 feet bgs.	

Draft Geotechnical Data Report – Appendix A

Log of Test Pit WTP_1.0-TP-05

	Test Pit Depth: 3.0 feet Completed: 12/27/2018	Equipment: Hitachi 210LC Contractor: Richter Logging Co. Logged by: K. Elliott
Depth (feet, bgs)	Mat	erial Description
0.0 to 0.8	Very soft, moist, dark brown ORGANIC SILT (OL); low plasticity, numerous fine roots, trace scattered angular gravel- to cobble-size basalt rock fragments. (Top Soil)	
BASALT; moderately strong, moderately to highly weathered, high fractured; joints are moderately wide to wide, filled with low plastic oxide stains on the joint surfaces penetrate throughout fragments boulders.		erately to highly weathered, highly to intensely de to wide, filled with low plasticity fines, iron benetrate throughout fragments smaller than
0.8 to 3.0	The rock excavates to Poorly Graded Gravel with Cobbles, Boulders, and Silt (GP-GM).	
	Largest boulder excavated: 4.0 ft X 3.5 ft X 2.0 ft.	
	A hard-continuous rock surface was encountered at 3.0 feet bgs.	

Log of Test Pit WTP_1.0-TP-06

	Test Pit Depth: 0.5 feet Completed: 12/27/2018	Equipment: Hitachi 210LC Contractor: Richter Logging Co. Logged by: K. Elliott	
Depth	Mat		
0.0 to 0.2	Very soft, moist, dark brown ORGANIC SILT (OL); low plasticity; the surface organic layer is about 2 to 3-inches thick and consists mostly of moss with a thin layer of organic soil lying directly on basalt rock. (Top Soil)		
	BASALT; strong, slightly to moderately weathered, vesicular; iron oxide stained at ground surface; jointing not apparent on the surface.		
0.2 to 0.5	The immediate area surrounding this test pit is a surface outcropping of hard rock; bare rock is exposed in places and in others lies beneath a thin organic layer. The excavator was able to penetrate the rock only a few inches; no open jointing was apparent to get the teeth into. (Columbia River Basalt)		

Appendix B

Geophysical Exploration

IEMENS & A S S O C I A T E S

McMillen Jacobs Associates

1500 SW First Avenue, Suite 750 Portland, Oregon 97201 Attention: Farid Sariosseiri, PhD, PE

March 11, 2019 Siemens Project No. 191011

Project:	$WWSP - WTP_{1.0}$
	Tualatin, Oregon

Subject: **Results of Geophysical Reconnaissance**

Hello Farid.

This letter presents the results of the geophysical reconnaissance and briefly describes the methods used. The services were provided in general accordance with the agreement prepared by McMillen Jacobs Associates (MJA) and Schedule of Charges dated February 13, 2019. The field work was conducted on February 15, 2019, with guidance in the field provided by Mr. Kim Elliot of MJA. The weather was overcast with occasional light rain.

Project Understanding

Siemens & Associates (SA) understand that MJA is providing geotechnical services to assist with an assessment of the ground conditions for a proposed new water treatment plan. Only a few project details have been provided although SA understands that site development will include mass excavation to depths in excess of 30 feet. As a result, seismic velocity of the subsurface is of interest as one of the predictors regarding excavation characteristics.

Purpose and Methods

geophysical Objectives include

characterization of the geotechnical conditions describing the character of the overburden soils and underlying rock in terms of P-wave velocity. SA also recorded and processed shear wave data using the refraction microtremor (ReMi) method. The ReMi results describe important subsurface characteristics and add significant value and basis for developing supportive conclusions.

Siemens & Associates

siemens@bendcable.com office: 541-385-6500 19134 River Woods Drive, 97702

Bend, Oregon fax: 503-296-2271

The seismic methods were used along three lines, the locations of which were chosen to exploit existing areas that were reasonably cleared of brush which includes poison oak. The locations of the lines may not be ideal although for safety reasons, these were the routes available for exploration. The approximate location of the lines are depicted on Figure 100 (Site Plan: Geophysical Exploration) and the geophysical methods used are briefly described as follows:

• <u>P-wave Seismic Refraction (SR)</u>: An active seismic method utilizing geophone receivers set along a straight line gathering data from signals induced by a small explosive charge (8 gauge, 400 grain black powder shell detonated using a Betsy Seisgun). Data were processed using forward modeling software developed by Geogiga known as DW Tomo 8.3; a plausible model of the subsurface was developed for each line. SR provides a 2D profile illustrating P-wave velocity with depth. Lower P-wave velocity is related to unconsolidated materials while heavily consolidated materials and rock are illustrated by higher P-wave velocity. P-wave variation within higher velocity layers illustrates the heterogeneity of the rock mass related to fracturing, jointing, and possibly weathering and decomposition.

How it works: When the explosive charge detonates, the receivers are triggered, and the wavelet energy is recorded. The P-wave is the fastest of the various seismic waves that are generated and therefore, only the time of the first arrival wave from the receiver is considered. These "first arrivals" are picked for each As the energy travels record. through the ground, the waves are refracted and the arrival time, combined with distance from the source, is related to both the velocity and distance to the layers

promoting refraction. This distance is not necessarily vertical depth; rather the nearest refractor and the image can be skewed when oriented along a dipping refractor. The seismic refraction method takes advantage of a common occurrence: seismic velocities increase as a function of depth. If this assumption is false, critical refraction does not occur as expected and the velocity and depth calculations are inaccurate; hence, the value of conducting more than one geophysical method for effective site exploration.

Data were recorded using a 24 channel DAQ 4 seismograph manufactured by Seismic Source in Ponca City, Oklahoma, USA, connected to an IBM Lenovo laptop computer.

For this project, data were collected using 24 receivers at one time. Shot spacing was set at 20 feet. Shots were induced at intervals equal to twice the receiver spacing and recorded by

FOR LAND USE PERMITTING (EXHIBIT B) WWSP – WTP_1.0 Geophysical Reconnaissance Tualatin, Oregon

4.5 Hz. geophone receivers. Shot locations extended throughout and beyond each end of the receiver arrays.

<u>Seismic Refraction</u>
 <u>Microtremor</u>

(ReMi): A passive, surface wave seismic method describing the "average" shearwave velocity depth profile in the vicinity geophone of the spread. Shear-wave velocity can be directly related to the strength of geologic materials and is commonly correlated with other methods provide to confirmation of the interpretation. ReMi

data were recorded using the same seismic arrays used for the SR data gather. Only data acquisition parameters were changed. ReMi is an averaging method and for this project, all 24 receivers were used for the analysis such that geologic variations in the vicinity of the receiver array are averaged to a single 1D profile. ReMi can be processed in 2D but this is beyond the scope of this exploration although the data are preserved and 2D processing could be done at a later time.

ReMi data were processed using Geogiga Microtremor 8.3 software produced by Geogiga Technology Corp., Calgary, Alberta, Canada. Dr. Satish Pullammanappallil, Ph.D., operating from Reno, Nevada, took the lead in processing 1D S-wave profiles for each line. The results are presented as an overlay on each of the SR tomograms and as individual figures with supporting illustrations. The 1D, S-wave profiles extend to 150 feet (BGS) and provide a means of calculating the seismic site classification as defined by ASCE 7, based on the average S-wave velocity through the upper 100 feet of a site (Vs100). These values are also presented on the SR tomograms and vary from 2973 to 4222 f/s with an average of 3632 f/s. This sets the site within the boundaries defining a Seismic Site Class designation "B." The Vs100 can be re-calculated in consideration of excavation where foundations will be situated at elevations below ground surface. Excel spreadsheets have been provided to MJA for this purpose.

Conclusions

The P-wave refraction results are presented as Figures SR-1 through SR-3. These tomograms (a Greek word for slice or cut) extend to greater depths than the geotechnical borings and clearly

WWSP – WTP_1.0 Tualatin, Oregon

illustrate the character of the geotechnical conditions in terms of P-wave velocity. When in reasonable proximity to a line, the geotechnical borings are plotted on the tomograms.

P-wave and S-wave velocities are high with only a thin veneer of soil indicated along the lines. Through the shallow subsurface (upper 50 feet or so), the tomograms suggest more lateral variation in rock quality than might be inferred from the borings. SA estimates that this feature is likely the result of variation in the fracture and joint pattern of the rock mass.

Rippability

P-wave velocity is often used to predict rock excavation difficulty and this is one of the objectives of the geophysical effort. It is prudent to consider other properties including the frequency of planes of weakness (fractures, joints, faults, laminations, etc.), uniaxial strength, degree of weathering, abrasiveness, and more. Excavator tooth penetration is often the key to ripping success, regardless of seismic P-wave velocity. Experience excavating similar rock from nearby projects is an excellent method if proper correlation to this site can be established. In other words, predicting rippability based on only one parameter, the wave speed, must be enhanced by considering other available information. Physical characteristics that are favorable to ripping include:

- Frequent planes of weakness such as fractures, faults, and laminations
- Weathered rocks
- Rocks with high moisture
- Highly stratified rocks
- Brittle rocks
- Rocks with low shear strength
- Rocks with low seismic velocity (both P-wave and S-wave)

Conditions that make ripping difficult include:

- Massive rocks
- Rocks with no planes of weakness
- Crystalline rocks
- Non-brittle, energy absorbing rock fabric
- Rocks with high shear strength
- Rocks with high seismic velocity (both P-wave and S-wave, especially when the ratio of V_s/V_p approaches 1

Caterpillar industry charts provide a summary of rippability based on field trials with a primary correlation to rippability related to seismic P-wave velocity. Along with factors previously discussed, it is important to recognize that the Caterpillar research was completed mostly in the mid-western United States and may not be applicable to the conditions encountered near Tualatin, Oregon. A review of "Handbook of Ripping" published by Caterpillar (Twelfth Edition) provides many charts and performance estimates that are helpful and the document is submitted with this report. Note that ripping is often considered more of an art than science and SA encourages the consideration of other known geologic features to base a conclusion regarding rippability. This said, SA is reasonably confident that rock offering P-wave velocity on the order of 4000 f/s and lower is quite likely to excavate without need for drilling and blasting. Production is likely to vary similar to the variation

illustrated by lateral velocity variation in the tomograms. Although with less certainty, velocities ranging from 4000 to around 6500 f/s are considered to represent the "marginal" range and light blasting may be an effective way to enhance production. P-wave velocity 6500 f/s and higher are likely to be representative of strong rock and excavation characteristics will improve by applying drilling and blasting methods. The conditions interpreted along the tomograms suggest only a thin zone (typically less than 10 feet) offers P-wave suggesting opportunity for ripping. Most of the rock velocities observed in this report suggest drilling and blasting will be necessary for effective, efficient removal of rock for any significant depth of excavation.

It is important to point out that the results are reported in 2D while the data were generated from and influenced by a 3D environment. When subsurface conditions are changing rapidly along the survey route, this effect can skew the 2D model. The methods tend to average subsurface conditions and rapid or minor changes may not be interpreted. For these reasons and others as previously discussed, the results may or may not consistently compare with 1D data such as a geotechnical boring.

Survey Line Locations, Data Acquisition, and Gear

The location of each geophysical line is illustrated on Figure 100. The end points of each geophysical survey were marked with a wooden lath to define the location in the field. Ground elevation along the array was surveyed by SA using a theodolite and grade rod with elevations referenced to temporary benchmarks set by the project surveyor. Elevations of these reference points were provided to SA by MJA. Vertical resolution is estimated to be within a few tenths of a foot. Horizontal positions as shown on Figure 100 were plotted on the Google Earth base map from onsite data recorded using a hand-held GPS (Garmin 755t) and are estimated to be within about 10 feet of actual.

Seismic data were collected using a 24 channel DAQLink 4 digital seismograph manufactured by Seismic Source, Ponca City, Oklahoma. Seismic receivers were 4.5 Hz. geophones manufactured by the GeoSpace, Houston, Texas.

WWSP – WTP_1.0 Tualatin, Oregon

Geophysical Reconnaissance

Confidence

The seismic data were gathered at a relatively "quiet" site and this led to accurate interpretation of first arrival waveforms for P-wave analysis. The long records for the ReMi data gather collected adequate variations in frequency content from ambient signals induced by area road traffic, distant construction, and plate and hammer near each array. The results are judged to be robust and of high quality.

Limitations

This report has been prepared for the exclusive use of MJA for specific application to the project known as WWSP WTP_1.0 in Tualatin, Oregon. SA has endeavored to complete the services in accordance with generally accepted geophysical practice consistent with similar work done near Tualatin, Oregon, by geophysical practitioners at this time. No other warranty, expressed or implied, is made.

The information presented is based on data obtained from the field explorations described in this report. The explorations indicate geophysical conditions only at specific locations and times, and only to the depths penetrated. They do not necessarily reflect variations that may exist between exploration locations. The subsurface at other locations may differ from conditions interpreted at these explored locations. Also, the passage of time may result in a change in conditions. If any changes in the nature, design, or location of the project are implemented, the information contained in this report should not be considered valid unless the changes are reviewed by SA to address the implications and benefit of enhancing the work as necessary. SA is not responsible for any claims, damages, or liability associated with outside interpretation of these results, or for the reuse of the information presented in this report for other projects.

SA has included "Important Information About this Geotechnical Report" prepared by GBA (Geoprofessional Business Association, of which SA is a member) which also applies to geophysical services, to assist you and others in the use and limitations of this report.

SA appreciates the opportunity to conduct this exploration and present the results and conclusions. We trust that the services are in line your expectation. Please contact us with questions.

FOR LAND USE PERMITTING (EXHIBIT B) Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a constructor — a construction contractor — or even another civil engineer. Because each geotechnical- engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. No one except you should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply this report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

Geotechnical Engineers Base Each Report on a Unique Set of Project-Specific Factors

Geotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical-engineering report that was:

- not prepared for you;
- not prepared for your project;
- not prepared for the specific site explored; or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a lightindustrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an

assessment of their impact. *Geotechnical engineers cannot* accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can Change

A geotechnical-engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. *Do not rely on a geotechnical-engineering report whose adequacy may have been affected by*: the passage of time; man-made events, such as construction on or adjacent to the site; or natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. *Contact the geotechnical engineer before applying this report to determine if it is still reliable.* A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ — sometimes significantly — from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide geotechnical-construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the confirmation-dependent recommendations included in your report. *Confirmationdependent recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations *only* by observing actual subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's confirmation-dependent recommendations if that engineer does not perform the geotechnical-construction observation required to confirm the recommendations' applicability.*

A Geotechnical-Engineering Report Is Subject to Misinterpretation

Other design-team members' misinterpretation of geotechnical-engineering reports has resulted in costly

problems. Confront that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Constructors can also misinterpret a geotechnical-engineering report. Confront that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical-engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical-engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/ or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure constructors have sufficient time to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and constructors fail to recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Environmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform an *environmental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold- prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical- engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your GBC-Member Geotechnical Engineer for Additional Assistance

Membership in the Geotechnical Business Council of the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you GBC-Member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910
Telephone: 301/565-2733 Facsimile: 301/589-2017
e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2015 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, or its contents, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document as a complement to a geotechnical-engineering report. Any other firm, individual, or other entity that so uses this document without being a GBA member could be commiting negligent or intentional (fraudulent) misrepresentation.

OR LAND USE PERMITTING (EXHIBIT B)

P-wave Seismic Refraction Tomography (SR): Line 1 (24, 4.5 Hz. receivers on 10 foot spacing, 13 shots, 20 foot spacing)

1000

Azimuth ~ 326 degrees

	Siemens & Associates	
	February 15, 2019	Project # 101011
/: Line 1	Figure: SR-1	

OR LAND USE PERMITTING (EXHIBIT B)

P-wave Seismic Refraction Tomography (SR): Line 2 (24, 4.5 Hz. receivers on 10 foot spacing, 13 shots, 20 foot spacing)

Azimuth ~ 70 degrees

	Siemens & Associates	
	February 15, 2019	Project # 191011
r: Line 2	Figure: SR-2	

OR LAND USE PERMITTING (EXHIBIT B)

P-wave Seismic Refraction Tomography (SR): Line 3 (24, 4.5 Hz. receivers on 10 foot spacing, 13 shots, 20 foot spacing)

1000

Azimuth ~ 45 degrees

	Siemens & Associates	
	February 15, 2019	Project # 191011
v: Line 3	Figure: SR-3	
WWSP WTP_1.0 Tualatin, Oregon

Project Number: 191011

Refraction Microtremor: RM #1 24, 4.5 Hz. Receivers on 10 foot spacing

(NE area of site: Azimuth ~ 326⁰)

100.0

Geogiga Surface Plus 8.3 Analysis by SubterraSeis, LLC February 15, 2019

WWSP WTP_1.0 Tualatin, Oregon

Project Number: 191011

Refraction Microtremor: RM #2 24, 4.5 Hz. Receivers on 10 foot spacing

(N center area of site: Azimuth ~ $70^{\overline{0}}$)

WWSP WTP_1.0 Tualatin, Oregon

Project Number: 191011

Shear Wave Velocity Profile: V100 = 4222 f/s,

ASCE 7: Site Class B (from BGS)

Refraction Microtremor: RM #3 24, 4.5 Hz. Receivers on 10 foot spacing

(Approximate center area of site: Azimuth ~ 45°)

Appendix C

Laboratory Test Data

	Sample	e Location or I	D	Strength					
Boring ID	Sample No.	Top Depth (feet)	Bottom Depth (feet)	Uniaxial Compressive (psi)	Grade ¹	Term ¹			
B-01	C-01	7.1	7.8	27,467	R5	Very Strong			
B-01	C-02	22.5	23.4	23,727	R5	Very Strong			
B-02	C-03	13.4	14.3	16,746	R5	Very Strong			
B-03	C-10	8.65	9.0	18,552	R5	Very Strong			
B-03	C-11	17.3	18.0	34,089	R5	Very Strong			
B-06	C-14	9.1	9.7	23,467	R5	Very Strong			
B-07	C-04	8.3	9.3	18,990	R5	Very Strong			
B-07	C-05	15.8	16.7	19,466	R5	Very Strong			
B-08	C-17	14.6	15.1	11,928	R4	Strong			
B-09	C-13	22.9	23.6	18,249	R5	Very Strong			
B-09	C-15	27.0	27.5	27,829	R5	Very Strong			
B-09	C-16	29.7	30.2	22,316	R5	Very Strong			
B-10	C-06	16.5	17.5	31,235	R5	Very Strong			
B-10	C-07	26.3	27.4	17,446	R5	Very Strong			
B-11	C-18	17.95	18.55	15,053	R4	Strong			
B-11	C-19	27.65	28.15	27,911	R5	Very Strong			
B-12	C-08	7.8	8.6	21,764	R5	Very Strong			
B-12	C-09	20.7	27.7	19,622	R5	Very Strong			

Table C-1. Summary of Unconfined Compressive Strength Testing

Note:

1. Rock Strength grades and terms from ODOT (1987)

Boring	Depth to Top	Sample	Failure Load, P	Corrected Point LoadEstimated UniaxialureStrengthCompressived, PIndex, Is(50) (PSI)UCS (PSI)		Strength	Strength
	(feet)		(KN)	IS(50) (PSI)		Grade	I erm ¹
B-01	5.0	S-1	33.57	1,468	25,691	R5	Very Strong
B-01	6.6	S-2	36.96	1,616	28,285	R5	Very Strong
B-01	7.8	S-3	32.21	1,409	24,651	R5	Very Strong
B-01	8.2	S-4	42.41	1,855	32,459	R5	Very Strong
B-02	12.0	S-5	40.36	1,765	30,889	R5	Very Strong
B-02	14.0	S-21	37.01	1,618	28,322	R5	Very Strong
B-02	14.3	S-6	29.71	1,299	22,741	R5	Very Strong
B-02	15.8	S-7	38.34	1,677	29,340	R5	Very Strong
B-02	26.3	S-8	12.16	532	9,309	R4	Strong
B-04	3.3	S-22	10.35	453	7,924	R3	Medium Strong
B-04	4.0	S-23	28.35	1328	23,240	R5	Very Strong
B-07	13.4	S-10	29.28	1,281	22,409	R5	Very strong
B-07	13.9	S-11	36.29	1,587	27,771	R5	Very strong
B-07	16.7	S-12	29.82	1,304	22,822	R5	Very strong
B-10	15.7	S-13	35.28	1,543	27,004	R5	Very strong
B-10	16.1	S-14	31.68	1,386	24,247	R5	Very strong
B-10	23.9	S-15	30.01	1,312	22,968	R5	Very strong
B-10	26.0	S-16	33.87	1,481	25,925	R5	Very strong
B-12	8.6	S-17	29.06	1,271	22,237	R5	Very strong
B-12	9.7	S-18	39.64	1,734	30,339	R5	Very strong
B-12	13.3	S-19	21.67	948	16,586	R5	Very strong
B-12	26.1	S-20	33.74	1,476	25,824	R5	Very strong

Table C-2. Summary of Point Load Strength Testing

Note:

1. Rock strength grades from ODOT (1987).

San	nple Locati	on or ID	Soil [Descripti	on	oisture %	Atter	berg L	imits
Boring	Sample, No.	Depth Interval (feet)	Geologic Unit	USCS	Soil Description	ž	Liquid Limit (L	Plasti Limit (F	Plastic Index (I
B-02	S-2	5-6.5	Missoula Flood Deposits	ML	Brown silt with sand	28.9	42.7	26.6	16.1
B-02	S-3	7.5-8	Missoula Flood Deposits	ML	Brown silt	29.6	-	-	-

Table C-3. Summary of Moisture Content and Atterberg Limits Testing

				Corrosivity Testing										
			ORP							Sulfide	Moisture			
			Resistivity @ 15.5 °C	Chloride	Sul	fate								
Samp	Sample Location or ID			mg/kg	mg/kg	%		(Red	ox)	Qualitative	At Test			
Daria	Sample,	Depth Interval	Oct	D	Den Mit	Den Mit			At Test Temp	by Lead Acetate				
Boring	No.	(feet)	Sat.	Dry Wt.	Dry Wt.	Dry Wt.	рН	E _H (mv)	Ů	Paper	%			
B-01	S-1	2.5-4.0	2,354	7	36	0.0036	6.3	502	15	Negative	17.9			
B-02	S-1	2.5-4.0	7,884	7	3	0.0003	5.9	513	15	Negative	24.1			
TP-04	S-1	2.0-3.0	79,679	14	2	0.0002	6.3	520	15	Negative	35.9			

Table C-4. Summary of Corrosivity Testing

nt Load Strength Index Test Results ASTM D-5731

		PR(PROJ PROJEC	OJECT: IECT NO.: T LOCATION:	WWSP W 588 Sherwood	/TP_1.0 7.0 . Oregon	LAB SAN SAMP SAMPLE	IPLE NO.: LE NO.: DESCRIP:	B-01, -02 S B/	, -04, -07, -10, 1-S20 ASALT	-12								
ASSOCIATE	5	SAM	PLED BY:	K. Elliott,	J. Fissel	DATE RE	PORTED:	3/1	1/2019		0.1				47 5	I		
		DATE	SAMPLED:	December	5-12, 2018	REPOR	TED BY:	A. F	lavekost		Site-sp	Decific Correlat	tion Factor, C=		17.5	l		
Sample No.,	Test		Depth or		ΔD/D, penetration	Width, W	Area, A	Failure Load, P	Failure Load,	- 2 - 2	Equivalent Diameter,	Uncorrected Point Load Strength Index, I _s	Uncorrected Point Load Strength	Size Correction	Corrected Point Load Strength Index, I _{s(50)}	Corrected Point Load Strength Index, I _{s(50)}	Estimated Uniaxial Compressi ve Strength,	Estimated Uniaxial Compressiv e Strength,
Boring	Number**	Rock Type	Diameter, D (mm)	D' (mm)	ratio (%)	(mm)	(mm²)	(kN)	P (N)	De ² (mm ²)	De (mm)	(Mpa)	Index, I _s (PSI)	Factor, F	(Mpa)	(PSI)	UCS (Mpa)	UCS (PSI)
B-01-6 55*	2	basalt	60.00	55.00	8 10	125	7020	33.57	33508	3600	60.0	9	1352	1.09	10.1	1468	105	25091
B-01-7 76*	3	basalt	60.00	55.00	8	140	7700	32.21	32210	3600	60.0	9	1298	1.03	97	1409	133	24651
B-01-8.22	4	basalt	60.00	55.00	8	65	3575	42.41	42412	3600	60.0	12	1709	1.09	12.8	1855	224	32459
B-02-12	5	basalt	60.00	55.00	8	115	6325	40.36	40360	3600	60.0	11	1626	1.09	12.2	1765	213	30889
B-02-14	21	basalt	60.00	55.00	8	91	5005	37.01	37006	3600	60.0	10	1491	1.09	11.2	1618	195	28322
B-02-14.3*	6	basalt	60.00	55.00	8	140	7700	29.71	29714	3600	60.0	8	1197	1.09	9.0	1299	157	22741
B-02-15.8	7	basalt	60.00	55.00	8	110	6050	38.34	38336	3600	60.0	11	1544	1.09	11.6	1677	202	29340
B-02-26.25	8	basalt	60.00	57.00	5	180	10260	12.16	12164	3600	60.0	3	490	1.09	3.7	532	64	9309
B-04-3.3	22	basalt	60.00	56.00	7	120	6720	10.35	10354	3600	60.0	3	417	1.09	3.1	453	55	7924
B-04-4	23	basalt	61.00	54.00	11	122	6588	28.35	28346	3294	57.4	9	1248	1.06	9.2	1328	160	23240
B-07-13.4	10	basalt	60.00	55.00	8	130	7150	29.28	29280	3600	60.0	8	1180	1.09	8.8	1281	155	22409
B-07-13.9	11	basalt	60.00	56.00	7	125	7000	36.29	36286	3600	60.0	10	1462	1.09	10.9	1587	191	27771
B-07-16.7*	12	basalt	60.00	56.00	7	120	6720	29.82	29820	3600	60.0	8	1201	1.09	9.0	1304	157	22822
B-10-15.7	13	basalt	60.00	56.00	7	90	5040	35.28	35284	3600	60.0	10	1422	1.09	10.6	1543	186	27004
B-10-16.05*	14	basalt	60.00	56.00	7	115	6440	31.68	31682	3600	60.0	9	1276	1.09	9.6	1386	167	24247
B-10-23.85	15	basalt	60.00	56.00	7	100	5600	30.01	30010	3600	60.0	8	1209	1.09	9.0	1312	158	22968
B-10-25.96*	16	basalt	60.00	55.00	8	/3	3988	33.87	33874	3600	60.0	9	1365	1.09	10.2	1481	179	25925
B-12-8.6	17	basalt	60.00	56.00	/	155	8680	29.06	29056	3600	60.0	8	11/1	1.09	8.8	1271	153	22237
B-12-9.65	18	basalt	60.00	56.00	7	/5	4200	39.64	39642	3600	60.0	11	1597	1.09	12.0	1734	209	30339
B-12-13.25	19	basalt	60.00	57.00	5	145	0240	21.07	210/2	3000	60.0	<u>р</u>	δ/3 1250	1.09	0.5	948	114	10580
D-12-20.1	20	Dasan	60.00	00.00	1	105	9240	33.74	33/42	3000	60.0	9 Minimum 1:	1359	1.09	10.2	14/0	1/8	25824
NULES.	r cito coocifio	LICS correlation	factor calculation									Minimum 2:				400		0300
**Sample Q involi	and not inclu	uded in this room	riacioi calculation ort: sample broke on r	ore existing plan	e of weakness							Maximum 1:				1855		32450
Sample 9 mvali			nt, sample bloke on p	pre-existing plan		•						Maximum 2:				1765		30889
												Average exclud	ling Min 1. Min 2	2. Max 1. Ma	x 2:	1439		25187

<u>B-01, -02, -07, -10, -12</u> S1-S20

BASALT

1/9/2019 A. Havekost

Point Load Strength Index Calculation Explanation ASTM D-5731

	PROJECT:	WWSP W	ГР_1.0 7		E NO.:	
	PROJECT NO.: PROJECT LOCATION: SAMPLED BY:	Sherwood, K. Elliot, J	oregon Fissel	SAMPLE SAMPLE DE DATE REPO	NO.: SCRIP: RTED:	
	DATE SAMPLED: December 5-12, 2018					
UCS Sample ID, Depth	PLT Sample ID, Depth	Uniaxial Compressive Strength (psi)	UCS (Mpa)	PLS(Mpa)		
B-01 C-01 @ 7.12 – 7.76 ft.	B-01 S2 @ 6.55 ft	27467	189.43	11.14		
B-01 C-01 @ 7.12 – 7.76 ft.	B-01 S3 @ 7.76 ft.	27467	189.43	9.71		
B-02 C-03 @ 13.35 – 14.3 ft.	B-02 S6 @ 14.3 ft	16746	115.49	8.96		
B-07 C-05 @ 15.8 – 16.7 ft.	B-07 S12 @ 16.7 ft.	19466	134.25	8.99		
B-10 C-06 @ 16.5 – 17.5 ft.	B-10 S14 @ 16.05 ft.	31235	215.41	9.55		
B-12 C-08 @ 7.8 – 8.6 ft.	B-12 S17 @ 8.6 ft.	21764	150.10	8.76		

FOR LAND USE PERMITTING (EXHIBIT B) Northwest Testing, Inc.

A Division of Northwest Geotech, Inc.

9120 SW Pioneer Court, Suite B, Wilsonville, Oregon 97070 | ph: 503.682.1880 fax: 503.682.2753 | www.nwgeotech.com

TECHNICAL REPORT

Report To:	Ms. Annie Havekost McMillen Jacobs Associates 1500 SW First Avenue, Suite 750 Portland, Oregon 97201	Date: Lab No.:	1/10/19 19-004
Project:	Laboratory Testing – WWSP-WTP-1.0	Project No.:	2286.1.1

Report of: Compressive strength of rock

Sample Identification

NTI completed compressive strength of rock testing on samples delivered to our laboratory on January 7, 2018. Testing was performed in accordance with the standards indicated. Our laboratory test results are summarized on the following table.

Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C)											
Sample ID	Diameter (inches)	Height (inches)	Rate of Loading (Ibs/s)	Uniaxial Compressive Strength (psi)							
B-01 C-01 @ 7.12 – 7.76 ft.	2.40	4.80	100	27,467							
B-01 C-02 @ 22.5 – 23.35 ft.	2.40	4.81	100	23,727							
B-02 C-03 @ 13.35 – 14.3 ft.	2.40	4.83	100	16,746							
B-07 C-04 @ 8.3 – 9.3 ft.	2.40	4.83	100	18,990							
B-07 C-05 15.8 – 16.7 ft.	2.40	4.80	100	19,466							
B-10 C-06 @ 16.5 – 17.5 ft.	2.40	4.80	100	31,235							
B-10 C-07 @ 26.26 – 27.4 ft.	2.40	4.83	100	17,446							
B-12 C-08 @ 7.8 – 8.6 ft.	2.40	4.81	100	21,764							
B-12 C-09 @ 20.7 – 21.7 ft.	2.40	4.80	100	19,622							

Attachments: Laboratory Test Results

Copies: Addressee

This report shall not be reproduced except in full, without written approval of Northwest Testing, Inc SHEET 1 of 1 REVIEWED BY: Bridgett Adame

TECHNICAL REPORT

Report To:	Ms. Annie Havekost McMillen Jacobs Associates	Date:	3/6/19
1500 SW First Ave	nue, Suite 750	Lab No.:	19-047
Portland, Oregon 9	7201		

Project: Laboratory Testing - WWSP-WTP-1.0 Project No.: 2286.1.1

BKA

Report of: Compressive strength of rock

Sample Identification

NTI completed compressive strength of rock testing on samples delivered to our laboratory on March 4, 2019. Testing was performed in accordance with the standards indicated. Our laboratory test results are summarized on the following table. Involid

	Laborato	ry Testing	Invalid	<u></u>								
Compressive Strength of Intact Rock Core Specimens (ASTM D 7012 Method C)												
Sample ID	Diameter (inches)	Height (inches)	Rate of Loading (Ibs/s)	Uniaxial Compressive Strength (psi)								
B-03 C-10 @ 8.65 – 9.1 ft.	2.39	4.86	100	18,552								
B-03 C-11 @ 17.3 – 18 ft.	2.38	4.80	100	34,089								
B-04 C-12 @ 6.3 – 7 ft.	2.34	4.72	100	60,353 🖤								
B-06 C-14 @ 9.1 – 9.7 ft.	2.33	4.70	100	23,467								
B-08 C-17 14.6 – 15.1 ft.	2.33	4.68	100	11,928								
B-09 C-13 @ 22.9 – 23.6 ft.	2.38	4.82	100	18,249								
B-09 C-15 @ 27 – 27.5 ft.	2.38	4.80	100	27,829								
B-09 C-16 @ 29.7 – 30.2 ft.	2.38	4.76	100	22,316								
B-11 C-18 @ 17.95 – 18.55 ft.	2.39	4.81	100	15,053								
B-11 C-19 @ 27.65 – 34.65 ft.	2.38	4.83	100	27,911								

Addressee Copies:

This report shall not be reproduced except in full, without written approval of Northwest Testing, Inc. SHEET 1 of 1 REVIEWED BY: Bridgett Adame

TECHNICAL REPORT

Northwest Testing, Inc. A Division of Northwest Geotech, Inc.

9120 SW Pioneer Court, Suite B, Wilsonville, Oregon 97070 | ph: 503.682.1880 fax: 503.682.2753 | www.nwgeotech.com

Corrosivity Tests Summary

				4										
BGL	#024	-011		Date	:1/16	/2019	_	Tested By:	PJ	-	Checked:		PJ	
Clien	t: McMille	n Jacobs Ass	ociates	Project	. <u> </u>	WV	<u>WSP WTP_</u>	1.0			Proj. No:	58	387.0	
Remarks	s: The unusually	/ high resistivity	/ value for TP	-4, S-1 was con	firmed.		-							
Sa	mple Location	or ID	Resistiv	/ity @ 15.5 °C (0	Ohm-cm)	Chloride	Sul	fate	рН	OR	Р	Sulfide	Moisture	
			As Rec.	Min	Sat.	mg/kg	mg/kg	%		(Red	ox)	Qualitative	At Test	Soil Visual Description
						Dry Wt.	Dry Wt.	Dry Wt.		E _H (mv)	At Test	by Lead	%	
Boring	Sample, No.	Depth, ft.	ASTM G57	Cal 643	ASTM G57	EPA 300.0	EPA 300.0	EPA 300.0	ASTM G51	ASTM G200	Temp °C	Acetate Paper	ASTM D2216	
B-1	S-1	2.5-4	-	-	2,354	7	36	0.0036	6.3	502	15	Negative	17.9	Brown Silty SAND
B-2	S-1	2.5-4	-	-	7,884	7	3	0.0003	5.9	513	15	Negative	24.1	Dark Reddish Brown SILT
TP-4	S-1	2-3	-	-	79,679	14	2	0.0002	6.3	520	15	Negative	35.9	Dark Reddish Brown SILT

BENCHMA GEOLABS	RK sance Acc	JAPPCA -	Moistu	Moisture-Density-Porosity Report (ASTM D7263b)										
BGL Job No:	024-011			Project No	5887.0	By:	PJ							
Client:	McMillen Jacobs	Associates		Date:	01/06/19									
Project Name:	WWSP WTP-1.0			Remarks:										
Boring:	B-2	B-2												
Sample:	S-2	S-3												
Depth, ft:	5-6.5	7.5-8												
Visual	Brown SILT	Brown SILT												
Description:	w/ Sand													
Actual G _s														
Assumed G _s														
Moisture, %	28.9	29.6												
Wet Unit wt, pcf														
Dry Unit wt, pcf														
Dry Bulk Dens.pb, (g/cc)														
Saturation, %														
Total Porosity, %														
Volumetric Water Cont, Ow, %														
Volumetric Air Cont., Oa,%														
Void Ratio														
Series	1	2	3	4	5	6	7	8						
then the saturation, poro	s Curves, Spec	fic Gravity	Considered to Mois	sture-Density	, ,									
		$\land \land$	2.6		The Ze	ro Air-Voids cu	rves	■Series 1						
130		$\left \right\rangle$		2.8	at 100%	saturation for	, , , , , , , , , , , , , , , , , , ,	A Series 2						
120					each va	alue of specific								
<u>ខ</u> ្ល 110 –								×Series 3 ×Series 4						
)ensity,								Series 5						
90								+ Series 6						
80								- Series 8						
70	_													
0.0	5.0 10).0 15	.0 20. Moisture	0 25.0 Content, %	0 30.0	35.0	40.0							

Appendix D

Previous Explorations

PROJE	CT #	5106.0
	DA DECE 20	ATE EMBER D14
	FIG	URE
		51

			(
STNIBOL	SAMPLING DESCRIPTION										
	Location of sample obtained in general acco with recovery	rdance with A	ASTM D 1586 Standard P	enetration Test							
	Location of sample obtained using thin-wall accordance with ASTM D 1587 with recovery	Shelby tube o	or Geoprobe® sampler in	general							
	Location of sample obtained using Dames & with recovery	Moore samp	ler and 300-pound hamr	ner or pushed							
	Location of sample obtained using Dames & recovery	Moore and 1	40-pound hammer or pu	ished with							
X	Location of sample obtained using 3-inch-O.D. California split-spoon sampler and 140-pound hammer										
X	Location of grab sample	Graphic L	og of Soil and Rock Types								
	Rock coring interval Observed contact between soil or rock units (at depth indicated)										
$\underline{\nabla}$	Water level during drilling										
Ţ	Water level taken on date shown										
GEOTECHN	CAL TESTING EXPLANATIONS										
ΑΤΤ	Atterberg Limits	PP	Pocket Penetrometer								
CBR	California Bearing Ratio	P200	Percent Passing U.S. Sta	andard No. 200							
CON	Consolidation	1200	Sieve								
		DEC	Positiont Modulus								
	Direct Shear		Sieve Cradation								
	Undersmeter Cradation		Toniono								
	Noisture Content	TUR	TOrvarie								
MC	Moisture Content		Unconfined Compressiv	ve Strength							
MD	Moisture-Density Relationship	VS	Vane Shear								
		кРа	Kilopascal								
Р	Pushed Sample										
ENVIRONME	ENTAL TESTING EXPLANATIONS										
CA	Sample Submitted for Chemical Analysis	ND	Not Detected								
Р	P Pushed Sample NS No Visible Sheen										
PID	Photoionization Detector Headspace	SS	Slight Sheen								
	Analysis	MS	Moderate Sheen								
ppm	Parts per Million	HS	Heavy Sheen								
44											
CEOD 15575 SW Sequoia Portland Off 503.968.8787	ESIGNZ Parkway - Suite 100 DR 97724 Fax 503.968.3068	RATION KEY		TABLE A-1							

RELATIVE DENSITY - COARSE-GRAINED SOILS														
Relat	ive Den	sity	Sta	ndard Resi	Pene stan	etration ce	Γ	Dames & (140-p	& Moore S ound hai	Sampler mmer)	C	ames & N (300-pou	loore Sampler nd hammer)	
Ve	ery Loos	e		0	- 4				0 - 11			() - 4	
	Loose			4	- 10				11 - 26			4	- 10	
Med	ium Der	ıse		10	- 30)			26 - 74			10) - 30	
	Dense			30	- 50)			74 - 120			30 - 47		
Ve	ry Dens	e		More	than	50		Mo	pre than 120				than 47	
CONSIST	FENCY	- FINE-GI	RAINE	D SO	ILS									
Consiste	ncy St	tandard P Resis	enetra tance	ation	Daı (1	nes & Moo 40-pound	ore Sa hamı	mpler mer)	Dames (300-p	& Moore Sa bound ham	ampler mer)	er) Unconfined Compressive Strength (tsf)		
Very Soft Less than			han 2			Less th	an 3		l	ess than 2		Le	ss than 0.25	
Soft		2 -	4			3 -	6			2 - 5		0).25 - 0.50	
Medium S	Stiff	4 -	8			6 - 1	2			5 - 9			0.50 - 1.0	
Stiff		8 -	15			12 -	25			9 - 19			1.0 - 2.0	
Very Sti	ff	15 -	30			25 -	65			19 - 31			2.0 - 4.0	
Hard		More t	han 30)		More th	an 65		М	ore than 3		Mo	ore than 4.0	
		PRIMA	RY SO	IL DI	/ISIC	ONS			GROUI	P SYMBOL		GROU	IP NAME	
GRAV			GRAVE	L		CLEAN G (< 5%	RAVE fines)	LS	GW	/ or GP		GF	RAVEL	
				- o o/ . r		GRAVEL W	ITH FI	INES	GW-GM	1 or GP-GM		GRAVE	L with silt	
		(more	00% Of	(≥ 5% and ≤	12%	fines)	GW-GC	C or GP-GC		GRAVE	L with clay		
		ret	ained	on						GM		silty GRAVEL		
	JKAINEL	No	. 4 siev	ve)		GRAVELS W	/ITH F	INES		GC		clayey GRAVEL		
501	LJ					(> 12%	nnes,)	G	C-GM		silty, clay	yey GRAVEL	
(more th retaine	(more than 50% retained on		% SAND			CLEAN : (<5% f	SAND fines)	S	SM	/ or SP		S	AND	
NO. 200	sieve)	(50% or mo		-		SANDS WI	TH FI	NES	SW-SM	1 or SP-SM		SAND	with silt	
				nore of $(\geq 5\% \text{ and } \leq 1\%)$			12%	fines)	SW-SC or SP-SC			SAND	with clay	
		coarse frac								SM		silty	/ SAND	
		No. 4 sie		eve) SANDS (SANDS WI	TH FI	NES	SC			claye	ey SAND	
					(> 12% fines)				S	C-SM		silty, clayey SAND		
										ML		SILT		
FINE-GR	AINED							50	CL			CLAY		
SOI	LS				LI	quid limit l	ess th	nan 50	C	L-ML		silty	y CLAY	
(5.00/		SILT	AND C	CLAY						OL	ORG	ORGANIC SILT or ORGANIC CLA		
10 %0C) nass	ing									MH		0	SILT	
No. 200	sieve)					Liquid lin	nit 50	or		СН		C	CLAY	
						grea	uer			OH	ORG	ANIC SILT	or ORGANIC CLAY	
		HIGH	LY OR	GANIC	SOIL	S				PT		P	PEAT	
MOISTU CLASSIF	RE ICATIO	N		ADD	οιτιο	ONAL COM	ISTIT	FUENT S	5					
-	_					Se	econd	lary gra	nular con	nponents o	or other	materials		
Term	F	ield lest				Si	It and	l Clav In	:	manmade	ucons,	Sand and	Gravel In:	
				Perce	ent	Fire Cul				Percent	- !	Cuel:::	C	
dry	dry to	touch	re,	Tere		Fine-Grai Soils	nea	Graine	arse- ed Soils	rereent	Fine- S	Grained	Grained Soils	
moist	damp,	without		< 5	5	trace		tr	ace	< 5	t	race	trace	
	visible	moisture		5 -	12	minor	-	W	vith	5 - 15	r	ninor	minor	
wet	visible	free wate	r,	>1	2	some		silty/	clayey	15 - 30	١	with	with	
usually saturated					> 30 sandy/gravelly Ind						Indicate %			
GEO 15575 SW 5 Pr Off 503.967	CEODESIGNE 15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068					SOIL	CLAS	SSIFICA	TION SY	/STEM			TABLE A-2	

HARDNESS	DESCRIPTION	
Extremely Soft (R0) Very Soft (R1)	Indented by thumbnail Can be peeled by pocket knife or scratched with finger nail	
Soft (R2)	Can be peeled by a pocket knife with difficulty	
Medium Hard (R3)	Can be scratched by knife or pick	
Hard (R4)	Can be scratched with knife or pick only with difficulty	
Very Hard (R5)	Cannot be scratched with knife or sharp pick	
WEATHERING	DESCRIPTION	
Decomposed	Rock mass is completely decomposed	
Predominantly Decomposed	Rock mass is more than 50% decomposed	
Moderately Weathered	Rock mass is decomposed locally	
Slightly Weathered	Rock mass is generally fresh	
Fresh	No discoloration in rock fabric	
JOINT SPACING	DESCRIPTION	
Very Close	Less than 2 inches	
Close	2 inches to 1 foot	
Moderate Close	1 foot to 3 feet	
Wide	3 feet to 10 feet	
Very Wide	Greater than 10 feet	
FRACTURING	FRACTURE SPACING	
Very Intensely Fractured	Chips and fragments with a few scattered short core lengths	
Intensely Fractured	0.1 foot to 0.3 foot with scattered fragments intervals	
Moderately Fractured	0.3 foot to 1 foot with most lengths 0.6 foot	
Slightly Fractured	1 foot to 3 feet	
Very Slightly Fractured	Greater than 3 feet	
Unfractured	No fractures	
HEALING	DESCRIPTION	
Not Healed Partly Healed Moderately Healed Totally Healed	Discontinuity surface, fractured zone, sheared material or filling Less than 50% of fractured or sheared material Greater than 50% of fractured or sheared material All fragments bonded	not re-cemented
GEODESIGNZ 15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068	ROCK CLASSIFICATION SYSTEM	TABLE A-3

BORING LOG DEA-118-02-5.12-81_32_36-38_56-TVWD1_13-INF1_2.GPJ GEODESIGN.GDT PRINT DATE: 11/3/14:KT

	DEPTH FEET HAVE MATERIAL DESCRIPTION		EI EVATION	DEPTH	TESTING	SAMPLE	▲ BLOW COUN ● MOISTURE C □□□□ RQD% ZZ	NT CONTENT % CORE REC%	INSTALI COI	ATION AND MMENTS		
-	—20.0— - - -	000	(continued from Exploration con 20.2 feet.	n previous page) npleted at a depth of		<u>92.0</u> 20.2				50/2"		
	- 22 5											
	_											
	25.0 —											
	-											
	-											
	27.5 — -											
	-											
	- 30.0 —											
	-											
/3/14:KT	-											
DATE: 11,	32.5 —											
PRINT I	_											
GN.GDT	-											
GEODESI	35.0											
F1_2.GPJ	-											
/D1_13-IN	- 37.5 —											
8_56-TVW	-											
_32_36-3	-											
2-5.12-81	40.0							() 50	<u>: : : </u> 100		
EA-118-0.	BORING METHOD: mud rotary (see report text)					LOGO	JED B	Y: CR	BORING BI	CON T DIAMETER: 4 7/8-inch	1PLETED: 06	6/19/13
C LOG DI					BORING B-3 (continued)							
BORIN	NOVEMBER 2014 15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068		SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-3						IGURE A-3			

	DEPTH FEET	GRAPHIC LOG	MATER	IAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COI ● MOISTURI Ⅲ RQD% [UNT E CONTENT % Z CORE REC%	INS	TALLATION AND COMMENTS
	—20.0— -		Exploration con feet.	npleted at depth of 20.0	<u>212.4</u> 20.0						
	-										
	-										
	- 22.5										
	-										
	- 25.0 —										
	_										
	_										
	- 27.5 —										
	_										
	_										
	30.0 —										
F	_										
/3/14:K	-										
DATE: 1	32.5 —										
PRINT	-										
CN.GDT	_										
EODESIC	35.0 — _										
_2.GPJ 0	-										
_13-INF1	-										
5-TVWD1	- 37.5										
36-38_5	-										
2-B1_32_	40.0								50 10		
8-02-5.1.		DR	ILLED BY: Western States S	oil Conservation, Inc.	LOG	GED B	Y: CR			COMPLET	ED: 06/19/13
DEA-11	BORING METHOD: mud rotary (see report text)						BORING	BIT DIAMETER: 4 7/8	-inch		
NG LOG	GEODESIGNE DEA-118-02-5.12		BORING B-4 (continued)								
BORI	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068		NOVEMBER 2014	SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGUR						FIGURE A-4	

DEPTH FEET			RIAL DESCRIPTION	ELEVATION DFPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□ RQD% □□ CORE REC% 0 50	INS ⁻	TALLATION AND COMMENTS
		Medium hard to BASALT; slightl fractured (joint orange infilling becomes vesicu Medium hard to BASALT; slightl very intensely f not healed, 0-8 Exploration cor 25.0 feet.	o hard (R3-R), gray y weathered, intensely s not healed, 0-45°, light). ular at 23.0 feet o hard (R3-R4), gray y weathered to fresh, ractured (joints rough, 0°), vesicular. npleted at a depth of	229. 20.0 23.5 2224. 25.0				Possible feet with some s	e flow contact at 24.7 th brown clay with and.
	DRILLED BY: Western States Soil Conservation, Inc.					BY: CF	v 50 R	COMPLET	ED: 06/20/13
	BORING METHOD: mud rotary (see report text)						BORING BIT DIAMETER: 47	//8-inch	
Ge	GEODESIGNE DEA-118-02-5.12						BORING B-5 (continued)		
15575 SV Off 503.	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 1	24TI WA	H AVENUE EXTENSION PROJECT	CT	FIGURE A-5

BORING LOG DEA-118-02-5.12-81_32_36-38_56-TVWD1_13-INF1_2.GPJ GEODESIGN.GDT PRINT DATE: 11/3/14:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	FI EVATION	DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □ RQD% 2 CORE REC% 50	INS	FALLATION AND COMMENTS
22.5 -		(continued from Medium hard t BASALT; intens moderately fra moderate infill open, planar, r	n previous page) o hard (R3-R4), gray ely weathered to fresh, ctured, clean to ing, slightly open to ough to smooth.	2:	<u>34.1</u> 21.5					
25.0 —		soft (R2), brow weathered fror	n and black; intensely n 25.0 to 26.5 feet						_	
27.5 —		Soft (R2), brow weathered, mo (moderately op rough, horizon Soft to medium to black BASAL very intensely	n-gray BASALT; intensely derately fractured en, very thin infilling, tal). hard (R2-R3), dark gray T; intensely weathered, fractured into angular	21 2 2 2	29.1 26.5 2 <u>8.1</u> 27.5			<u></u>	-	
30.0 —		Medium hard t BASALT; slight moderately fra rough, 45 -90")	o hard (R3-R4), gray y weathered, slightly to ctured (planar, open,	21	<u>26.1</u> 9.5			<u></u>	-	
32.5									-	
37.5		Very soft to me BASALT; intens moderately to to thin, tight to healed). Extremely soft light gray BASA	edium hard (R1-R3), gray ely weathered, intensely fractured (clean o moderately open, not to soft (R0-R2), brown to	<u>2:</u> 3	<u>20.1</u> 5.5 <u>18.1</u> 57.5				_	
40.0		intensely weath where rock is r	nered, intensely fractured not cohesive residuum.					0 50	00	
DRILLED BY: Western States Soil Conservation, Inc. BORING METHOD: mud rotary (see report text)							Y: CR	RODINIC DIT DIAMETED. 4 7/	COMPLET	ED: 06/21/13
GEODESIGNE DEA-118-02-5.12						BORING BIT DIAMETER: 4 7/8-inch BORING B-6				
DEVICESIGNZ DEVICESIZ 15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068 NOVEMBER 2014				(continued) SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-6					FIGURE A-6	

BORING LOG DEA-118-02-5.12-81_32_36-38_56-TVWD1_13-INF1_2.GPJ GEODESIGN.GDT PRINT DATE: 11/3/14:KT

DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	EL EVATION	DEPTH	TESTING	SAMPLE	BLOW COUNT MOISTURE CONTENT % RQD% CORE REC% 50 50 1	INS ⁻	TALLATION AND COMMENTS
		(continued from Very soft to me with orange me to moderately of fractured (roug open, clean to healed, 0-45°). vesicular at 43 Medium hard ((mottled BASAL moderately fra open, clear to v not healed), ve Exploration con 52.5 feet.	n previous page) edium hard (R1-R3), gray ottled BASALT; intensely weathered, moderately yh, tight to moderately yvery thin infilling, not .0 feet R3), gray with orange T; slightly weathered, ctured (slightly open to very thin infilling, rough, sicular.	24 4 21 4	<u>13.1</u> 12.5 08.1 17.5					
60.0	DR	ILLED BY: Western States	Soil Conservation Inc		LOG	GED B	Y: CR	0 50 1	00 COMPLET	ED: 06/21/13
	BORING METHOD: mud rotary (see report text)							BORING BIT DIAMETER: 4 7/	3-inch	
Ge	GEODESIGNE DEA-118-02-5.12							BORING B-6 (continued)		
15575 SV Off 503.9	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 NOVEMBER 2014 Off 503.968.8787 Fax 503.968.3068 NOVEMBER 2014			SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-6					FIGURE A-6	

	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	<u>ELEVATION</u> DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□ RQD% ZZ CORE REC% 0 50 1		FALLATION AND COMMENTS	
	—20.0—		(continued from	n previous page)	247.7						
	- - - 22.5		Hard to very ha fresh, slightly f and 40° [top an [iron oxide/sec mineralization] rough), vesicul	ard (R4-R5), gray BASALT; fractured (jointed, 15° nd bottom], thin infilling condary white curved, smooth to ar <5%.	20.5						
						UC					
	 25.0 —		Hard to very hand to very hand to very hand fresh, moderat	ard (R4-R5), gray BASALT; ely fractured (jointed 40°	243.2 25.0 242.7 25.5			<u></u>	-		
	_ 27.5 —		Hard to very ha fresh to slightl moderately fra 65° to vertical, planar, smooth infilling), vesico	ard (R4-R5), gray BASALT; y weathered, slightly to ctured (jointed 25°, 40°, curved, undulating, to rough, very thin ular <5%.							
	- - 30.0 —		becomes medi brown; modera weathered, into vesicular 15%, alteration/brec	um hard (R3), gray- itely to intensely ensely fractured, hydrothermal ciated at 29.0 feet	<u>237.7</u> 30.5						
INT DATE: 11/3/14:KT	- - 32.5 —		brown BASALT moderately to (jointed 30°, 5(undulating, sm thin to thin inf inch]), vesicula Very soft to mo	moderately weathered, intensely fractured)°, 80°, planar, curved, ooth to rough with very illing [<1 mm to 3/8- r 10%.	236.2 32.0						
PJ GEODESIGN.GDT PR			brown-gray BA intensely weat intensely fracti <5%, flow botto light brown int 34.0 to 35.5 Very soft to so	SALT; moderately to nered, moderately to ured, brecciated vesicles om. erflow, soil horizon from ft (R1-R2), dark gray to	<u>232.7</u> 35.5						
3_56-TVWD1_13-INF1_2.G	 37.5 		weathered to c fractured (joint planar, smooth clay), vesicular hydrothermal a	lecomposed, intensely lecomposed, intensely led 10°, 30°, curved, l, thin, brecciated with with clay 5-10% vesicles, literation.							
.12-81_32_36-35	- - 40.0 —							0 50 10	00		
3-02-5.		DRI	LLED BY: Western States	Soil Conservation, Inc.	LOG	GED B	Y: JO	GH	COMPLET	ED: 06/26/13	
EA-11			BORING ME	FHOD: mud rotary and HQ rock coring (see r	report text)		BORING BIT DIAMETER: 4 7/8	-inch		
GEODESIGNE DEA-118-02-5.12						BORING B-7 (continued)					
BORIN	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-7						

DEPTH FEET	MATE	RIAL DESCRIPTION	ELEVATION	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□ RQD% □□□ CORE REC% 0 50	INS7	FALLATION AND COMMENTS
-40.0	(continued from	n previous page)	227	7	П			
42.5	Alternating zou R4), brown-gra to fresh, slight (jointed 20-30° rough, very thi oxide/clay]), ve infilled with cla	nes of soft to hard (R2- y BASALT; decomposed ly to moderate fracture 50-60°, planar curved, n to thin infilling [iron esicular 5-20%, partially ly, brecciated zones.	40.5	7				
45.0 - 11	Soft (R2), brow moderately to intensely fracti planar, curved, to moderate in gray secondary vesicular 20-25	n-gray BASALT; intensely weathered, ure (jointed 10°, 30°, 50°, undulating, rough, clean filling [iron oxide/dark mineralization]), 5%.	<u>223.</u> 44.5 <u>221.</u> 46.5	<u>Z</u>			_	
	Hard to very ha fresh to slightl moderately fra	ard (R4-R5), gray BASALT; y weathered, slightly to ctured, vesicular 5%.					2	
	Soft to mediun red-brown BAS weathered, international fracture (jointernational)	n hard (R2-R3), gray to ALT; slightly to intensely ensely to moderately d 0-10°, 50°, 60°, planar,	<u>215.</u> 53.0 <u>214.</u> 54.2	2) 0			Z	
55.0 1,1	Curved, undula very thin infilli vesicular 15-20 Very soft to so BASALT; intens	ting, smooth to rough, ng [iron oxide/clay]), ‰ mm scale. ft (R1-R2), gray-brown sely weathered, intensely	<u>212.</u> 55.5	7			-	
57.5	to very intense 40°, 60° to vert joints, modera oxide and clay diameter.	ly fracture (jointed 0-20°, ical with intersecting te to thin infilling [non), vesicular 20% to 1/4- rown at 55.0 feet					_	
60.0	brown to gray intensely weat slightly fractur irregular, roug	BASALT; moderately to hered, moderately to ed (0-10°, 20-30°, planar, h), vesicular 25-35%,				0 50	100	
[[ORILLED BY: Western States	Soil Conservation, Inc.	LO	GGED	BY: JG	н	COMPLET	ED: 06/26/13
	BORING ME	THOD: mud rotary and HQ rock coring (see	report te	xt)		BORING BIT DIAMETER: 4 7/	8-inch	
Geo	DEA-118-02-5.12	BORING B-7 (continued)						
15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-7				

	DEPTH FEET	GRAPHIC LOG	MATE	RIAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□ RQD% □□ CORE REC% 0 50 1	INST	ALLATION AND COMMENTS
-	60.0 62.5 65.0	 brecciated, hydrothermally altered, partially infilled with clay to 3/4-inch diameter. (continued from previous page) Hard to very hard (R4-R5), gray-brown BASALT; fresh to slightly weathered, slightly to moderately fractured (jointed 20°, 35°, 60°, planar, curved, undulating, very thin to moderate infilling {thickness <1 mm to <0.1 foot with iron oxide clay/breccia], smooth to rough with with slickensides. vesicular 5-10% at 62.0 feet vesicular <5% at 64.5 feet 			207.7 60.5				-	
	_ _ 67.5 — _ _ _ _		Soft to medium to gray BASALT weathered, mo (jointed 30°, 50 undulating, thi [iron oxide and foot]), vesicula diameter (60% brecciated, hyd	hard (R2-R3), brown-red ; moderately to intensely derately fractured °, 60-70°, planar, curved, n to moderate infilling clay breccia to 0.1 r 20-30%, 1/2-inch infilled with clay), lrothermal alteration.	<u>202.7</u> 65.5				-	
.GDT PRINT DATE: 11/3/14:KT	70.0		Medium hard to hard (R3-R4), gray- brown BASALT; slightly to moderately weathered, moderately fractured (jointed 20°, 40°, 60°, and 80° to vertical, planar, curved, and undulating, very thin to thin infilling [iron oxide and clay to 3/8-inch]), vesicular 20-25% to 3/4-inch diameter with approximately 50% filled with clay, brecciated in zones with possible faint slickensides on wider joint. Soft to medium hard (R2-R3), brown- orange to gray BASALT; moderately to intensely weathered, moderately fracture (jointed 10°, 20°, 50°, 65-70°, planar, curved undulating, smooth to rough with moderately thin to thin infilling [clay iron oxide]), vesicular <10% in zones, brecciated in zones.						- - -	
8_56-TVWD1_13-INF1_2.GPJ GEODESIGN	75.0 — - - - 77.5 — - -								-	
.12-81_32_36-3	- - 80.0	very soft to soft (R1-R2) altered zone from 78.8 to 79.4 feet (interflow?)						0 50 1	00	
-118-02-5		LLED BY: Western States	Soil Conservation, Inc.	LOGGED BY: JGH COMPLETED: 06/26/13						
LOG DEA	Сf		DEA-118-02-5.12	BORING BIT DIAMETER: 4 //8-Inch						
BORING	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A					

DEPTH FEET	GRAPHIC LOG	MATEF	RIAL DESCRIPTION	ELEVATION DFPTH	TESTING	SAMPLE	BLOW COUNT MOISTURE CONTENT % CORE REC% 50 50 10		FALLATION AND COMMENTS			
		(continued fror	n previous page)	187.3	,							
82.5	 Medium hard to hard (R3-R4), gray BASALT; slightly to moderately weathered, moderately fractured (jointed 20°, 35-40°, 60°, 75° planar, curved, undulating, stepped, rough, moderately thin infilling [iron oxide and clay]), vesicular20% to 1/4-inch diameter. 			80.5	_							
85.0-		gray-red interflow, clay from 84.0 to 84.5 feet										
05.0		soft (R2); inten	sely fractured at 85.0	182.3	2							
		Medium hard to brown BASALT; weathered, slig fractured (joint thin to thin infi smooth to roug joints), vesicula diameter. gray at 87.0 fee	o hard (R3-R4), gray- fresh to slightly htly to moderately ed 20°, 40°, 60-70°, very lling [iron oxide/clay] gh, with intersecting ar 30% to 1/2-inch et	85.5								
-												
90.0 —												
- - - 92.5 —		Hard to very ha fresh, moderat (jointed 10°, 20 undulating/cur oxide staining) inch diameter v	ard (R4-R5), gray BASALT; ely to slightly fractured °, 55°, planar ved, rough, very thin iron , vesicular 25-30% to 3/4- with rare zeolites.	90.5	7							
-												
95.0		Hard to very ha fresh to slighth fractured (joint curved, planar, rough with slic very thin infillin	at 94.0 teet ard (R4-R5), gray BASALT; y weathered, moderately ed 10-20°, 30°, 65-80°, undulating, smooth to kensides on 70° joints, ng [iron oxide] with 97.0 feet [approximatoly	<u>172.</u> 95.5	2							
		3 inches of clay	y], with intersecting									
100.0		joints), vesicula zone of yellow (hydrothermal?	ar <5%. alteration) from 96.5 to 97.9 feet				0 50 10	00				
	DRILLED BY: Western States Soil Conservation Inc.											
RORING METHOD: mud rotary and HO rock coring (see re-						טנ . וי		inch	LD. 00/20/13			
GE	OL	JESIGN≝	DEA-118-02-5.12	(continued)								
15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-7								

	DEPTH FEET	GRAPHIC LOG	MATER	IAL DESCRIPTION	ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□□ RQD% □□□ CORE REC% 0 50 1		CALLATION AND COMMENTS				
	-100.0		(continued from	n previous page)	167.7									
	Hard to very ha fresh to slight to intensely fra 60°, 75°, plana very thin to mo lizer structure 102.5 102.5 102.5 102.5			rd (R4-R5), gray BASALT; v weathered, moderately ctured (jointed 10°, 25°, , curved, undulating, derately thin infilling ondary mineralization]), im scale.	167.7				-					
			Medium hard to brown BASALT; intensely to mo (jointed 15-20°, thin to moderat oxide/clay], pla smooth to roug vesicular 25% to 20% infilled wit alteration. thin zone of alt 106.5 to 107.0	b hard (R3-R4), gray- moderately weathered, derately fractured 40°, 60-65°, 85-90°, very ely thin infilling [iron nar, stepped, curved, h), partly healed, o 1/2-inch diameter with h clay, hydrothermal (?) eration (clay-rich) from feet	105.5				7					
DESIGN.GDT PRINT DATE: 11/3/14:KT			Medium hard to hard (R3-R4), gray- orange BASALT; slightly to moderately weathered, moderately to intensely fractured (jointed 20°, 50°, 75-85°, curved, undulating, planar, rough, very thin to moderately thin infilling [iron- oxide, clay/secondary mineralization] with intersecting joints), vesicular 20- 25% to 1/2-inch diameter. vesicular <10% to 3/8-inch diameter at 113.0 feet intensely fractured at 113.5 feet						-					
2-B1_32_36-38_56-TVWD1_13-INF1_2.GPJ GEOI		Medium hard to hard (R3-R4), gray BASALT; fresh to slightly weathered, moderately fractured (jointed 15°, 30°, 50°, 70°, 80° to vertical, curved, stepped, planar undulating, clean to very thin infilling), vesicular 15-25% to 1/2-inch diameter.							-					
12-5.12		DRILLED RY: Western States Soil Concentration line						u 50 I		ED: 06/26/13				
G LOG DEA	Ge		DEA-118-02-5.12	BORING B-7										
BORIN	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 NOVEMBER 2014 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-7					FIGURE A-7				

	DEPTH FEET	DEPTH FEET HAVE MATERIAL DESCRIPTION		ELEVATION DEPTH	TESTING	SAMPLE	▲ BLOW COUNT ● MOISTURE CONTENT % □□□□ RQD% CORE REC9 ○ 50	INS	TALLATION AND COMMENTS			
	-120.0		(continued from Exploration con 120.5 feet.	n previous page) npleted at a depth of	<u>147.7</u> 120.5							
	-											
	122.5											
	-											
	- 125.0 —								_			
	-											
	-											
	127.5 —								-			
	-											
	- 130.0 —								_			
	-											
/3/14:KT	-											
DATE: 11	132.5 —								_			
PRINT	-											
IGN.GDT	-											
GEODES	- 133.0											
NF1_2.GPJ	_											
ND1_13-II	- 137.5 —								_			
856-TV	-											
1_32_36-5	-											
02-5.12-B	140.0 —	LLED BY: Western States	Soil Conservation. Inc.									
DEA-118-		BORING MET	"HOD: mud rotary and HQ rock coring (see re	e report text) BORING BIT DIAMETER: 4 7/8-inch								
NG LOG I	GEODESIGN≅ DEA-118-02-5.12					BORING B-7 (continued)						
BORIN	15575 SW Sequoia Parkway - Suite 100 Portland OR 97224 Off 503.968.8787 Fax 503.968.3068				SW 124TH AVENUE EXTENSION PROJECT WASHINGTON COUNTY, OR FIGURE A-7							
Log of Test Pit TP-1

PROJECT: 124th Avenue Transmission Line PROJECT NUMBER: 5106.0 LOCATION:			DATE OF EXCAVATION: 8/25/2014 TEST PIT DEPTH: 2 FT				8/25/2014		ELEVATION: FT DATUM: COORDINATES: N E	
epth (FT) Ter Level Lev. (FT)	DESCRIPTION	uscs	RAPHIC LOG	WELL	MBER	ks EC%	MPLES	N	PENETRATION RESISTANCE BLOWS/FT ■ 20 40 60 80 WATER CONTENT - ATTERBERG	
MA EI	Silty GRAVEL (GM), brown, dry, loose, angular clasts less than 12-inch in diameter. [Fill]		9		N	Ϋ́				
-		GM								
-	Basalt, brown-grey, slightly weathered, strong, closely spaced joints.									
	Excavator refusal at 2.0 feet. BOTTOM OF TEST PIT AT 2 FT									

BNSF BRIDGE TEST PIT LBNE TEST PIT LOGS.GPJ UNIVERSITY LINK PROGRESS.GPJ 9/3/14 REV.

SHEET 1 of 1

Log of Test Pit TP-2

PROJECT: 124th Avenue Transmission Line PROJECT NUMBER: 5106.0 LOCATION:			DATE OF EXCAVATION: 8/25/2014 TEST PIT DEPTH: 2 FT				8/25/2014		ELEVATION: FT DATUM: COORDINATES: N E		
DEPTH (FT) WATER LEVEL ELEV. (FT)	DESCRIPTION	nscs	GRAPHIC LOG	WELL	NUMBER	TYPE/ REC%	MPLES	N	PENETRATION RESISTANCE BLOWS/FT \blacksquare 20 40 60 80 WATER CONTENT - ATTERBERG PL MC LL 20 40 60 80 NOTES		
_	Silty GRAVEL (GM), brown, dry, loose, angular clasts less than 12-in in diameter. [Fill]	GM									
-	Basalt, brown-grey, Slightly weathered, strong, closely spaced joints.										
	Excavator refusal at 2.0 feet. BOTTOM OF TEST PIT AT 2 FT										

BNSF BRIDGE TEST PIT LBNE TEST PIT LOGS GPJ UNIVERSITY LINK PROGRESS GPJ 9/3/14 REV-

SHEET 1 of 1

9750 SW Nimbus Avenue Beaverton, OR 97008-7172 p | 503-641-3478 f | 503-644-8034

MEMORANDUM

To: Ken Leahy / Ken Leahy Construction, Inc.

Date: April 13, 2016 **GRI Project No.:** 5838

DRAFT

From: Michael Reed, PE, GE; Brian Bayne, PE; and Seth Reddy, PhD, EIT

Re: Preliminary Subsurface Investigation for Pre-purchase Due Diligence 90-Acre Site 12900 SW Tualatin-Sherwood Road Sherwood, Oregon

At your request, GRI has conducted a preliminary subsurface investigation as part of a pre-purchase due diligence evaluation for a 90-acre site at 12900 SW Tualatin-Sherwood Road in Sherwood, Oregon. Our services included a review of existing geotechnical data for the area and limited subsurface explorations. This memorandum describes the work accomplished and provides a site plan with table showing approximate depths to basalt and groundwater encountered in the borings.

PROJECT DESCRIPTION

Ken Leahy Construction, Inc. (Leahy) is considering acquiring the 90-acre site for development into multiple buildable lots for commercial development. Preliminary site grades for the lots are unavailable.

SITE DESCRIPTION

Topography and Surface Conditions

The existing ground surface elevation varies significantly across the site from about elevation 192 ft (North American Vertical Datum of 1988 [NAVD88]) on the northern edge of the site to about elevation 280 ft near the southeast corner of the site. An existing farmhouse and several out-buildings are located near the north edge of the property. The northeast portion of the site is covered with grass in an area that was previously used for agricultural purposes. The remainder of the site is heavily wooded with mature trees and shrubs. Basalt outcroppings were observed most predominately near the northwest quarter and middle of site, but are present throughout the heavily wooded areas. Cobbles and boulders are present at the ground surface in the wooded areas.

Geology

This site is at the northern edge of an area known as the Tonquin Scablands, where Pleistocene-age catastrophic floods from the Columbia River scoured away the soil, leaving rock exposed at the ground surface or covered by only a thin layer of soil. Portions of the area may be mantled with a thin layer of Pleistocene-age lacustrine (floodplain) deposits of the Columbia River, consisting of interlayered sand, silt, and gravel. Below the thin zone of surficial soil, the site is underlain by Columbia River Basalt, a thick

sequence of dark gray, basalt lava flows of mid-Miocene age. Based on our experience with other nearby projects and our observations while onsite, we anticipate basalt is present at relatively shallow depths.

SUBSURFACE CONDITIONS

General

Subsurface materials and conditions were investigated on a preliminary basis on March 28 and 29, 2016, with 48 borings, designated B-1 through B-48. The borings were advanced to depths of 15 to 30 ft at the approximate locations shown on the Site Plan, Figure 1. The borings were completed by McCallum Rock Drilling, Inc. of Albany, Oregon using a track-mounted FRD Furukawa HCR 900-ES II drilling rig. The rock drilling rig used open-hole air-rotary impact drilling methods typically used for production blasting in aggregate quarries and large rock cuts. The driller was contracted directly by Leahy, and the exploration locations and depths of the borings were selected by a representative of Leahy. The drill cuttings were diverted to a cyclone to allow collection of disturbed samples of soil and rock. GRI was on site on a full-time basis during drilling and recorded the GPS coordinates and depth to basalt at each boring location. Disturbed soil and rock cuttings were collected as bulk samples removed by hand from the cyclone on an intermittent basis, saved in airtight jars and bags, and returned to our lab for further examination. The depth to rock and estimates of rock weathering and hardness were approximated based on rate of advancement of the drill, color of the drill cuttings, and evaluation of the cuttings samples collected. Following drilling, each hole was left open to allow measurements of static groundwater.

Subsurface Conditions

Based on the disturbed soil cuttings collected during drilling and our observations while onsite, the site is typically mantled with silt or sand soils with varying percentages of clay. We anticipate fill soils may be encountered locally. Basalt was encountered at the ground surface in borings B-28, B-29, B-31, B-33, B-35, and B-39 and beneath the silt and sand soils at depths ranging from 0.5 to 15 ft in borings B-5 through B-8, B-12 through B-19, B-22, B-23, B-30, B-32, B-34, B-36 through B-38, and B-40 through B-48. Basalt was not encountered in borings B-1 through B-4, B-9 through B-11, B-20, B-21, and B-24 through B-27. The approximate depths and relatively hardness of the basalt is presented in a table on Figure 1. Terms used to describe the soil and rock are defined on Tables 1 and 2. For the purpose of discussion, the basalt has been grouped into two categories: very soft (R1) to medium hard (R3), moderately weathered to predominantly decomposed basalt, and soft (R2) to hard (R4), slightly weathered to fresh basalt.

Based on the rate of advancement of the drill rig, color of the drill cuttings, and subsequent evaluation of the cutting samples collected during drilling, the surface of the basalt is typically very soft (R1) to soft (R2), moderately weathered to predominately decomposed, and likely contains some medium hard (R3) zones. Drill cuttings in the moderately weathered to predominately decomposed basalt are typically red-brown to brown and contain few angular pieces of basalt. Borings B-5, B-6, B-18, B-19, B-22, and B-23 were terminated in the moderately weathered to predominantly decomposed basalt at depths ranging from 15 to 20 ft. Zones of moderately weathered to predominantly decomposed basalt were encountered below fresh to slightly weathered basalt at depths of 6 to 21 ft in borings B-14, B-28, B-46, and B-47.

Fresh to slightly weathered, soft (R2) to medium hard (R3) basalt was generally encountered beneath the more weathered basalt at depths ranging from 9 to 18 ft and likely contains zones of hard (R4) basalt. Drill cuttings in the basalt were typically light gray silt- and sand-sized pieces with frequent small fine gravel-sized rock fragments.

Following completion of the drilling, the holes were left open to allow measurements of depth to groundwater. Groundwater depths are provided on Figure 1 and vary considerably across the site. All groundwater measurements were taken in the afternoon of March 29 and indicate perched groundwater conditions.

EXCAVATION METHODS

Final site grading and depth of utilities for the proposed development are currently unknown. We anticipate conventional excavation equipment can be used to excavate the silty and sandy soils overlying the basalt. We anticipate some of the near-surface very soft to soft (R1 to R2) basalt can be excavated with a sufficiently large track-mounted excavator equipped with a rock excavation bucket and rock teeth, or by ripping with a CAT D8 bulldozer, or equivalent, equipped with a single-shank ripper. It should be noted that although the slightly weathered to predominately decomposed basalt is typically very soft (R1) to soft (R2), zones of medium hard (R3) basalt are likely present within this unit. Rock excavation methods, such as hydraulic splitters and chippers or pneumatic hammers, may be needed to excavate the rock in these areas of medium hard (R3) rock. We anticipate the fresh to slightly weathered, soft (R2) to medium hard (R3) basalt will likely require blasting or other rock excavation methods to excavate.

Rock hardness designations provided in this memorandum are based on visual observation of drilling spoils and the rate of drilling. If significant excavation into the basalt is planned, coring of the basalt should be performed to obtain samples for completion of compressive strength testing and to evaluate fracture spacing.

OTHER CONSIDERATIONS

Properties to the south of this site have previously been quarried for aggregate production. We anticipate that some of the rock removed during site grading could be crushed for aggregate. In general, the quality of aggregate decreases as weathering of the source rock increases. The proportion of clay, silt, and sand produced during crushing for aggregate will typically increase as the weathering in the source rock increases. Reduced material strength and chemical changes in the rock mineralogy can result in decreased durability of aggregates produced from weathered rock. In general, a rock mass that is classified as moderately weathered using the relative rock weathering scale on Table 2 can be considered marginal to poor for aggregate production. Rock weathered to the range of predominantly decomposed or decomposed is unsuitable for aggregate production.

LIMITATIONS

This preliminary memorandum has been prepared to aid in the pre-purchase evaluation of the subject property described herein. The findings, conclusions, and recommendations presented in this memorandum are based on our interpretation of the information obtained through the assessment procedures described in this memorandum, based on 48 widely spaced borings advanced at the locations shown on Figure 1. It should be noted that there are significant limitations associated with using air-rotary percussion methods to characterize subsurface conditions. While slower than the air rotary drill, conventional geotechnical drilling methods, especially rock coring, would more accurately characterize rock hardness, fracture spacing, and rock weathering. Due to the method of drilling used for this preliminary evaluation, the estimated thickness, degree of weathering, and hardness of the rock at each exploration should be considered approximate.

In the performance of subsurface investigations, specific information is obtained at specific times, and variations in subsurface conditions may exist across the site. This preliminary report does not reflect any variations that may occur between exploration locations. The nature and extent of variation may not become evident until site development is underway. Consequently, any material volume estimates developed using the information provided in this memorandum should be considered approximations intended for planning purposes only.

The information presented herein is preliminary and provides our general conclusions regarding the depth to rock and excavation methods with respect to the observed site conditions. This information is intended for preliminary planning purposes. Additional geotechnical investigation should be completed as specific projects are developed for specific locations on the property.

Please contact the undersigned if you have any questions.

Submitted for GRI,

Michael W. Reed, PE, GE Principal

Brian J. Bayne, PE Senior Engineer Seth C. Reddy, PhD, EIT Staff Engineer

5838-PRELIM EVAL MEMO

Table 1: GUIDELINES FOR CLASSIFICATION OF SOIL

Relative Density	Standard Penetration Resistance (N-values) blows per foot
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Description of Relative Density for Granular Soil

Description of Consistency for Fine-Grained (Cohesive) Soils

Consistency	Standard Penetration Resistance (N-values) blows per foot	Torvane or Undrained Shear Strength, tsf
Very Soft	0 - 2	less than 0.125
Soft	2 - 4	0.125 - 0.25
Medium Stiff	4 - 8	0.25 - 0.50
Stiff	8 - 15	0.50 - 1.0
Very Stiff	15 - 30	1.0 - 2.0
Hard	over 30	over 2.0

Grain-Size Classification		Modifier for Subclassifi	cation
Boulders: >12 in.		Primary Constituent SAND or GRAVEL	Primary Constituent SILT or CLAY
Cobbles:	Adjective	Percentage of Other	r Material (by weight)
3 - 12 in.	trace:	5 - 15 (sand, gravel)	5 - 15 (sand, gravel)
Gravel:	some:	15 - 30 (sand, gravel)	15 - 30 (sand, gravel)
¹ /4 - ³ /4 in. (fine) ³ /4 - 3 in. (coarse)	sandy, gravelly:	30 - 50 (sand, gravel)	30 - 50 (sand, gravel)
Sand:	trace:	< 5 (silt, clay)	
No. 200 - No. 40 sieve (fine) No. 40 - No. 10 sieve (medium)	some:	5 - 12 (silt, clay)	Relationship of clay and silt determined by
No. 10 - No. 4 sieve (coarse)	silty, clayey:	12 - 50 (silt, clay)	plasticity index test
Silt/Clay: pass No. 200 sieve			

Table 2: GUIDELINES FOR CLASSIFICATION OF ROCK

RELATIVE ROCK WEATHERING SCALE

Term	Field Identification
Fresh	Crystals are bright. Discontinuities may show some minor surface staining. No discoloration in rock fabric.
Slightly Weathered	Rock mass is generally fresh. Discontinuities are stained and may contain clay. Some discoloration in rock fabric. Decomposition extends up to 1 in. into rock.
Moderately Weathered	Rock mass is decomposed 50% or less. Significant portions of rock show discoloration and weathering effects. Crystals are dull and show visible chemical alteration. Discontinuities are stained and may contain secondary mineral deposits.
Predominantly Decomposed	Rock mass is more than 50% decomposed. Rock can be excavated with geologist's pick. All discontinuities exhibit secondary mineralization. Complete discoloration of rock fabric. Surface of core is friable and usually pitted due to washing out of highly altered minerals by drilling water.
Decomposed	Rock mass is completely decomposed. Original rock "fabric" may be evident. May be reduced to soil with hand pressure.

RELATIVE ROCK HARDNESS SCALE

Term	Hardness Designation	Field Identification	Approximate Unconfined Compressive Strength
Extremely Soft	RO	Can be indented with difficulty by thumbnail. May be moldable or friable with finger pressure.	< 100 psi
Very Soft	R1	Crumbles under firm blows with point of a geology pick. Can be peeled by a pocket knife and scratched with fingernail.	100 - 1,000 psi
Soft	R2	Can be peeled by a pocket knife with difficulty. Cannot be scratched with fingernail. Shallow indentation made by firm blow of geology pick.	1,000 - 4,000 psi
Medium Hard	R3	Can be scratched by knife or pick. Specimen can be fractured with a single firm blow of hammer/geology pick.	4,000 - 8,000 psi
Hard	R4	Can be scratched with knife or pick only with difficulty. Several hard hammer blows required to fracture specimen.	8,000 - 16,000 psi
Very Hard	R5	Cannot be scratched by knife or sharp pick. Specimen requires many blows of hammer to fracture or chip. Hammer rebounds after impact.	> 16,000 psi

RQD AND ROCK QUALITY

Relation of RQD and	Rock Quality	Terminology for Planar Surface				
RQD (Rock	Description of	Bedding	Joints and Fractures	Spacing		
Quality Designation), %	Rock Quality	Laminated	Very Close	< 2 in.		
0 - 25	Very Poor	Thin	Close	2 in. – 12 in.		
25 - 50	Poor	Medium	Moderately Close	12 in. – 36 in.		
50 - 75	Fair	Thick	Wide	36 in. – 10 ft		
75 - 90	Good	Massive	Very Wide	> 10 ft		
90 - 100	Excellent					

FORMS/REPORT TEMPLATES/TABLE 2A ODOT ROCK CLASSIFICATION TABLE (ENGLISH) - REV. 1-19-07

Boring Latitude ⁶ Longitude ⁶ Elex. (thi ⁰⁰ Depth (th) Predominantly I B-1 45.36663 -122.80890 194.3 15 B-2 45.36662 -122.80890 194.3 15 B-3 45.36662 -122.80158 200.1 15 B-4 45.36855 -122.81107 203.4 15 B-7 45.36845 -122.80993 202.6 15 B-8 45.36812 -122.80993 202.6 15 B-10 45.36802 -122.80963 201.0 15 B-11 45.3677 -122.80963 201.0 15 B-13 45.3675 -122.80053 227.0 20 B-14 45.3677 -122.8083 227.0 20 B-15 45.36630 -122.8083 224.1 20 B-14 45.36675 -122.8083 224.0 20 B-14 45.3673 -122.8083 214.6 20 B-14 45.3673 -				Ground Surface	Total	Depth to Very
Both B Deprint of the design of	Roring	Latitude ⁽⁵⁾	Longitude ⁽⁵⁾	Elev (ft) ⁽⁶⁾	Denth (ft)	Predominantly I
B-1 45.36657 122.808690 194.3 15 B-3 45.36865 122.81000 197.1 15 B-5 45.36855 122.81008 200.1 15 B-6 45.36853 122.81107 203.4 15 B-7 45.36845 122.81107 203.4 15 B-9 45.36812 122.80107 203.4 15 B-9 45.36823 122.80107 204.6 15 B-10 45.36802 122.80993 202.6 15 B-11 45.3673 122.80993 201.0 15 B-12 45.3675 122.80093 201.0 15 B-13 45.36757 122.80897 199.6 15 B-14 45.36757 122.80893 227.0 20 B-14 45.36650 122.80738 241.1 20 B-14 45.36652 122.80632 215.6 20 B-20 45.36747 122.80597 213.8 20 B-21 45.36757 122.80750 204.4 20	B-1	45 36863	-122 80848	195.1	15	Tredominanti y L
B-2 4536662 -122.80305 195.3 15 B-4 4536655 -122.81000 197.1 15 B-6 4536655 -122.81107 203.4 15 B-7 4536845 -122.81107 203.4 15 B-7 4536845 -122.81107 203.4 15 B-7 4536802 -122.80993 202.6 15 B-10 4536602 -122.80963 201.0 15 B-11 453675 -122.81055 215.6 20 B-13 4536675 -122.80965 215.6 20 B-14 4536677 -122.80863 227.0 20 B-15 4536630 -122.80853 227.0 20 B-16 4536635 -122.80862 234.1 20 B-17 453655 -122.80630 215.1 20 B-18 4536673 -122.80762 228.5 20 B-19 4536782 -122.80752 204.4 20 B-24 4536782 -122.80775 204.4 20	B-2	45 36867	-122.00040	194.3	15	
B-3 4536655 1-12.81000 197.1 15 B-5 4536655 1-12.81000 197.1 15 B-7 45366845 1-12.81107 203.4 15 B-7 45366845 1-12.81148 205.7 15 B-8 4536812 1-12.80993 202.6 15 B-10 4536602 1-12.80997 199.6 15 B-11 4536783 1-12.80097 114.2 20 B-14 4536765 1-12.80097 114.2 20 B-14 4536675 1-12.80097 114.2 20 B-14 4536655 1-12.80083 227.0 20 B-16 4536630 1-12.80083 241.1 20 B-17 4536655 1-12.800597 213.8 20 B-20 4536718 1-12.800597 213.8 20 B-21 4536785 1-12.80075 204.4 20 B-22 4536785 1-12.80075 204.4 20	B-3	45 36862	-122.80935	195.3	15	
B-5 453.6655 1-12.81056 200.1 15 B-6 453.6855 1-12.81057 203.4 15 B-7 453.6845 1-12.81107 209.3 15 B-8 453.6802 1-12.81107 209.3 15 B-9 453.6802 1-12.80993 202.6 15 B-10 45.36702 1-12.80963 201.0 15 B-11 45.36775 1-12.80055 215.6 20 B-13 45.36765 1-12.80965 215.6 20 B-14 45.36775 1-12.80965 215.6 20 B-15 45.36623 1-12.80053 227.0 20 B-16 45.36655 1-12.80053 227.0 20 B-17 45.36623 1-12.80053 216.1 10 B-18 45.36625 1-12.80053 217.0 20 B-14 45.36627 1-12.80053 214.6 20 B-20 45.36718 1-12.80057 214.4 20 B-21 45.36727 1-22.80663 214.4 20	B-4	45 36855	-122.81000	197.1	15	
B-5 4536653 1-12.81107 203.4 15 B-7 4536645 1-12.81107 203.4 15 B-7 4536645 1-12.80993 202.6 15 B-9 4536612 1-12.80993 202.6 15 B-10 453673 1-12.80993 201.0 15 B-11 453673 1-22.80097 199.6 15 B-12 453675 1-22.80055 215.6 20 B-14 4536767 1-12.80095 215.6 20 B-15 4536650 1-12.800738 241.1 20 B-16 4536655 1-12.800738 241.1 20 B-18 4536655 1-12.800738 241.1 20 B-21 4536722 1-12.800738 214.6 20 B-21 4536722 1-12.80073 214.4 20 B-22 4536782 1-12.80073 205.1 15 B-24 4536782 1-12.80072 203.5 15	B-5	45 36855	-122.81058	200.1	15	
B-7 45336445 -122.81148 205.7 15 B-8 4536823 -122.80993 202.6 15 B-10 4536802 -122.80993 202.6 15 B-10 4536802 -122.80963 201.0 15 B-11 453673 -122.80963 201.0 15 B-12 453675 -122.80063 215.6 20 B-14 4536747 -122.80853 227.0 20 B-16 4536630 -122.80862 232.8 20 B-17 4536653 -122.80572 215.6 20 B-18 4536653 -122.80572 28.5 20 B-17 4536653 -122.80572 213.8 20 B-20 4536718 -122.80572 204.4 20 B-21 4536730 -122.80572 204.4 20 B-23 4536782 -122.80760 201.1 15 B-24 4536782 -122.80775 204.4 20 B-24 4536782 -122.80762 205.1 15 <t< td=""><td>B-6</td><td>45 36853</td><td>-122.01050</td><td>203.4</td><td>15</td><td></td></t<>	B-6	45 36853	-122.01050	203.4	15	
B-8 453.6623 -122.81107 209.3 15 B-9 453.6612 -122.80993 202.6 15 B-10 45.36802 -122.80963 201.0 15 B-11 45.36783 -122.80963 201.0 15 B-11 45.36735 -122.81055 215.6 20 B-13 45.3675 -122.80963 217.0 20 B-14 45.36657 -122.80738 227.0 20 B-16 45.36657 -122.80738 241.1 20 B-18 45.36655 -122.80738 241.1 20 B-18 45.36655 -122.80652 228.5 20 B-20 45.36718 -122.8075 204.4 20 B-21 45.36727 -122.80632 214.6 20 B-24 45.36782 -122.8075 204.4 20 B-24 45.36782 -122.80632 215.1 5 B-26 45.36777 -122.80672 205.1 15 B-27 45.36782 -122.80752 204.3 15	B-7	45 36845	-122.01107	205.4	15	
B-9 45.36612 -122.80993 202.6 15 B-10 45.36802 -122.80963 201.0 15 B-11 45.36783 -122.80897 199.6 15 B-12 45.36775 -122.81055 215.6 20 B-13 45.36747 -122.80965 215.6 20 B-14 45.36677 -122.80963 227.0 20 B-16 45.36630 -122.80738 241.1 20 B-17 45.36630 -122.80682 232.8 20 B-18 45.36623 -122.80682 234.1 20 B-19 45.36655 -122.80652 228.5 20 B-20 45.36718 -122.80597 213.8 20 B-21 45.36722 -122.80632 214.6 20 B-22 45.36747 -122.80672 204.1 15 B-24 45.36782 -122.80672 204.3 15 B-25 45.36782 -122.80672 204.3	B-8	45 36823	-122.81107	209.3	15	
B-10 45.36602 -122.80963 201.0 15 B-11 45.36783 -122.809697 199.6 15 B-12 45.36775 -122.81055 215.6 20 B-13 45.36765 -122.80065 215.6 20 B-14 45.36747 -122.80805 227.0 20 B-15 45.36657 -122.80808 232.8 20 B-16 45.36650 -122.80738 241.1 20 B-18 45.36655 -122.80573 213.8 20 B-20 45.36718 -122.80572 213.8 20 B-21 45.36722 -122.80750 204.4 20 B-23 45.36782 -122.80775 204.4 20 B-24 45.36782 -122.80670 200.1 15 B-25 45.36782 -122.80672 245.3 15 B-26 45.36782 -122.80672 246.4 20 B-27 45.36782 -122.80752 265.1	B-9	45 36812	-122.80993	202.6	15	
B-11 45.36783 1-122.80897 199.6 15 B-12 45.36775 1-122.80897 199.6 15 B-13 45.36775 1-122.81055 215.6 20 B-14 45.36747 1-122.80853 227.0 20 B-14 45.36657 1-122.80808 232.8 20 B-16 45.36650 1-122.80738 241.1 20 B-18 45.36623 1-122.80582 244.1 20 B-19 45.36655 1-122.80597 213.8 20 B-201 45.36718 1-122.80632 214.6 20 B-22 45.36730 1-122.80683 214.6 20 B-24 45.36785 1-122.80775 204.4 20 B-24 45.36782 1-122.80775 204.4 20 B-25 45.36782 1-122.80775 204.4 20 B-26 45.36782 1-122.80775 204.4 20 B-27 45.36782 1-122.80775 <td< td=""><td>B-10</td><td>45 36802</td><td>-122.80963</td><td>201.0</td><td>15</td><td></td></td<>	B-10	45 36802	-122.80963	201.0	15	
B-12 45.36775 1-12.80055 115.6 20 B-13 45.36775 1-12.80055 215.6 20 B-14 45.36765 1-12.80065 215.6 20 B-14 45.36765 1-12.80063 215.6 20 B-16 45.36630 1-12.80083 227.0 20 B-16 45.36630 1-12.80083 232.8 20 B-17 45.36623 1-12.80053 227.0 20 B-18 45.36623 1-12.80053 224.1 20 B-20 45.36718 1-12.800597 213.8 20 B-21 45.36720 1-12.80052 204.4 20 B-22 45.36737 1-12.80075 204.4 20 B-24 45.36782 1-12.80075 204.4 20 B-24 45.36782 1-12.80072 205.1 15 B-26 45.36777 1-22.80072 204.3 15 B-27 45.36403 1-22.80053 257.7	B-11	45 36783	-122.80897	199.6	15	
B-13 45.36765 -122.81007 214.2 20 B-14 45.36747 -122.80965 215.6 20 B-15 45.36657 -122.80808 23.8 20 B-16 45.36630 -122.80088 23.8 20 B-17 45.36590 -122.80688 234.1 20 B-18 45.36653 -122.80652 228.5 20 B-20 45.36718 -122.80652 228.5 20 B-21 45.36723 -122.80652 228.5 20 B-21 45.36730 -122.80652 228.5 20 B-22 45.36737 -122.80750 204.4 20 B-24 45.36785 -122.80760 200.1 15 B-25 45.36782 -122.80760 200.1 15 B-26 45.36782 -122.80672 204.4 20 B-27 45.36782 -122.80672 204.3 15 B-28 45.36403 -122.80607 246.6 23 B-30 45.36507 -122.80802 266.1 30 <td>B-12</td> <td>45.36775</td> <td>-122.81055</td> <td>215.6</td> <td>20</td> <td></td>	B-12	45.36775	-122.81055	215.6	20	
B-14 45.36747 -122.80965 215.6 20 B-15 45.36657 -122.80803 227.0 20 B-16 45.36630 -122.80808 232.8 20 B-17 45.36500 -122.80788 241.1 20 B-18 45.36655 -122.80597 213.8 20 B-20 45.36718 -122.80597 213.8 20 B-21 45.36722 -122.80752 204.4 20 B-23 45.36782 -122.80775 204.4 20 B-24 45.36782 -122.80698 203.5 15 B-25 45.36782 -122.80692 205.1 15 B-26 45.36782 -122.80692 204.3 15 B-27 45.36782 -122.80692 205.1 15 B-28 45.36403 -122.80692 246.6 23 B-30 45.36507 -122.80952 264.7 30 B-33 45.36517 -122.80852 267.1	B-13	45.36765	-122.81007	214.2	20	
B-15 45.36657 -122.80803 227.0 20 B-16 45.36657 -122.80808 232.8 20 B-17 45.36590 -122.80808 232.8 20 B-18 45.36650 -122.80688 234.1 20 B-19 45.36655 -122.80688 234.1 20 B-20 45.36718 -122.80597 213.8 20 B-21 45.36723 -122.80683 214.6 20 B-22 45.36730 -122.80775 204.4 20 B-24 45.36785 -122.80760 200.1 15 B-25 45.36782 -122.80642 205.1 15 B-26 45.36782 -122.80642 205.1 15 B-27 45.36782 -122.80642 205.1 15 B-28 45.36677 -122.80642 205.1 15 B-29 45.36458 -122.80072 246.6 23 B-30 45.36500 -122.80932 266.1	B-14	45 36747	-122 80965	215.6	20	
B-16 45.36630 -122.80808 232.8 20 B-17 45.36530 -122.80808 234.1 20 B-18 45.36623 -122.80688 234.1 20 B-19 45.36623 -122.80652 228.5 20 B-20 45.36718 -122.80652 228.5 20 B-21 45.36722 -122.80630 215.1 20 B-22 45.36730 -122.80630 215.1 20 B-24 45.36782 -122.80632 214.6 20 B-24 45.36782 -122.80672 204.4 20 B-25 45.36782 -122.80672 204.3 15 B-26 45.36777 -122.80642 205.1 15 B-27 45.36782 -122.80672 244.3 15 B-28 45.36403 -122.80953 257.7 30 B-31 45.36477 -122.80952 266.1 30 B-33 45.36570 -122.80822 265.6	B-15	45 36657	-122.80853	227.0	20	
B-17 45.36590 -122.80738 241.1 20 B-18 45.36650 -122.80738 241.1 20 B-19 45.36655 -122.80652 228.5 20 B-20 45.36718 -122.80597 213.8 20 B-21 45.36722 -122.80757 213.8 20 B-22 45.36730 -122.80775 204.4 20 B-24 45.36782 -122.80775 204.4 20 B-24 45.36782 -122.80678 203.5 15 B-25 45.36782 -122.80607 204.3 15 B-26 45.36782 -122.80607 204.3 15 B-27 45.36782 -122.8007 249.2 23 B-28 45.36430 -122.8007 249.2 23 B-30 45.36507 -122.80953 267.7 30 B-33 45.36515 -122.80852 267.1 30 B-34 45.36576 -122.80852 267.1	B-16	45 36630	-122.000000	232.8	20	
B-18 45.36623 -122.80688 234.1 20 B-19 45.36623 -122.80682 228.5 20 B-20 45.36718 -122.80652 228.5 20 B-21 45.36718 -122.80630 215.1 20 B-22 45.36730 -122.80760 201.5 120 B-22 45.36747 -122.80775 204.4 20 B-24 45.36782 -122.80698 203.5 15 B-25 45.36782 -122.80692 205.1 15 B-26 45.36777 -122.80692 204.3 15 B-27 45.36403 -122.80692 246.6 23 B-30 45.36500 -122.80915 264.7 30 B-31 45.36517 -122.80822 266.1 30 B-33 45.36578 -122.80822 266.1 30 B-34 45.36574 -122.80822 265.6 30 B-35 45.36684 -122.80802 266.1	B-17	45 36590	-122.000000	241.1	20	
B-10 45.36655 1-12.80652 228.5 20 B-20 45.36718 -122.80652 213.8 20 B-21 45.36722 -122.80630 214.6 20 B-22 45.36737 -122.80683 214.6 20 B-23 45.36747 -122.80755 204.4 20 B-24 45.36785 -122.80698 203.5 15 B-26 45.36782 -122.80642 205.1 15 B-27 45.36782 -122.80607 204.3 15 B-28 45.36403 -122.80067 204.3 15 B-28 45.36403 -122.80072 249.2 23 B-30 45.36403 -122.8092 246.6 23 B-31 45.36500 -122.8092 266.1 30 B-33 45.36570 -122.8082 265.6 30 B-34 45.36578 -122.8082 265.6 30 B-35 45.36578 -122.8082 265.6 <	B-18	45 36623	-122.80688	234.1	20	
B-20 45.36718 -122.80507 213.8 20 B-21 45.36721 -122.80563 215.1 20 B-22 45.36730 -122.80683 214.6 20 B-23 45.36747 -122.80755 204.4 20 B-24 45.36785 -122.80698 203.5 15 B-25 45.36782 -122.80607 204.4 20 B-24 45.36782 -122.80642 205.1 15 B-26 45.36777 -122.80607 204.3 15 B-27 45.36782 -122.80692 246.6 23 B-29 45.36403 -122.80932 257.7 30 B-34 45.36515 -122.80935 267.1 30 B-33 45.36516 -122.80852 266.1 30 B-34 45.36517 -122.80852 267.1 30 B-35 45.36518 -122.8083 260.1 23 B-34 45.36517 -122.8083 260.1	B-19	45 36655	-122.80652	228.5	20	
B-20 45.36722 -122.80630 215.1 20 B-22 45.36722 -122.80735 204.4 20 B-23 45.36747 -122.80775 204.4 20 B-24 45.36785 -122.80762 200.1 15 B-25 45.36782 -122.80698 203.5 15 B-26 45.36782 -122.80607 204.4 20 B-26 45.36782 -122.80642 205.1 15 B-26 45.36782 -122.80607 204.3 15 B-28 45.36458 -122.8003 256.8 23 B-30 45.36500 -122.8092 246.6 23 B-31 45.36507 -122.80915 264.7 30 B-33 45.36515 -122.80852 267.1 30 B-34 45.36517 -122.8082 266.1 30 B-35 45.3668 -122.8082 266.3 30 B-34 45.36678 -122.8082 266.1 30 B-34 45.36678 -122.8082 265.6 30	B-20	45 36718	-122.80597	213.8	20	
B-22 45.36730 -122.806683 214.6 20 B-23 45.36747 -122.80760 200.1 15 B-24 45.36785 -122.80672 204.4 20 B-24 45.36785 -122.80698 203.5 15 B-25 45.36782 -122.80698 203.5 15 B-26 45.36777 -122.80692 205.1 15 B-27 45.36403 -122.80607 204.3 15 B-28 45.36403 -122.80912 246.6 23 B-30 45.36500 -122.80915 264.7 30 B-34 45.36507 -122.80852 266.1 30 B-34 45.36507 -122.80822 266.6 30 B-34 45.36578 -122.80822 266.1 30 B-34 45.36578 -122.80822 265.6 30 B-35 45.36684 -122.80802 260.1 23 B-36 45.36648 -122.80782 254.3 23 B-38 45.36674 -122.81142 243.5 30<	B-21	45 36722	-122.80630	215.0	20	
B-23 45.36747 122.80755 204.4 20 B-24 45.36785 122.80760 200.1 15 B-25 45.36785 122.80698 203.5 15 B-26 45.36782 122.80692 205.1 15 B-27 45.36782 122.80607 204.3 15 B-28 45.36403 122.81003 256.8 23 B-30 45.36403 122.80992 246.6 23 B-31 45.36493 122.80992 266.1 30 B-33 45.36500 122.80922 265.6 30 B-34 45.36515 122.80922 266.1 30 B-34 45.36570 122.80822 265.6 30 B-35 45.36654 122.80822 265.6 30 B-36 45.36657 122.80822 265.6 30 B-37 45.36654 122.80802 261.1 30 B-38 45.36654 122.81142 243.5 30 B-39 45.36664 122.81142 244.5 30	B-22	45 36730	-122.80683	214.6	20	
B-24 45.36785 -122.80760 200.1 15 B-25 45.36782 -122.80698 203.5 15 B-26 45.36782 -122.80642 205.1 15 B-27 45.36782 -122.80642 205.1 15 B-28 45.36777 -122.80607 204.3 15 B-28 45.36403 -122.81003 256.8 23 B-30 45.36500 -122.80992 246.6 23 B-31 45.36407 -122.80953 257.7 30 B-33 45.36515 -122.80852 266.1 30 B-34 45.36515 -122.80852 266.3 30 B-35 45.36528 -122.80822 266.6 30 B-34 45.36576 -122.80822 266.3 30 B-35 45.36687 -122.80822 264.3 30 B-34 45.36676 -122.80782 254.3 23 B-34 45.36664 -122.81142 243.5	B-23	45.36747	-122.80775	204.4	20	
B-25 45.36782 -122.80698 203.5 15 B-26 45.36777 -122.80642 205.1 15 B-27 45.36782 -122.80607 204.3 15 B-28 45.36782 -122.80607 204.3 15 B-28 45.36403 -122.80007 249.2 23 B-29 45.36403 -122.80992 246.6 23 B-30 45.36493 -122.80915 264.7 30 B-34 45.36507 -122.80852 267.1 30 B-34 45.36515 -122.80822 266.1 30 B-34 45.36515 -122.80823 260.1 23 B-34 45.36578 -122.80823 260.1 23 B-35 45.36578 -122.80782 254.3 23 B-36 45.36678 -122.80782 254.3 23 B-37 45.36668 -122.81143 244.5 30 B-38 45.366717 -122.81142 243.5 30 B-40 45.36713 -122.81107 235.6 30<	B-24	45.36785	-122.80760	200.1	15	
B-26 45.36777 -122.80642 205.1 15 B-27 45.36782 -122.80667 204.3 15 B-28 45.36403 -122.81003 256.8 23 B-29 45.36453 -122.81027 249.2 23 B-30 45.36500 -122.80923 257.7 30 B-31 45.36493 -122.80915 264.7 30 B-34 45.36507 -122.80852 266.1 30 B-34 45.36515 -122.80822 265.6 30 B-35 45.36528 -122.80822 265.6 30 B-36 45.36548 -122.80822 265.6 30 B-37 45.36570 -122.80782 254.3 23 B-38 45.36684 -122.80782 254.3 23 B-39 45.36674 -122.81143 244.5 30 B-40 45.36717 -122.81142 243.5 30 B-41 45.36743 -122.81107 233.5	B-25	45.36782	-122.80698	203.5	15	
B-27 45.36782 -122.80607 204.3 15 B-28 45.36403 -122.81003 256.8 23 B-30 45.36458 -122.80992 246.6 23 B-31 45.36493 -122.80953 257.7 30 B-32 45.36497 -122.80952 266.1 30 B-33 45.36515 -122.80852 266.1 30 B-34 45.36515 -122.80852 265.6 30 B-35 45.36528 -122.80802 266.6 30 B-36 45.36570 -122.80822 265.6 30 B-37 45.36658 -122.80802 264.7 30 B-38 45.36570 -122.80822 265.6 30 B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.81143 244.5 30 B-40 45.366717 -122.81125 248.1 30 B-41 45.36717 -122.81125 248.1 30 B-42 45.36742 -122.81107 233.5 30<	B-26	45.36777	-122.80642	205.1	15	
B-28 45.36403 -122.81003 256.8 23 B-29 45.36458 -122.80992 249.2 23 B-30 45.36500 -122.80992 246.6 23 B-31 45.36500 -122.80953 257.7 30 B-32 45.36487 -122.80952 266.1 30 B-34 45.36515 -122.80852 265.6 30 B-35 45.36516 -122.80822 266.6 30 B-36 45.36548 -122.80822 265.6 30 B-37 45.36670 -122.80782 254.3 23 B-38 45.36676 -122.81143 244.5 30 B-39 45.36668 -122.81218 243.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36743 -122.81142 243.5 30 B-42 45.36742 -122.8107 231.8 30 B-43 45.36742 -122.8107 243.5	B-27	45.36782	-122.80607	204.3	15	
B-29 45.36458 -122.81027 249.2 23 B-30 45.36500 -122.80992 246.6 23 B-31 45.36493 -122.80953 257.7 30 B-32 45.36487 -122.80915 264.7 30 B-33 45.36507 -122.80852 266.1 30 B-34 45.36515 -122.80852 265.6 30 B-35 45.36528 -122.80803 260.1 23 B-36 45.36654 -122.80782 254.3 23 B-37 45.36678 -122.80782 254.3 23 B-38 45.36668 -122.80782 254.3 23 B-39 45.36668 -122.81143 244.5 30 B-40 45.36717 -122.81125 248.1 30 B-41 45.36743 -122.81105 244.7 30 B-42 45.36742 -122.81107 233.6 30 B-43 45.36762 -122.81075 222.8 30 B-44 45.36670 -122.81075 222.8 30 </td <td>B-28</td> <td>45.36403</td> <td>-122.81003</td> <td>256.8</td> <td>23</td> <td></td>	B-28	45.36403	-122.81003	256.8	23	
B-30 45.36500 -122.80992 246.6 23 B-31 45.36493 -122.80953 257.7 30 B-32 45.36493 -122.80953 257.7 30 B-33 45.36647 -122.80915 264.7 30 B-34 45.36507 -122.80822 266.1 30 B-34 45.36515 -122.80822 265.6 30 B-35 45.36528 -122.80803 260.1 23 B-36 45.36548 -122.80782 254.3 23 B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.81143 244.5 30 B-40 45.36671 -122.81215 248.1 30 B-41 45.36717 -122.81105 244.7 30 B-42 45.36743 -122.81077 233.5 30 B-43 45.36742 -122.81077 243.5 30 B-44 45.366700 -122.81075 222.8	B-29	45.36458	-122.81027	249.2	23	
B-31 45.36493 -122.80953 257.7 30 B-32 45.36497 -122.80915 264.7 30 B-33 45.36507 -122.80892 266.1 30 B-34 45.36515 -122.80852 267.1 30 B-34 45.36528 -122.80852 266.1 30 B-34 45.365128 -122.80782 265.6 30 B-36 45.36570 -122.80782 254.3 23 B-37 45.36667 -122.81143 244.5 30 B-39 45.36674 -122.81128 243.5 30 B-40 45.36713 -122.81128 243.5 30 B-41 45.36713 -122.81147 236.6 30 B-42 45.36742 -122.81147 231.8 30 B-43 45.36743 -122.81077 243.5 30 B-44 45.36762 -122.81077 243.5 30 B-44 45.36602 -122.81075 222.8 30 B-45 45.3662 -122.81175 228.7 30 </td <td>B-30</td> <td>45.36500</td> <td>-122.80992</td> <td>246.6</td> <td>23</td> <td></td>	B-30	45.36500	-122.80992	246.6	23	
B-32 45.36487 -122.80915 264.7 30 B-33 45.36507 -122.80892 266.1 30 B-34 45.36515 -122.80852 266.1 30 B-35 45.36528 -122.80852 265.6 30 B-36 45.36528 -122.80822 265.6 30 B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.81728 243.5 30 B-39 45.36668 -122.81218 243.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81143 244.5 30 B-42 45.36743 -122.81147 231.8 30 B-43 45.36743 -122.81077 231.8 30 B-44 45.36700 -122.81075 222.8 30 B-45 45.36622 -122.81170 233.3 30 B-46 45.36643 -122.81075 222.8 30 B-46 45.36645 -122.81107 233.3 30 </td <td>B-31</td> <td>45.36493</td> <td>-122.80953</td> <td>257.7</td> <td>30</td> <td></td>	B-31	45.36493	-122.80953	257.7	30	
B-33 45.36507 -122.80892 266.1 30 B-34 45.36515 -122.80855 267.1 30 B-35 45.36528 -122.80822 265.6 30 B-36 45.36548 -122.80782 254.3 23 B-37 45.36570 -122.80782 254.3 23 B-38 45.36668 -122.81143 244.5 30 B-40 45.366717 -122.81212 243.5 30 B-41 45.36713 -122.81165 244.7 30 B-42 45.36743 -122.81107 235.6 30 B-43 45.36742 -122.81107 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-44 45.36670 -122.81075 222.8 30 B-45 45.36662 -122.81107 233.3 30 B-46 45.366675 -122.81078 242.6 30	B-32	45.36487	-122.80915	264.7	30	
B-34 45.36515 -122.80825 267.1 30 B-35 45.36528 -122.80822 265.6 30 B-36 45.36548 -122.80822 265.6 30 B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.801782 254.3 23 B-39 45.36668 -122.81143 244.5 30 B-40 45.366717 -122.8125 248.1 30 B-41 45.36717 -122.81165 244.7 30 B-42 45.36742 -122.81107 233.6 30 B-43 45.36742 -122.81077 243.5 30 B-44 45.36700 -122.81077 243.5 30 B-44 45.36602 -122.81075 222.8 30 B-45 45.36602 -122.81107 233.3 30 B-46 45.36643 -122.81107 233.3 30 B-47 45.36643 -122.81107 233.3	B-33	45.36507	-122.80892	266.1	30	
B-35 45.36528 -122.80822 265.6 30 B-36 45.36548 -122.80782 260.1 23 B-37 45.36570 -122.80782 254.3 23 B-38 45.36667 -122.80782 245.3 30 B-39 45.36667 -122.81143 244.5 30 B-40 45.36717 -122.81126 243.5 30 B-41 45.36713 -122.81165 244.7 30 B-42 45.36743 -122.81147 235.6 30 B-43 45.36700 -122.81077 243.5 30 B-44 45.36702 -122.81077 243.5 30 B-45 45.36762 -122.81077 243.5 30 B-44 45.36762 -122.81075 222.8 30 B-45 45.36662 -122.81107 233.3 30 B-44 45.36662 -122.81107 233.3 30 B-44 45.366675 -122.81078 242.6	B-34	45.36515	-122.80855	267.1	30	
B-36 45.36548 -122.80803 260.1 23 B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.80782 254.3 30 B-39 45.36668 -122.81143 244.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81147 235.6 30 B-42 45.36743 -122.81147 231.8 30 B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-44 45.36762 -122.81077 243.5 30 B-45 45.36602 -122.81075 222.8 30 B-46 45.36602 -122.81107 233.3 30 B-47 45.36643 -122.81078 242.6 30	B-35	45.36528	-122.80822	265.6	30	
B-37 45.36570 -122.80782 254.3 23 B-38 45.36687 -122.81143 244.5 30 B-39 45.36668 -122.81218 243.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81105 244.7 30 B-42 45.36742 -122.81107 231.8 30 B-43 45.36740 -122.81077 243.5 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36602 -122.81075 222.8 30 B-46 45.36602 -122.81107 233.3 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-36	45.36548	-122,80803	260.1	23	
B-38 45.36687 -122.81143 244.5 30 B-39 45.36668 -122.81218 243.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81165 244.7 30 B-42 45.36742 -122.81167 235.6 30 B-43 45.36742 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-44 45.36702 -122.81077 243.5 30 B-45 45.36762 -122.81075 222.8 30 B-44 45.36702 -122.81150 228.7 30 B-46 45.36602 -122.81107 233.3 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-37	45.36570	-122.80782	254.3	23	
B-39 45.36668 -122.81218 243.5 30 B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81165 244.7 30 B-42 45.36742 -122.81147 235.6 30 B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36762 -122.81077 243.5 30 B-45 45.36762 -122.81075 222.8 30 B-46 45.36602 -122.81107 233.3 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-38	45.36687	-122.81143	244.5	30	
B-40 45.36717 -122.81205 248.1 30 B-41 45.36713 -122.81165 244.7 30 B-42 45.36743 -122.81167 235.6 30 B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36762 -122.81075 222.8 30 B-45 45.36602 -122.81150 228.7 30 B-46 45.36643 -122.81107 233.3 30 B-47 45.36643 -122.81078 242.6 30	B-39	45.36668	-122.81218	243.5	30	
B-41 45.36713 -122.81165 244.7 30 B-42 45.36742 -122.81147 235.6 30 B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36702 -122.81077 243.5 30 B-46 45.36602 -122.81075 222.8 30 B-46 45.36602 -122.81107 233.3 30 B-47 45.36643 -122.81078 242.6 30	B-40	45.36717	-122.81205	248.1	30	
B-42 45.36742 -122.81147 235.6 30 B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36762 -122.81075 222.8 30 B-45 45.36602 -122.81075 222.8 30 B-46 45.36602 -122.81150 228.7 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-41	45.36713	-122.81165	244.7	30	
B-43 45.36743 -122.81097 231.8 30 B-44 45.36700 -122.81077 243.5 30 B-45 45.36702 -122.81075 222.8 30 B-46 45.36602 -122.81150 228.7 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-42	45.36742	-122.81147	235.6	30	
B-44 45.36700 -122.81077 243.5 30 B-45 45.36762 -122.81075 222.8 30 B-46 45.36602 -122.81150 228.7 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-43	45.36743	-122.81097	231.8	30	
B-45 45.36762 -122.81075 222.8 30 B-46 45.36602 -122.81150 228.7 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-44	45.36700	-122.81077	243.5	30	
B-46 45.36602 -122.81150 228.7 30 B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-45	45.36762	-122.81075	222.8	30	
B-47 45.36643 -122.81107 233.3 30 B-48 45.36675 -122.81078 242.6 30	B-46	45.36602	-122.81150	228.7	30	
B-48 45.36675 -122.81078 242.6 30	B-47	45.36643	-122.81107	233.3	30	
	B-48	45.36675	-122.81078	242.6	30	

 Clay seams were observed in B-46 and B-47 at a depth of about 20 ft.
 Zones of moderately weathered to predominantly decomposed basalt beneath fresh to slightly weathered basalt in B-14, B-28, B-46, and B-47.
 Boulder encountered between 8 and 14 ft in boring B-20. 4. Very soft (R1) to Medium hard (R3) basalt encountered below 18 ft in boring B-16.

Geographic Coordinate System: North American Datum of 1983 (NAD 83). Accuracy within 15 ft horizontal for hand held unit.
 Elevation Datum: North American Vertical Datum of 1988 (NAD 88). Accuracy within 1 ft vertical for GIS lidar.

BORING COMPLETED BY GRI (MARCH 28 - 29, 2016)

ry Soft (R1) to Medium oderately Weathered to	Depth to Soft (R2) to hard (R4), Slightly Weathered to Fresh Basalt (ft)	Depth to Groundwater
>15		3
>15	>15	N/A
>15	> 15	N/A
>15	> 15	2.5
9	> 15	7
8	> 15	>15
5	12	>15
N/A	13	97
>15	>15	N/A
>15	>15	N/A
>15	>15	N/A
7	12	10.8
6	11	18.2
18	5(2)	14.8
5	9	19.1
5 ⁽⁴⁾	9	10.9
N/A	6	15.9
4	> 20	16
7	> 20	83
> 20 ⁽³⁾	> 20	N/4
>20	>20	6.8
12	>20	7.7
12	>20	NI/A
>15	>15	2.2
>15	>15	2.2 NI/A
>15	>15	0.4
>15	>15	1.1
21	O ⁽²⁾	1.1
21	0	> 22
2	7	70
2 NI/A	/	7.9
2	10	0.2
2	10	9.5
NI/A	15	15.5
N/A	1.5	20.5
N/A	2	4.0
N/A	0.5	4.9
N/A	0.5	10.2
N/A	2	1.9
N/A	2	10.9
NI/A	э Э	1.7
NI/A	2 1	14.7
1.071	10	14.7
	3	20.0
6	э 11	22.4
6 ⁽¹⁾	2(2)	29.J
20(1)	∠ 2 ⁽²⁾	10
20	2	22
IN/A	1	> 30

KEN LEAHY CONSTRUCTION 90-ACRE SITE

SITE MAP

Appendix E

Unconfined Compressive Strength and RQD Data

Appendix F

Fault Location Study Technical Memorandum

Technical Memorandum

То:	Greg Lindstadt, PE Michael Hyland, PE	Project:	WWSP WTP_1.0	
From:	Kim Elliott, CEG Wolfe Lang, PE, GE	CC:		
Date:	December 20, 2019	Job No.:	5887.0	
Subject:	Willamette Water Supply Program - WTP_1.0 Fault Location Study			

Revision Log

Revision No.	Date	Revision Description
0	February 15, 2019	Draft submitted for CDM Smith review
1	March 11, 2019	Incorporated CDM Smith's comments
	December 20, 2019	Final submittal

1.0 Introduction

1.1 General

McMillen Jacobs Associates (MJA) has prepared this technical review and characterization of faults and seismicity within an approximately 100-kilometer (km) (60-mile [mi]) radius of the Willamette Water Supply Program (WWSP) Water Treatment Plant WTP_1.0. In addition to the Cascadia Subduction Zone (CSZ), a total of 28 faults have been catalogued. The location of WTP_1.0 project and its relation to the identified faults are shown in Figure 1. The faults and their characteristics are presented in Table 1.

1.2 Information Sources

This study and evaluation is based on a review of available geological maps and research literature, and Light Detection and Ranging (LiDAR or "lidar") imagery. The maps and literature were published by Oregon Department of Geology and Mineral Industries (DOGAMI), U.S. Geological Survey (USGS), and a variety of scientific publications.

Lidar data, covering the USGS 7.5-minute Sherwood Quadrangle available from the Oregon Lidar Consortium was processed with ArcMap Geographic Information System (GIS) software to create hillshade images for visual scanning. The hillshade tool uses elevation data to create an image that looks more like real world topography (without the vegetation cover), making it easier to pick out important geomorphic features.

We also had brief consultations with Dr. Ian P. Madin, Chief Scientist with the Oregon Department of Geology and Mineral Industries (DOGAMI) and Dr. Ray Wells, Project Chief Emeritus with the U.S. Geological Survey (USGS). Dr. Madin is the author and co-author of numerous geologic map studies and technical publications on faulting and earthquake hazards in Oregon. Dr. Wells is an expert on Pacific Northwest geology and tectonics, geology of the Cascadia forearc, and crustal deformation and neotectonics of convergent margins. One of Dr. Wells' current projects is geologic mapping of Urban Corridor fault zones in the Pacific Northwest, which includes the Portland Hills and Gales Creek Fault zones in northwest Oregon.

2.0 Geologic Setting

2.1 General

The Willamette Valley of Oregon is part of the northwest regional Puget-Willamette Lowland that lies between the Cascade Range on the east and the Coast Range on the west. The Puget-Willamette Lowland and the Coast Range together constitute the Cascadia forearc, the area that lies between the Cascadia Subduction Zone (CSZ) at the Pacific (Juan de Fuca)-North America plate boundary and the Cascade Range volcanic archipelago ("arc").

The compressional forces that exist between the colliding Pacific and North America plates cause the denser oceanic plate to descend, or subduct beneath the less dense continental plate. The compression also causes folds and faults to form in the sediment and rock that make up the forearc. Earthquakes are generated where slippage occurs at a fault.

The Juan de Fuca plate is being thrust northeastward and oblique to North America. The oblique subduction has created a complex, seismically active convergent margin and volcanic arc in the Pacific Northwest. Such oblique convergence commonly produces arc-parallel migration of the forearc and often creates an additional seismic hazard from the relative motions of forearc blocks (Wells and others, 1998). Great subduction earthquakes have occurred along the Cascadia margin (Atwater and Hemphill-Haley, 1997), but the potential for damaging upper-plate (crustal) earthquakes is poorly known because of the short record of historical seismicity, sparse data on regional deformation rates, and poor exposure of active structures.

2.2 Local Geology

The structure of northwestern Oregon is dominated by a broad, north plunging anticlinorium¹ centered over the Coast Range (Yeats, et al, 1991) that deforms Eocene through early Miocene volcanic and marine sedimentary rocks. About 16-14.5 Ma (mega annum or million years) basalt flows of the Columbia River Basalt Group (CRBG) flowed westward through a structural lowland in the Cascade Range between the Columbia River and the Clackamas River into the northern Willamette Valley (Beeson, et al., 1989). At this time, the Willamette Valley must have been a broad plain with little topographic relief because the basalts now underlie the entire northern Willamette valley from north of

¹ An anticlinorium is a large anticline with superimposed smaller folds.

the Columbia River to south of Salem and from the Cascade Range to the Coast Range. The CRBG also crossed the Coast Range, probably as intracanyon flows (Beeson, et al., 1989).

Continued uplift of the Coast and Cascade Ranges and smaller scale fault and open fold structures superimposed on the anticlinorium have further defined the Willamette Valley and attracted a continuing stream of sediment, eroded from the flanking mountain ranges, that has filled the lowest areas of the valley with fluvial and lacustrine deposits (Yeats, et al., 1996). Structural deformation, including subbasin subsidence and faulting, has created uplands of CRBG rock across this synclinorium between Albany and Salem that separate the northern Willamette Valley from the southern Willamette Valley (Crenna, et al., 1994). A similar CRBG uplift, the Chehalem Mountains and Parrett Mountain, which rise north of Wilsonville, separates the Tualatin Basin from the northern Willamette Valley while upland-forming faults and Pliocene-Pleistocene basalt flows near Oregon City separate the northern Willamette Valley from the Portland Basin (Beeson, et al., 1989; Madin, 1990, 1994). The Portland and Tualatin basins are separated from each other by the Tualatin Mountains ("Portland Hills"), another faulted and folded CRBG uplift.

Alluvial deposits that post-date the CRBG are the oldest strata to be confined principally to the present lowland basins. In the Tualatin basin, these deposits include the Hillsboro Formation (Wilson, 1997, 1998); in the Portland basin, the Sandy River Mudstone (Trimble, 1963) and Troutdale Formation (Lowery and Baldwin, 1952); and in the northern Willamette basin, the Troutdale Formation of Hampton (1972). From Pliocene to Pleistocene time, basaltic lava, breccia and volcanic ash of the Boring Lavas were erupted from numerous vents in the Portland, Tualatin and northern Willamette basins (Treasher, 1942).

During the Quaternary Period, windblown silt, named the Portland Hills Silt (Lowry and Baldwin, 1952; Baldwin, 1964) because of its prominence on Portland's West Hills, mantled most of the uplands around the Portland and Tualatin basins. The loess is probably not a major component of local sediments, but it has probably made its way into the northern Willamette basin through erosion by streams draining the Chehalem Mountains and Parrett Mountain uplifts. Near the end of the Pleistocene epoch, catastrophic glacial-outburst floods from the upper Columbia River basin repeatedly back-flooded up the Willamette River valley as far south as Eugene and deposited the fine-grained sand and silt of the Willamette Formation (Balster and Parsons, 1969; Allison, 1978).

Most of the fold and fault structures identified in this study are thought to have either appeared or reactivated from late Miocene to Pliocene time coincident with post-CRBG basin forming. All the fault structures listed in Table 1 are either known or suspected of offsetting the CRBG; some are suspected of offsetting the Hillsboro Formation and the Missoula Flood deposits, but no offsets have been confirmed.

The present north-south compressional stress regime may have resulted in significant shortening of the forearc in northwestern Oregon. Geologic field mapping and analysis of offset magnetic anomalies have suggested that about 10 km (6 mi) of north-south shortening has been accommodated by movements on the Gales Creek-Mt. Angel Fault zone alone and additional shortening is likely to have been taken up on the Portland Hills, Sylvan-Oatfield, East Bank, Molalla-Canby, and Frontal fault zones (Beeson et al., 1985; Blakely et al., 2000; Wells et al., 1995, 2009; Wong et al., 2000). Motions on these faults were

also likely to have had a significant influence on the formation of the present Tualatin and Portland basins in the middle Miocene (McPhee et al., 2014).

2.3 Evidence for Quaternary Faulting

Although numerous faults have been recognized and mapped within the study area (see Figure 1), documented deformations in geologic units younger than the CRBG are scarce. The mapped faults listed in Table 1 are considered to have been "active" during the Quaternary Period (the past 1.6 Ma) (USGS, 2006, 2014), but evidence of post--CRBG movements have been identified on only the Portland Hills Fault and the Gales Creek Faults. However, the evidence of such movement is inconclusive.

Geophysical evidence of deformed Pliocene to Pleistocene (5 Ma to 10 ka [kilo annum or thousand years]) sediments were recognized on the Portland Hills Fault (Wong et al., 2001; Liberty et al., 2003), but there was no direct evidence of deformation of Holocene (<10 ka) deposits.

Using Lidar imagery, a USGS research team identified an apparent fault scarp along a strand of the Gales Creek Fault. They then investigated the site by excavating a trench across the feature and found Yamhill Formation sandstone (middle to late Eocene, between 48 and 34 Ma) thrust over <250 ka loess deposits (Wells, pers. commun., 2017). This finding indicated a minimum age of the most recent movement to be about 250 ka. They found no evidence, however, of more recent activity, such as offset of younger geologic deposits. Dr. Wells anticipates that findings from this investigation will be published soon.

Evidence of Holocene faulting in the Pacific Northwest is difficult to find for the following reasons:

- Ground surface erosion and blanket deposition of fine sediments by the Missoula floods may have hidden surface ruptures;
- Potentially fault-deformed geomorphic features (e.g., topographic scarps) cannot be conclusively dated;
- Strike-slip fault movements often do not have significant vertical movements; and
- Most undisturbed ground surfaces in the Pacific Northwest are naturally covered by thick vegetation which can obscure ground surface features.

3.0 Regional Seismicity

3.1 General

Earthquakes in the Pacific Northwest occur in response to active convergence of the Juan de Fuca oceanic plate and the North American continental plate. Stresses build with friction between the plates as the Juan de Fuca plate is subducted beneath the over-riding continental plate in the CSZ. Both plates break periodically along fault lines as a result of the stress. Faulting occurs both between the plates (interplate) and within the plates (intraplate). In northwest Oregon, earthquakes can be generated from three primary sources:

- Megathrust interplate earthquake events are generated along the boundary (the CSZ) between the subducting Juan de Fuca plate and the overriding North American plate,
- Deep intraplate earthquake events are generated within the subducted portion of the Juan de Fuca plate, and
- Shallow intraplate crustal earthquake events occur along faults that form in the continental crust and accretionary wedge of sediments that accumulate along continental shelf and slope.

The largest (megathrust) earthquakes occur on the interface between the two plates within the CSZ and could generate magnitudes of 8 to more than 9. These earthquakes could cause shaking that lasts for several minutes and could generate tsunamis. Moderately large intraplate earthquakes occur deep within the subducting Juan de Fuca plate. These "intraplate" earthquakes could range from magnitude 6.5 to 8.0. Crustal earthquakes are smaller in magnitude (usually less than 7.0) and because they are shallower than the others and occur in the continental crust east of the CSZ, they are likely to be closer to urban areas. Shaking associated with crustal earthquakes usually lasts less than one minute. Although crustal earthquakes are smaller in magnitude and the period of shaking is much shorter than the interplate and intraplate earthquakes, because they would likely occur closer to urban areas, they are still very significant in terms of the potential hazards they pose to populated areas of the Pacific Northwest.

3.2 Earthquake history

The Portland area has exhibited a low to moderate level of historical seismicity compared to other areas of the Pacific Northwest, but it might be the most active area in Oregon for events of moment magnitude $(M_w) \ge 3.0$ (Wong et al., 2001). Based on the historical earthquake record, seven felt earthquakes greater than Richter (local) magnitude (M_L) 3.5 have occurred near Portland since 1850 (Bott and Wong, 1993). At least 20 earthquakes less than M_L=3.0 have been recorded in the greater Portland metropolitan area since 1980, many of which were too small to be felt. None of the earthquakes recorded and located in the Portland area can be located with certainty on any known fault. However, because numerous small earthquakes have occurred in this vicinity, the Portland Hills Fault is a likely source for future large earthquakes (Wong et al., 2001).

The most recent CSZ megathrust event occurred in AD 1700 and is believed to have ruptured the entire length of the subduction zone. This event has been estimated to be $M_W=9$ based on Japanese tsunami records (Satake et al., 1996; 2003).

The CSZ Intraslab region has been the source of numerous historical earthquakes in the region including the M_L =7.1 Olympia earthquake in 1949 and the M_L =6.8 Nisqually earthquake in 2001.

3.3 Evaluating Crustal Faults for Holocene Deformation

The USGS Quaternary Fault and Fold Database of the United States (USGS, 2006²) contains information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes

 $^{^{2}}$ Although the website requests the use of a citation with a publication date of 2006, individual faults are updated as new data becomes available. For example, the Lacamas Creek fault was last updated in 2002, the Mt. Angel fault was last updated in 2011, and the Gales Creek fault was last updated in 2017.

WWSP WTP_1.0

during the Quaternary Period (the past 1.6 Ma). Maps of these geologic structures are linked to a database containing detailed descriptions of the faults and reference sources. The database is intended to be the USGS's archive for historic and ancient earthquake sources and is used in current and future probabilistic seismic-hazard analyses.

The USGS has also developed the National Seismic Hazard Map (NSHM) program, which uses a subset of fault data from the USGS Quaternary Fault database and recorded earthquake data to model seismic hazards. The NSHM is updated periodically; the current version was published in 2014 while a draft version was released in 2018.

Using the Quaternary Fault and Fold Database and the 2014 NSHM data set as guides, we have evaluated 29 faults that are or might have been active during the Quaternary Period. We have included all the northwestern Oregon faults included in the 2014 NSHM and all Quaternary faults included in the USGS Quaternary Fault database within a radius of about 100 km (60 mi) of WTP_1.0. Table 1 summarizes the evaluated faults, data sources, and interpretation of their significant characteristics. Figure 1 shows the locations of the faults with respect to WTP_1.0

4.0 Fault Descriptions

4.1 Crustal Faults

In order of increasing distance from WTP_1.0, the following sections summarize the significant facts and characteristics of the 29 faults evaluated in this study and upon which we are basing our conclusions. These faults are also presented in Table 1.

4.1.1 Sherwood-Lake Oswego Fault

The Sherwood-Lake Oswego Fault is a Class C fault (fault classes are defined in Table 1 Notes). It is not included in the 2014 NSHM. The USGS Fault database lists the fault but concludes that it has not been active in the Quaternary Period; no information for this fault, other than its probable location, is available. McPhee et. al. (2014) have interpreted a broad, northeast-trending gravity high along the north side of Parrett Mountain as suggestive of a concealed fault-bounded ridge coincident with the Parrett Mountain uplift. The Sherwood Fault is approximately on strike with the Lake Oswego Fault and together, these faults tend to form the southeastern boundary of the Tualatin basin. A mapped fault is defined as "Class C" when geologic evidence is insufficient to demonstrate either that a tectonic fault exists, or that Quaternary slip or deformation is associated with the feature (USGS, 2006). The Sherwood-Lake Oswego Fault is included here only because it is the nearest mapped fault to the WTP_1.0.

4.1.2 Canby-Molalla Fault

The Canby-Molalla Fault is a Class A (fault classes are defined in Table 1 Notes) fault about 50 km (31 mi) in length; it strikes northwest and it is located about 8 km (5 mi) east of WTP_1.0. Aeromagnetic data suggests that the fault offsets the CRBG and possibly Missoula Flood deposits. This fault was not included in the 2014 NSHM. The USGS fault database gives the estimated age of last activity on this fault as less than 15 ka (Personius, 2002a).

4.1.3 Bolton Fault

The Bolton Fault is a Class B (fault classes are defined in Table 1 Notes) fault located about 11 km (7 mi.) east of WTP_1.0 along the east front of the West Hills south of Lake Oswego. It is a northwest trending fault of about 9 km (5.6 mi) in length. The Bolton Fault is included in the 2014 NSHM and modeled with a slip rate of <0.2 millimeters per year (mm/yr) and a maximum (Richter or local) magnitude M_L =6.19. There is a high fault escarpment in CRBG, but no evidence of Quaternary offset (Personius, 2002b).

4.1.4 Beaverton Fault

The Beaverton Fault is a Class A fault about 15 km (9 mi) in length; it strikes east-west and it is about 12 km (7 mi) north of WTP_1.0. This fault apparently offsets CRBG and late Pleistocene sediments of the Hillsboro Formation as interpreted from geophysical surveys and water well logs. The Beaverton Fault was not included in the 2014 NHSM. The USGS fault database gives the age of last activity on this fault as less than 750 ka (Personius, 2002c).

4.1.5 Newberg Fault

The Newberg Fault is a Class A fault located near the town of Newberg about 15 km (9 miles) southwest of WTP_1.0. This fault trends northwest and is about 7 km (4 mi) in length. It is part of the Gales Creek-Mt. Angel structural zone. The Newberg Fault was included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum M_L =6.85. There is no surface expression of this fault, but an offset in the CRBG surface has been confirmed by comparison of the logs of water wells that penetrate the basalt and in aeromagnetic and gravity data. The Newberg Fault is considered active although there is no evidence of activity post-15 ka (Personius, 2002d).

4.1.6 Oatfield Fault

The Oatfield Fault is a Class A fault of about 29 km (18 mi) in length located on the western flank of the West Hills; it is about 15 km (9 mi) from WTP_1.0. The strike of the Oatfield Fault is parallel to the Portland Hills Fault and the trend of the West Hills. The Oatfield Fault might be structurally connected to the Portland Hills Fault (Wong, et al., 2001). The Oatfield Fault is not included in the 2014 NSHM. The Oatfield Fault was observed offsetting Boring Lava in Portland's light rail tunnel, but no offset of Quaternary units was observed (Walsh et al., 2011). The USGS Fault database lists the age of the Oatfield Fault at <1.6 Ma (Personius, 2002e).

4.1.7 Portland Hills Fault

The Portland Hills Fault is a Class A fault located about 16 km (10 mi) north of WTP_1.0 in the Portland basin. The Portland Hills Fault is about 49 km (30 mi) in length and marks the western boundary of the Portland basin. There are surface features on the east face of the West Hills that suggest the presence of this fault, and a trench excavation has exposed disturbed Missoula Flood sediments, but no offset. The disturbed sediments might suggest liquefaction during a prehistoric earthquake. However, the limited historical earthquake records do not place any known earthquake on the Portland Hills Fault. Many small magnitude historic earthquakes have been recorded and located near the Portland Hills Fault suggesting that there are active structures nearby; "the presence of small earthquakes, more often than not, delineates areas where larger earthquakes are likely to occur" (Wong et al., 2001). This fault was included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum $M_L = 7.05$. The USGS Fault database lists the age of last activity on this fault as <15 ka (Personius and Haller, 2017a).

4.1.8 Damascus-Tickle Creek Faults

The Damascus-Tickle Creek Faults consist of numerous short strands within the Boring Hills about 21 km (13 mi) east of WTP_1.0 in the Portland basin. These faults are Class A faults, but they were not included in the 2014 NSHM Project. Some fault strands offset Boring Lava and the Troutdale Formation. The USGS Fault database gives the age of last activity on this fault as <750 ka (Personius, 2002f).

4.1.9 East Bank Fault

The East Bank Fault is a Class A fault located about 22 km (7 mi) northeast of WTP_1.0 in the Portland basin; it is about 29 km (18 mi) in length. There is no surface expression of this fault because it is buried by Missoula Flood deposits, but deep-water wells drilled on opposite sides of the fault and seismic geophysical studies have identified offsets in the CRBG and Troutdale Formation. This fault was not included in the 2014 NSHM. The USGS Fault database lists the age of the most recent activity on this

fault as <15 ka, although no surface offsets in the Missoula Flood deposits that overlie and conceal this fault have been recognized (Personius, 2002g).

4.1.10 Helvetia Fault

The Helvetia Fault is a Class A fault located about 22 km (14 miles) northwest of WTP_1.0. This fault is a northwest trending fault of about 7 km (4 mi) in length and forms part of the northeast boundary of the Tualatin basin. The Helvetia Fault was included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum M_L =6.4. There is no surface expression of this fault; it has been mapped primarily by comparison of water wells that penetrate and offset the CRBG. The Helvetia Fault is considered active; its age of last activity is given as <1.6 Ma in the USGS Fault database (Personius, 2002h).

4.1.11 Grant Butte Fault

The Grant Butte Fault is a Class A fault located about 23 km (14 mi) east of WTP_1.0 in the Portland basin. The Grant Butte Fault was included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum M_L =6.21. The Pleistocene Boring Lava and Springwater Formation are apparently offset by this fault, but the offset does not cut the overlying late Pleistocene Missoula Flood deposits. The age of last activity on this fault is therefore given as <750 ka (Personius, 2002i).

4.1.12 Gales Creek Fault Zone

The Gales Creek Fault Zone is a Class A fault located about 27 km (17 mi) northwest of WTP_1.0 and it is about 73 km (45 mi) in length (Personius and Haller, 2017b). This fault is included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum M_L =6.75. This fault is a northwest-trending, right-lateral, strike-slip fault that marks the boundary between the Tualatin basin and the Coast Range uplift. The Gales Creek Fault is a very old fault and appears to have been active for about 60 Ma. A recent trench excavation across a strand of this fault found evidence of Tertiary marine sandstone being thrust over <250 ka loess deposits (R.E. Wells, pers. commun., 2017). Although this observation is strongly suggestive of Quaternary activity, it is inconclusive for activity during the Holocene epoch. The USGS Fault database gives an age of <1.6 Ma for the Gales Creek Fault.

4.1.13 Mt. Angel Fault

The Mt. Angel Fault is a Class A fault located about 29 km (18 mi) south of WTP_1.0. It is approximately 30 km (19 mi) in length, with an age of last activity that is estimated at less than 15 ka. This fault lies on, and might be connected to, the Gales Creek Fault Zone, also a Class A fault. The 1993 M_L =5.6 Scotts Mill earthquake was located near the Mt. Angel Fault, and though the earthquake cannot confidently be located on the fault, there is a strong suggestion that the fault is currently active (Thomas et. al., 1996). This fault was included in the 2014 NSHM and modeled with a slip rate of <0.2 mm/yr and a maximum M_L =6.5 earthquake (Personius and Lidke, 2011).

4.1.14 Sandy River and Lacamas Lake Faults

The Sandy River and Lacamas Lake faults are sometimes referred to as the Frontal Fault. The Sandy River strand is a Class C fault, while the Lacamas Lake strand, with an apparent age of less than 750 ka,

Fault Location Study

is listed as a Class A fault due to the presence of shear zones and an apparent offset in Boring Lava. These two faults were included as the Frontal Fault in the 2014 NSHM and modeled as a right-lateral strike slip fault with a slip rate of <0.2 mm/yr and a maximum M_L =6.5. These faults are about 40 km (25 mi) northeast of WTP_1.0. The Lacamas Lake strand is about 24 km (15 mi) in length and the Sandy River strand is about 17 km (11 mi) in length. The age of the Sandy River strand is estimated at <1.6 Ma (Personius, 2002j; Peterson et al., 2014).

4.1.15 Salem-Eola Hills Homocline

The northwest-striking Salem-Eola Hills homocline is a Class A structure located approximately 49 km (30 mi) south of WTP_1.0, it's about 32 km (20 mi) in length, and its age is estimated at <1.6 Ma. This structure is not included in the 2014 NSHMP. The homocline structure deforms Miocene rocks of the Columbia River Basalt Group along the Salem Hills and Eola Hills in the central Willamette Valley. It is located at the southwestern margin of deposition of the CRBG in this part of Oregon. In the late Miocene, the fold acted as a tectonic dam, causing the obstruction of the ancestral Willamette River and deposition of a thick sequence of basin-fill sediment in the southern Willamette Valley. The fold is not shown on most geologic maps of the region, but it appears to be significantly offset across the Mill Creek fault (Personius, 2002k).

4.1.16 Waldo Hills Fault

The northeast-striking, southeast-dipping Waldo Hills reverse fault is a Class A fault that offsets Miocene rocks of the CRBG along the northwestern margin of the Waldo Hills in the central Willamette Valley. The fault is about 50 km (31 mi) south of WTP_1.0, about 12 km (7.5 mi) in length, and its age is estimated at <1.6 Ma. It is not included in the 2014 NSHM. The Waldo Hills Fault is coincident with a steep, linear range front that marks the northwestern margin of the Waldo Hills and the eastern margin of the central Willamette Valley. No fault scarps on surficial Quaternary deposits have been described along its trace (Personius, 2002l).

4.1.17 Turner / Mill Creek Faults

Originally mapped as two separate faults, the Mill Creek Fault is believed by Yeats et al., (1996) to be an extension of the Turner Fault. These are Class A faults located about 51 km (32 mi) south of WTP_1.0. The faults are about 18 km (11 mi) in length and strike northeast. These faults are modeled in the NSHM as having reverse slip at a rate <0.2 mm/yr and a maximum M_L = 6.59. The faults offset Miocene rocks of the CRBG in the Salem and Waldo Hills in the central Willamette Valley. The Turner and Mill Creek faults are coincident with a CRBG range front along the southern margin of the Waldo Hills, and may deform middle Pleistocene(?) deposits near the Mill Creek water gap (Personius, 2002m).

4.1.18 Tillamook Bay Fault Zone

The Tillamook Bay Fault Zone is a Class A fault and a major northwest-striking fault that offsets the Eocene Tillamook Volcanics on the west flank of the Coast Range. The fault is located approximately 65 km (40 mi) west of WTP_1.0 and it is about 32 km (20 mi) in length. This fault is not included in the NSHM. The fault zone has about 4 km (2.5 mi) of down-southwest vertical separation and about 20 km (12 mi) of left-lateral strike-slip displacement in Eocene Tillamook Volcanics. No displacements in Quaternary deposits have been documented, but the fault zone parallels the mountain front that controls

Fault Location Study

the northeastern margin of Tillamook Bay, and thus has geomorphic expression consistent with Quaternary displacement. As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on this fault are always related to great megathrust earthquakes on the subduction zone, or whether some displacements are related to smaller earthquakes in the North American Plate (Personius, 2002n).

4.1.19 Mount Hood Fault

The Mount Hood Fault is a Class C fault that is located about 75 km (47 mi) east of WTP_1.0 and is modeled in the NSHM as being a normal fault, 11 km (7 mi) in length, with a slip rate of <0.3 mm/yr and capable of generating a maximum magnitude of M_L =6.29 (Peterson, et al., 2014). The Mount Hood fault is shown on numerous Quaternary fault compilations based on a 1982 field mapping project that shows the fault as offsetting Pleistocene to Holocene lava flows from Mount Hood. However, the mapped fault is restricted to Miocene bedrock or is not shown at all on recently published geologic maps. Recent investigations in the area found no evidence of tectonic faulting along the trace originally mapped, but rather found evidence of landslide slip features, which may have been related to deglaciation (Sherrod and Scott, 1995; Scott et al., 1997). Given that recent field investigations have restricted fault movement to only Miocene rocks, the Mount Hood Fault is classified as a Class C structure in the current USGS Fault database. Nevertheless, we have included it here for completeness because it is also included in the current NSHM.

4.1.20 Clackamas River Fault Zone

Located about 80 km (50 mi) from WTP_1.0, the Class A Clackamas River Fault Zone is a broad zone, approximately 29 km (18 mi) in length, of mostly northwest-striking normal and right-lateral strike-slip faults that offset early Pleistocene, Pliocene, and Miocene volcanic rocks in the Cascade Range. The age of these faults is given as <1.6 Ma and the slip rate as <0.2 mm/yr; no evidence of fault scarps on Quaternary deposits has been described in published literature. The Clackamas River Fault Zone is not included in the 2014 NSHM. These faults are part of a regional structural zone that controlled the distribution of CRBG lava flows in western Oregon and may form a link between similarly striking Brothers or Sisters fault zones to the southeast and the Portland Hills Fault Zone to the northwest (Personius, 2002o).

4.1.21 Happy Camp Fault

The Happy Camp Fault is located approximately 89 km (55 mi) west of WTP_1.0. The age of this fault is given as <1.6 Ma and the assigned slip rate is <0.2 mm/yr. The Happy Camp Fault is included in the NSHM as a reverse fault, 20 km in length and capable of generating a maximum M_L =6.58. This fault is an east-striking thrust fault that offsets the Miocene sedimentary rocks of the Astoria Formation on the west flank of the Coast Range uplift. The fault might project offshore as the Nehalem Bank Fault. Locally, the fault thrusts Miocene CRBG over poorly dated Quaternary deposits in sea cliffs near Happy Camp, at the north end of Netarts Bay. As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on this fault are always related to great megathrust earthquakes on the subduction zone or whether some displacements are related to smaller earthquakes in the North American Plate (Personius, 2002p).

4.1.22 Owl Creek Fault

The steeply east-dipping Owl Creek Fault is a Class A reverse fault associated with an anticline in the Eocene Spencer Formation mapped in the subsurface east of Corvallis. This fault is not included in the NSHM. The north trending fault is located about 90 km (56 mi) south of WTP_1.0. Fault length is about 15 km (9 mi); age and slip rate are given as <750 ka and <0.2 mm/yr, respectively (Personius, 2002q). The fault, which has no geomorphic expression, apparently offsets the middle- to late-Pleistocene Rowland Formation, but it does not offset the latest Pleistocene Willamette Formation (Graven, 1990; Yeats et al., 1996). Madin and others (2001) infer late Quaternary offset, and Geomatrix Consultants, Inc. (1995) and Madin and Mabey (1996) infer middle and late Quaternary (<780 ka) displacement.

4.1.23 Hood River Fault Zone

The Hood River Fault zone is approximately 96 km (60 mi) east of WTP_1.0. The Hood River Fault zone is a Class A fault with normal to right-lateral displacement, about 44 km (27 miles) in length which has been assigned a slip rate of <0.2 mm/yr and an age of < 1.6 Ma. The Hood River Fault Zone is not modeled in the NSHM. The zone defines the eastern margin of a half graben that forms the Upper Hood River Valley in the High Cascades of northern Oregon. This structure may be part of an extensive group of graben structures formed in response to subsidence related to extrusion of extensive volcanic rocks in the early Pliocene. The area is underlain by Miocene volcanic rocks of the Columbia Plateau and Pliocene through Quaternary volcanic rocks of the Cascade Range. No fault scarps on Quaternary deposits have been described, but prominent escarpments on Neogene (comprises the Miocene and Pliocene epochs, 23 to 2.6 Ma) volcanic rocks and a minimum offset of 600 m (1,969 ft.) in Pliocene volcanic rocks suggest that some displacement occurred in the Quaternary (Personius, 2002r).

4.1.24 Cascadia Fold and Thrust Belt

The Cascadia Fold and Thrust Belt is a group of north-striking, Class A folds and faults that form a broad fold and thrust belt of deformed sediments on the continental shelf and slope off the Oregon Coast. There is no detailed published information on these structures, but many of the them do offset Pleistocene and Holocene sediments. Their age is given as <15 ka. They are not included in the NSHM. The fold and thrust belt consists of two primary domains differentiated based on fold wavelength: (1) a continental slope domain underlain by a thick sequence of accretionary wedge sediments deformed by closely-spaced thrust faults and short-wavelength folds, and (2) a continental shelf domain underlain by a rigid basement of Siletz River Volcanics deformed by more broadly spaced folds and thrusts. As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on these structures are always related to great megathrust earthquakes on the subduction zone or whether some independent displacements are related to smaller earthquakes in the overriding North American Plate (Personius, 2002s).

4.1.25 Faults Near the Dalles

Faults near The Dalles in northern Oregon and southern Washington are northwest-striking, right-lateral strike-slip and minor normal faults. The nearest of these 6 fault strands are located about 100 km (60 mi) east of WTP_1.0. These faults have been assigned an age of <1.6 Ma and a slip rate of <0.2 mm/yr. These faults are not modeled in the NSHM. These faults span the Columbia River Gorge and offset Miocene and Pliocene volcanic and sedimentary rocks near the southern margin of the Yakima fold belt. The nearest

fault strand is about 9 km (5.6 mi) long. No scarps on Quaternary deposits have been described, but one of these faults may offset Quaternary basalt. These faults form prominent regional lineaments that also suggest they may have undergone Quaternary displacement (Personius and Lidke, 2003).

4.1.26 Nehalem Bank Fault

The Nehalem Bank Fault is approximately 99 km (62 mi) west of WTP_1.0. The north-and northweststriking, right-lateral reverse Nehalem Bank Fault is mapped as multiple fault strands and anticlinal axes in Miocene through Holocene sediment on the continental shelf. Cumulative length is fault is about 52 km (32 miles). This is a Class A fault, age of most recent deformation is thought to be <15 ka; slip rate is <0.2 mm/yr. This fault is not modeled in the NSHM. The fault may form the boundary between the Eocene Siletz Volcanics to the east and Miocene and younger accretionary wedge sediment to the west. Offsets of 10 to 20 m in Holocene sediment, apparent in side-scan sonar and seismic records, probably post-date the late Pleistocene sea-level low-stand suggesting most recent movement in the latest Quaternary (Goldfinger, 1994). As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on this fault are always related to great megathrust earthquakes on the subduction zone, or whether some independent displacements are related to smaller earthquakes in the overriding North American Plate (Personius, 2002t).

4.1.27 Unnamed Offshore Faults

The Unnamed Offshore Faults are a group of Class A faults located about 100 km (62 mi) west of WTP_1.0. They total about 287 km (178 miles) in length and are not included in the NSHM. These faults offset accretionary wedge sediments on the continental shelf and slope off-shore near the Tillamook area. Some faults also offset the underlying oceanic basalts of the subducting Juan de Fuca Plate. These faults are mapped as left- and right-lateral strike-slip faults and normal and reverse faults, but most have strikes oblique to the Cascadia deformation front, suggesting a strong lateral component of slip. No detailed information on age of offset deposits is available, but similarities with better-studied offshore faults suggest most recent movement in the latest Quaternary (<15 ka) on most of these structures. As with other folds and faults located in the Cascadia forearc, it is unknown if coseismic displacements on these faults are always related to great megathrust earthquakes on the subduction zone, or whether some independent displacements are related to smaller earthquakes in the overriding North American Plate (Personius, 2002u).

4.1.28 CSZ Megathrust

The CSZ extends from Vancouver Island to Northern California and forms the boundary between the overriding North American plate and the subducting Juan de Fuca Plate. The most recent event, which occurred in AD 1700 (Atwater and Hemphill-Haley, 1997), is believed to have ruptured the entire length of the subduction zone and has been estimated to be $M_W = 9$ based on Japanese tsunami records (Satake, et al., 1996). This fault is considered capable of generating an event of up to $M_L = 9.3$ at 50-75 km (30-50 mi) from the site (Shannon & Wilson, 2017).

4.1.29 CSZ Intraslab

CSZ intraslab earthquakes are generated within the subducting Juan de Fuca Plate as it is stressed and deformed. The CSZ Intraslab region has been the source of numerous historical earthquakes in

Washington State including the $M_W = 7.1$ Olympia earthquake in 1949 and the $M_W = 6.8$ Nisqually earthquake in 2001. This type of fault is considered capable of generating a $M_L = 8$ earthquake 50-75 km from the site (Shannon & Wilson, 2017).

5.0 Conclusion

From the research cited above we find that in the greater Portland Metropolitan area there are no historically recorded earthquakes that can be conclusively located on a known fault, and no conclusive evidence for activity on a known fault in the past 12,000³ years. In addition, no known active faults cross the WTP_1.0 site.

The nearest known, potentially active faults to the WTP_1.0 site are the Sherwood-Lake Oswego and Canby-Molalla faults, which are located at approximately 2 km (1 mi) north and 8 km (5 mi) east respectively. Therefore, it is our opinion that the risk of fault rupture on the WTP_1.0 site is negligible.

³ We have retained the 12,000-year date as the beginning of the time interval of interest because it is consistent with the dates used in other published investigations of local faulting (Wells et al., 1998; Wong et al., 2001; Madin and Hemphill-Haley, 2001; Liberty et al., 2003; McPhee et al., 2014). This date is the approximate end of the period of Missoula flooding. Sediments deposited by the Missoula floods obscure surface evidence that might exist of prior fault rupture.

6.0 References

- Anderson, J.L., 1978, The stratigraphy and structure of the Columbia River Basalt in the Clackamas River drainage: Portland, Oregon, Portland State University, unpublished M.S. thesis, 136 p.
- Anderson, J.L., 1987, The structural geology and ages of deformation of a portion of the southwest Columbia Plateau, Washington and Oregon: University of Southern California, Ph. D dissertation, 283 p., 7 pls., scale 1:24,000.
- Beaulieu, J.D., 1977, Geologic hazards of parts of northern Hood River, Wasco, and Sherman Counties, Oregon: State of Oregon, Department of Geology and Mineral Industries Bulletin 91, 95 p., 11 pls., scale 1:125,000.
- Beeson, M.H., Fecht, K.R., Reidel, S.P., and Tolan, T.L., 1985, Regional correlations within the Frenchman Springs Member of the Columbia river Basalt Group—New insights into the middle Miocene tectonics of northwestern Oregon: Oregon Geology, v. 47, no. 8, p. 87-96.
- Bela, J.L., 1982, Geologic and neotectonic evaluation of north-central Oregon—The Dallas 1 x 2 quadrangle: State of Oregon, Department of Geology and Mineral Industries Geologic Map Series GMS-27, 2 sheets, scale 1:250,000.
- Blakely, R.J., Wells, R.E., Tolan, T.L., Beeson, M.H., Tréhu, A.M., and Liberty, L.M., 2000, New aeromagnetic data reveal large strike-slip (?) faults in the northern Willamette Valley, Oregon: Geological Society of America Bulletin, v. 112, p. 1225-1233.
- Bott, J.D.J., and Wong, I.G., 1993, Historical earthquakes in and around Portland, Oregon: Oregon Geology, v. 55, no. 5, p. 116-122.
- Crenna, P.A., and Yeats, R.S., 1994, Late Cenozoic tectonics and paleogeography of the Salem metropolitan area, central Willamette Valley, Oregon: Oregon Geology, v. 56, no. 6, p. 129-136.
- Geomatrix Consultants, Inc., 1995, Seismic design mapping, State of Oregon: Technical report to Oregon Department of Transportation, Salem, Oregon, under Contract 11688, January 1995, unpaginated, 5 pls., scale 1:1,250,000.
- Goldfinger, C., 1994, Active deformation of the Cascadia Forearc—Implications for great earthquake potential in Oregon and Washington: Oregon State University, unpublished Ph.D. dissertation, 246 p., http://hdl.handle.net/1957/36664.
- Goldfinger, C., Kulm, L.D., Yeats, R.S., Mitchell, C., Weldon, R., II, Peterson, C., Darienzo, M., Grant, W., and Priest, G.R., 1992, Neotectonic map of the Oregon continental margin and adjacent abyssal plain: State of Oregon, Department of Geology and Mineral Industries Open-File Report 0-92-4, 17 p., 2 pls.
- Goldfinger, C., Kulm, L.D., Yeats, R.S., Appelgate, B., MacKay, M.E., and Moore, G.F., 1992, Transverse structural trends along the Oregon convergent margin—Implications for Cascadia earthquake potential and crustal rotations: Geology, v. 20, p. 141-144.
- Goldfinger, C., Kulm, L.D., Yeats, R.S., McNeill, L., and Hummon, C., 1997, Oblique strike-slip faulting of the central Cascadia submarine forearc: Journal of Geophysical Research, v. 102, no. B4, p. 8217-8243.

- Graven, E.P., 1990, Structure and tectonics of the southern Willamette Valley, Oregon: Oregon State University, unpublished M.S. thesis, 119 p., 10 pls.
- Korosec, M.A., compiler, 1987, Geologic map of the Hood River quadrangle, Washington and Oregon: Washington Division of Geology and Earth Resources Open-File Report 87-6, 42 p., scale 1:100,000.
- Liberty, L.M., Hemphill-Haley, M.A., and Madin I.P., 2003, The Portland Hills fault: Uncovering a hidden fault in Portland, Oregon using high-resolution geophysical methods: Tectonophysics, v. 268, p. 89-103.
- Ma, Lina; Madin I.P. Duplantis, Serin Williams, K.J., 2012, Lidar-based surficial geologic map of the greater Portland area: Oregon Department of Geology and Mineral Industries Open-File Report O-12-02, scale 1:63,360.
- Madin, I.P., 1990, Earthquake-hazard geology maps of the Portland metropolitan area, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report O-90-2.
- Madin, I.P., 2017, Personal communication, March 9, 2017.
- Madin, I.P., and Mabey, M.A., 1996, Earthquake hazard maps for Oregon: State of Oregon, Department of Geology and Mineral Industries Geological Map Series GMS-100, 1 sheet.
- Madin, I.P., Ma, L., Niewendorp, C.A., 2008, Preliminary geologic map of the Linnton 7.5' quadrangle, Multnomah and Washington Counties, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report O-08-06, 35 p., scale 1:24,000.
- Madin, I.P., Wang, Z., and Graham, G.B., 2001, Finding Quaternary faults in the Willamette lowland— Are they dead or just hiding?: Seismological Research Letters, v. 72, no. 2, p. 254.
- McNeill, L.C., Goldfinger, C., Yeats, R.S., and Kulm, L.D., 1998, The effects of upper pl. deformation on records of prehistoric Cascadia subduction zone earthquakes, in Stewart, I.S., and Vita-Finzi, C., eds., Coastal tectonics: Geological Society Special Publication No. 146, p. 321-342.
- McPhee, D.K.; Langenheim, V.E., Wells, R.E., and Blakely, R.J., 2014, Tectonic evolution of the Tualatin Basin, northwest Oregon, as revealed by inversion of gravity data: Geosphere: v. 10, no.2, p.264-275.
- O'Connor, J.E., and Benito, G., 2009, Late Pleistocene floods—15,000-20,000 calendar years before present from radiocarbon dating: Geological Society of America Abstracts with Programs, v. 41, no., 7, p. 169.
- Parker, M.J., 1990, The Oligocene and Miocene geology of the Tillamook Embayment Tillamook County, northwest Oregon: Oregon State University, unpublished M.S. thesis, 515 p.
- Personius, S.F., compiler, 2002a, Fault number 716, Canby-Molalla fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:25 PM.

- Personius, S.F., compiler, 2002b, Fault number 874, Bolton fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:30 PM.
- Personius, S.F., compiler, 2002c, Fault number 715, Beaverton fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:48 PM.
- Personius, S.F., compiler, 2002d, Fault number 717, Newberg fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:33 PM.
- Personius, S.F., compiler, 2002e, Fault number 875, Oatfield fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:38 PM.
- Personius, S.F., compiler, 2002f, Fault number 879, Damascus-Tickle Creek fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:53 PM.
- Personius, S.F., compiler, 2002g, Fault number 876, East Bank fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:58 PM.
- Personius, S.F., compiler, 2002h, Fault number 714, Helvetia fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 06:06 PM.
- Personius, S.F., compiler, 2002i, Fault number 878, Grant Butte fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 06:03 PM.
- Personius, S.F., compiler, 2002j, Fault number 880, Lacamas Lake fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 06:09 PM.
- Personius, S.F., compiler, 2002k, Fault number 719, Salem-Eola Hills homocline, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:35 PM.
- Personius, S.F., compiler, 2002l, Fault number 872, Waldo Hills fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/14/2019 09:44 AM.
- Personius, S.F., compiler, 2002m, Fault number 871, Turner and Mill Creek faults, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:37 PM.
- Personius, S.F., compiler, 2002n, Fault number 881, Tillamook Bay fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:37 PM.

WWSP WTP_1.0

- Personius, S.F., compiler, 2002o, Fault number 864, Clackamas River fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:38 PM.
- Personius, S.F., compiler, 2002p, Fault number 882, Happy Camp fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:41 PM.
- Personius, S.F., compiler, 2002q, Fault number 870, Owl Creek fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:39 PM.
- Personius, S.F., compiler, 2002r, Fault number 866, Hood River fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:42 PM.
- Personius, S.F., compiler, 2002s, Fault number 784, Cascadia fold and fault belt, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/14/2019 09:50 AM.
- Personius, S.F., compiler, 2002t, Fault number 789, Nehalem Bank fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:45 PM.
- Personius, S.F., compiler, 2002u, Fault number 785, unnamed offshore faults, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:42 PM.
- Personius, S.F., and Haller, K.M., compilers, 2017a, Fault number 877, Portland Hills fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 08/22/2017 04:54 PM.
- Personius, S.F., and Haller, K.M., compilers, 2017b, Fault number 718, Gales Creek fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 08/22/2017 04:55 PM.
- Personius, S.F., and Lidke, D.J., compilers, 2003, Fault number 580, Faults near The Dalles, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:04 PM.
- Personius, S.F., Lidke, D.J., and Haller, K.M., compilers, 2014, Fault number 873, Mount Angel fault, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/12/2019 05:41 PM.
- Personius, S.F., and Nelson, A.R., compilers, 2006, Fault number 781, Cascadia megathrust, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 02/13/2019 03:46 PM.
- Peterson, M.D., Moschetti, M.P., Powers, P.M., and others (NEHP), 2014, Documentation for the 2014 update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2014-1091243 p.

- Pezzopane, S.K., 1993, Active faults and earthquake ground motions in Oregon: Eugene, Oregon, University of Oregon, unpublished Ph.D. dissertation, 208 p.
- Schlicker, H.G., and Deacon, R.J., 1967, Engineering geology of the Tualatin Valley region, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 60, 103 p.
- Schlicker, H.G., Deacon, R.J., Beaulieu, J.D., and Olcott, G.W., 1972, Environmental geology of the coastal region of Tillamook and Clatsop Counties, Oregon: State of Oregon, Department of Geology and Mineral Industries Bulletin 74, 164 p., 18 pls., scale 1:62,500.
- Satake, K., Shimazaki, K., Tsuji, Y, and Ueda, K., 1996, Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami record of January 1700: Nature, v. 379, p. 246-249.
- Sataki, Kenji, Wang, Kelin, Atwater, B.F., 2003, Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions: Journal of Geophysical Research, v. 108, n. B11, 17 p.
- Scott, W.E., Gardner, C.A., Sherrod, D.R., Tilling, R.I., Lanphere, M.A., and Conrey, R.M., 1997, Geologic history of Mount Hood volcano, Oregon—A field trip guidebook: U.S. Geological Survey Open-File Report 97-263, 38 p.
- Shannon and Wilson, 2017, Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington Counties, Oregon, August 3, 2017.
- Sherrod, D.R., and Pickthorn, L.G., 1989, Some notes on the Neogene structural evolution of the Cascade Range in Oregon, in Muffler, P.L.J., Weaver, C.S., and Blackwell, D.D., eds., Geological, geophysical, and tectonic setting of the Cascade Range: U.S. Geological Survey Open-File Report 89-178, p. 351-368.
- Sherrod, D.R., and Smith, J.G., 1989, Preliminary map of upper Eocene to Holocene volcanic and related rocks of the Cascade Range, Oregon: U.S. Geological Survey Open-File Report 89-14, 20 p., 1 pl., scale 1:500,000.
- Sherrod, D.R., and Scott, W.E., 1995, Preliminary geologic map of the Mount Hood 30 by 60 minute quadrangle, northern Cascade Range, Oregon: U.S. Geological Survey Open-File Report 95-219, 28 p., 1 pl., scale 1:100,000.
- Swanson, D.A., Anderson, J.L., Camp, V.E., Hooper, P.R., Taubeneck, W.H., and Wright, T.L., 1981, Reconnaissance geologic map of the Columbia River Basalt Group, northern Oregon and western Idaho: U.S. Geological Survey Open-File Report 81-797, 35 p., 5 pls., scale 1:250,000.
- Thomas, G.C., Crosson, R.S., Carver, D.L., and Yelin, T.S., 1996, The 25 March 1993 Scotts Mills, Oregon, earthquake and aftershock sequence—Spatial distribution, focal mechanisms, and the Mount Angel fault: Bulletin of the Seismological Society of America, v. 86, no. 4, p. 925-935.
- U.S. Geological Survey (USGS), 2006, Quaternary fault and fold database for the United States, accessed 01/08/2019 from USGS web site: http://earthquakes.usgs.gov/hazards/qfaults/.
- U.S. Geological Survey (USGS), 2014, National Seismic Hazard Map website, <u>https://earthquake.usgs.gov/hazards/hazmaps/</u>.

- U.S. Geological Survey (USGS), 2019, Earthquake Catalog, accessed 01/17/2019, https://earthquake.usgs.gov/earthquakes/search.
- Walker, G.W., and MacLeod, N.S., 1991, Geologic map of Oregon: U.S. Geological Survey, Special Geologic Map, 2 sheets, scale 1:500,000.
- Walsh, T.J., Korosec, M.A., Phillips, W.M., Logan, R.L., and Schasse, H.W., 1987, Geologic map of Washington-southwest quadrant: Washington Division of Geology and Earth Resources Geologic Map GM-34, 28 p. pamphlet, 2 sheets, scale 1:250,000.
- Walsh, K.P., Peterson, G.L., Beeson, M.H., Wells, R.E., Fleck, R.J., Evarts, R.C., Duvall, Alison, Blakely, R.J., and Burns, Scott, 2011, A tunnel runs through it—An inside view of the Tualatin Mountains, Oregon: U.S. Geological Survey Scientific Investigations Map 3144.
- Williams, D.L., Hull, D.A., Ackermann, H.D., and Beeson, M.H., 1982, The Mt. Hood region—Volcanic history, structure, and geothermal energy potential: Journal of Geophysical Research, v. 87, no. B4, p. 2767-2781.
- Weldon, R.J., Fletcher, D.K., Weldon, E.M., Scharer, K.M., and McCrory, P.A., 2002, An update of Quaternary faults of central and eastern Oregon: U.S. Geological Survey Open-File Report 02-301 (CD-ROM), 26 sheets, scale 1:100,000.
- Wells, R.E., 2017, Personal communication, May 5, 2017.
- Wells, R.E., Snavely, P.D., MacLeod, N.S., Kelly, M.M., and Parker, M.J., 1994, Geologic map of the Tillamook Highlands, northwest Oregon Coast Range: U.S. Geological Survey Open-File Report 94-21, 24 p., 2 pls., scale 1:62,500.
- Wells, R.E., Snavely, P.D., Jr., MacLeod, N.S., Kelly, M.M., Parker, M.J., Fenton, J., and Felger, T., 1995, Geologic map of the Tillamook Highlands, northwest Oregon Coast Range—A digital database: Geological Survey Open-File Report 95-670.
- Wells, R.E., Blakely, R.J., McPhee, D.K., and Langenheim, V.E., 2009, The Gales Creek fault accommodates large dextral offset in the Oregon forearc: Geological Society of America Abstracts with Programs, v. 41, no 7, p. 702.
- Werner, K.S., Graven, E.P., Berkman, T.A., and Parker, M.J., 1991, Direction of maximum horizontal compression in western Oregon determined by borehole breakouts: Tectonics, v. 10, p. 948-958.
- Wilson, D.C., 1998, Post-middle Miocene geologic evolution of the Tualatin basin, Oregon: Oregon Geology, v. 60, no. 5, p. 99-116.
- Wong, I.G., Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li, S., Mabey, M., Sojourner, A., and Wang, Y., 2000, Earthquake scenario and probabilistic ground shaking maps for the Portland, Oregon, metropolitan area: Oregon Department of Geology and Mineral Industries Interpretive Map Series IMS-16, 16 p., 11 sheets, scale 1:62,500.
- Wong, I.G., Hemphill-Haley, MA., Liberty, L.E., and Madin, I.P., 2001, The Portland Hills fault: An earthquake generator or just another old fault?: Oregon Geology, v. 63, no. 2, p. 39-50.

- Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T., 1991, Tectonics of the Willamette Valley, Oregon: U.S. Geological Survey Open-File Report 91-441-P, 47 p., 3 pls.
- Yeats, R.S., Levi, S., and Crenna, P., 1993, Active faults and folds in the Salem metropolitan area, Oregon: Technical report to U.S. Geological Survey, Reston, Virginia, under Contract 14-08-0001-G2131, August 14, 1993, 22 p.
- Yeats, R.S., and Levi, S., 1994, Active faults and folds in the Salem metropolitan area, Oregon: U.S. Geological Survey Open-File Report 94-176.
- Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T.A., 1996, Tectonics of the Willamette Valley, Oregon, in Rogers, A.M., Walsh, T.J., Kockelman, W.J., and Priest, G.R., eds., Assessing earthquake hazards and reducing risk in the Pacific Northwest: U.S. Geological Survey Professional Paper 1560, v. 1, p. 183-222.

ATTACHMENTS

- Table 1Quaternary Faults in Northwest Oregon
- Figure 1 Regional Fault Map 100 km Radius

WWSP WTP_1.0

Table 1. Quaternary Faults in Northwest Oregon

Fault Name	Fault ID ¹	Fault Class ²	Distance to WTP_1.0 (km)	Evidence for Quaternary Activity	Evidence for <12 ka Activity	Age ³	Slip Rate (mm/yr)	Sense of Slip	Strike (azimuth degrees)	Dip Direction	Length (km)	NSHMP Model 2014		
												Included?	Max. Mag.⁴	Data Sources
Sherwood-Lake Oswego Fault	-	с	2	Concordant w/ broad gravity high suggestive of a concealed fault-bound basement ridge coincident w/ Parrett Mtn uplift.	No	-	-	-	-	-	-	No	-	McPhee et., al., 2014
Canby-Molalla Fault	716	A	8	Aeromagnetic anomalies suggest offset of CRBG; seismic reflection suggests possible offset of Missoula Flood Deposits.	No	<15 ka	<0.2	Right Lateral; Reverse	326	-	50	No	-	Personius, 2002a
Bolton Fault	874	В	11	150 m high escarpment of CRBG; no evidence of Quaternary offset.	No	<1.6 Ma	<0.2	Reverse, Right Lateral	307	SW	9	Yes	6.19	Madin, 1990; Personius, 2002b
Beaverton Fault	715	A	12	Offset of late Pleistocene Hillsboro Fm. sediments interpreted from geophysical surveys and subsurface explorations.	No	<750 ka	<0.2	Reverse	86	Unk	15	No	-	Madin, 1990; Popowski, 1996; Personius, 2002c; McPhee and others 2014
Newberg Fault	717	A	15	Offset CRBG noted in subsurface exploration data identifies location of fault; no surface expression; undeformed Missoula Flood deposits overlie the fault.	No	<1.6 Ma	<0.2	Right Lateral, Reverse	318	-	5	Yes	6.85	Personius, 2002d
Oatfield Fault	875	A	15	Fault identified by offset CRBG; offset 1 Ma Boring lava exposed in Light Rail Tunnel; no offset Quaternary units noted.	No	<1.6 Ma	<0.2	Reverse, Right Lateral	319	NE	29	No	-	Personius, 2002e; Walsh and others, 2011
Portland Hills Fault	877	A	16	Prominent escarpment along W. Hills; seismic reflection and ground penetrating radar suggest possible offset at depth.	No; trenching data identified disturbed, but not offset late Pleistocene flood sediments.	<1.6 Ma	<0.2	Right Lateral, Reverse	323	SW	49	Yes	7.05	Madin, 1990; Beeson, et. al., 1991; Unruh et. Al., 1994; Pratt et. al., 2001; Liberty et. al., 2003; Personius and Haller, 2017a
Damascus-Tickle Creek Faults	879	A	21	Numerous short strands; some offset Pleistocene Boring Lava; folds and offsets in Troutdale Fm; one strand might have offset Missoula Flood deposits while others are buried by flood deposits.	No; paleoseismic trench was excavated across a fault strand, but results were inconclusive.	<750 ka	<0.2	Right Lateral, Left Lateral, Reverse	0	-	16	No	-	Madin, 1990, 1994; Personius, 2002f
East Bank Fault	876	A	22	CRBG and Troutdale Fm offset at fault; no surface offset in Missoula Flood deposits, but seismic reflection suggests offset at depth.	No	<750 ka	<0.2	Reverse,	314	NE	29	No	-	Beeson, et. al., 1991; Madin, 1990; Personius, 2002g
Helvetia Fault	714	A	22	Identified in subsurface explorations as offsetting CRB and overlying Pleistocene basin-fill deposits.	No	<1.6 Ma	<0.2	Right Lateral, Reverse	334	-	7	Yes	6.4	Personius, 2002h
Grant Butte Fault	878	A	23	Pleistocene Boring lava and Springwater Fm mapped as offset at fault trace; overlying Missoula Flood deposits are not deformed.	No	<750 ka	<0.2	Normal	10	N	10	Yes	6.21	Madin, 1990, Personius, 2002i

MCMILLEN JACOBS ASSOCIATES
WWSP WTP_1.0

Table 1. Quaternary Faults in Northwest Oregon

Fai		Fault	Distance to		Evidence		Slip Rate	Sense of	Strike	Din	Length	NSHMP M	odel 2014		
Fault Name	ID ¹	Class ²	WTP_1.0 (km)	Evidence for Quaternary Activity	for <12 ka Activity	Age ³	(mm/yr)	Slip	(azimuth degrees)	Direction	(km)	Included?	Max. Mag. ⁴	Data Sources	
Gales Creek Fault Zone	718	A	27	Paleoseismic trenches of lidar- identified fault scarps yielded deformation age of <250 ka loess; modern streams appear to be offset across the fault zone.	No; trenching data is suggestive, but not conclusive.	<1.6 Ma	<0.2	Right Lateral, Reverse	319	-	73	Yes	6.75	Bemis and Wells, 2012; McPhee and others, 2014; R.A. Wells pers. common., 2017; Personius and Haller, 2017b	
Mt. Angel Fault	873	A	29	Subsurface explorations indicate CRBG offset; parallel to a strong gravity anomaly; late Pleistocene (<125 ka) fluvial deposits possibly deformed across the fault; fault location coincident with 1993 Scotts Mill EQ.	No; the 1993 Scotts Mill EQ was located nearby, but not confidently located on the fault.	<15 ka	<0.2	Right Lateral, Reverse	43	NE	30	Yes	6.8	Unruh et. al., 1994; Personius and Lidke, 2011; McPhee and others, 2014	
Sandy River Fault	-	с	38	Fault identified in gravity data; no evidence for offset of Quaternary deposits.	No	-	< 0.02	Strike Slip	-	Vertical	17	Yes	6.5	Peterson et. al., 2014	
Lacamas Lake Fault	880	А	42	Shear zones mapped on surface exposures of the fault; subsurface explorations indicate offset of Pleistocene Boring Lava; overlying Missoula Flood deposits undeformed; Columbia River morphology appears to have been influenced by the fault.	No	<750 ka	<0.2	Right Lateral, Normal	317	SW	24	Yes	6.67	Anderson et. al., 2013; Evarts, 2006; Personius, 2002j	
Salem-Eola Hills homocline	719	A	49	Older, possibly Quaternary, gravel might be deformed; evidence equivable.	No	<1.6 Ma	<0.2	Homocline	334	NE	32	No		Pezzopane, 1993; Unruh et. al., 1994; Crenna and Yeats, 1994; Yeats, et. al., 1993; Personius, 2002k	
Waldo Hills Fault	872	A	50	Offsets CRBG and older, possibly Quaternary, gravel deposits; evidence equivocal.	No	<1.6 Ma	<0.2	Normal	45	NW	12	No		Mabey and Madin, 1996; Yeats et. al., 1991, 1993; 1996; Yeats and Levi, 1994; Crenna and Yeats, 1994; Personius, 2002l	
Turner Fault (TF) and Mill Creek Fault (MCF)	871	A	51	Deformation of mid-Pleistocene sediments is inferred. Originally mapped as two faults, but Yeats et. al., (1996) believe the MCF might be an extension of the TF.	No	<1.6 Ma	<0.2	Reverse	66	SE	20	Yes	6.59	Yeats et. al., 1991, 1993, 1996; Yeats and Levi, 1994; Crenna and Yeats, 1994; Personius, 2002m	
Tillamook Bay Fault Zone	881	A	65	The fault has a geomorphic expression consistent with Quaternary displacement.	No	<1.6 Ma	<0.2	Reverse, Left Lateral	304	NE	32	No		Pezzopane, 1993; Madin and Mabey, 1996; Personius, 2002n	
Mount Hood Fault	-	с	75	None. Recent investigations found evidence of land slip, but faulting only in Miocene-age rocks.	No	-	<0.3	Normal	-	NE	11	Yes	6.29	Sherrod and Scott, 1995; Scott et. al., 1997; Peterson et. al., 2014	
Clackamas River Fault Zone	864	A	80	No offsets in Quaternary units are described, but early Pleistocene volcanics might be offset.	No	<1.6 Ma	<0.2	Normal, Right lateral	341	W, E, varies	29	No		Anderson, 1978; Sherrod and Smith, 1989; Sherrod and Scott, 1995; Personius, 2002o	

WWSP WTP_1.0

Table 1. Quaternary Faults in Northwest Oregon

Fault		Fault	Distance to		Evidence		Slip Rate	Sense of	Strike	Din	Length	NSHMP Model 20		4	
Fault Name	ID ¹	Class ²	WTP_1.0 (km)	Evidence for Quaternary Activity	for <12 ka Activity	Age ³	(mm/yr)	Slip	(azimuth degrees)	Direction	(km)	Included?	Max. Mag.⁴	Data Sources	
Happy Camp Fault	882	A	89	Col. River Basalt Gp thrust over deposits thought to be Quaternary age.	No	<1.6 Ma	<0.2	Reverse	287	Ν	20	Yes	6.58	Parker, 1990; Wells et. al., 1994; McNeill, et. al., 1998; Personius, 2002p	
Owl Creek Fault	870	A	90	Offsets the late Pleistocene Rowland Formation.	No	<750 ka	<0.2	Reverse	5	E?	15	No		Craven, 1990; Madin and Mabey, 1996; Yeats et. al., 1996; Madin, et. al., 2001; Personius, 2002q	
Hood River Fault Zone	866	A	96	Offsets Col. River Basalt and Pliocene volcanics; no scarps have been described in Quaternary units.	No	<1.6 Ma	<0.2	Normal, Right lateral	329	W	44	No		Williams et. al., 1982; Sherrod and Pickthorn, 1989; Pezzopane, 1993; Madin and Mabe, 1996; Weldon et. al., 2002; Personius, 2002r	
Cascadia Fold and Thrust Belt	784	A	97	No detailed info published on these structures, but many off-shore structures do offset Pleistocene and Holocene sediments.	No	<15 ka	1.0 - 5.0	Thrust	330	W, E	484	No		Goldfinger, et. al, 1992, 1994, 1997; Pezzopane, 1993; Personius, 2002s	
Faults near The Dalles	580	A	98	Offsets Col. River Basalt and Pliocene sedimentary units; 0.84 Ma basalt flows might possibly be offset.	No	<1.6 Ma	<0.2	Right lateral, Normal	322	Vertical	69	No		Beaulieu, 1977; Swanson, et. al., 1981; Bela, J.L., 1982; Anderson, J.L., 1987; Korosec, 1987; Walsh, et. al., 1987; Walker and MacLeod, 1991; Weldon, et. al., 2002; Personius and Lidke, 2003	
Nehalem Bank Fault	789	A	99	Offsets Miocene through Holocene sediments on continental shelf.	Sea floor offsets of 10- 20 m probably post- date the late Pleistocene sea level lowstand.	<15 ka	1.0 - 5.0	Right lateral, Reverse	345	Vertical, NE	101	No		Goldfinger, et. al., 1992a, 1992b; Goldfinger, 1994; Madin and Mabey, 1996; McNeill et. al., 1998; Personius, 2002t	
Unnamed Offshore Faults	785	А	109	No detailed info published on this structure, but many off-shore structures do offset Pleistocene and Holocene sediments.	No	<15 ka	1.0 - 5.0	Left lateral, Right lateral, Normal, Reverse	349	-	280	No		Goldfinger, et. al, 1992, 1994, 1997; Personius, 2002u	
Cascadia Subduction Zone	781	A	200	In N. America, radiocarbon and tree ring dating limit most recent rupture between Aug 1699 and May 1700; in Japan written history of widespread tsunami of remote origin in Jan 1700.	Yes	<15 ka	>5.0	Thrust	356	9 ⁰ -11 ⁰ E	754 km			Atwater et al., 1995; Atwater and Hemphill-Haley, 1997; Satake, et al., 2003; Personius and Nelson, 2006	

Notes:

1. Fault ID number in the USGS Quaternary Fault and Fold Database

2. Fault Classes:

Class A= Geologic evidence demonstrates the existence of a Quaternary fault of tectonic origin, whether the fault is exposed for mapping or inferred from liquefaction or other deformational features.

Class B= Geologic evidence demonstrates the existence of a fault or suggests Quaternary deformation, but either (1) the fault might not extend deeply enough to be a potential source of significant earthquakes, or (2) the currently available geologic evidence is too strong to confidently assign the feature to Class C but not strong enough to assign it to Class A.

Class C= Geologic evidence is insufficient to demonstrate (1) the existence of a tectonic fault, or (2) Quaternary slip or deformation associated with the feature.

Class D= Geologic evidence demonstrates that the feature is not a tectonic fault or feature; this category includes features such as demonstrated joints or joint zones, landslides, erosional or fluvial scarps, or landforms resembling fault scarps, but of demonstrable non-tectonic origin.

3. Ma= Mega annum or one million years; ka= kilo annum or one thousand years;

4. Maximum Magnitude used in the 2014 NSHMP model.

5. - = no data; unknown.

Appendix G

Geological Hazards Report (GHR)

Willamette Water Supply Our Reliable Water	Willamette Water Supply Program
	WTP_1.0
	Geological Hazards Report
	FINAL

Prepared For:

May 6, 2020

This page intentionally left blank.

Table of Contents

1.0	Introd	luction	. 1
	1.1	General	. 1
	1.2	Project Description	. 1
	1.3	Purpose and Scope of Work	. 1
	1.4	Project Geotechnical Reports	. 2
	1.5	Authorization	. 2
2.0	Site D	escription	. 3
	2.1	Site Location	. 3
	2.2	Surface Conditions	. 3
	2.3	Geology	. 3
	2.4	Subsurface Conditions	. 4
	2.5	Groundwater	. 5
3.0	Seisn	nic and Geologic Hazards Evaluation	.7
	3.1	General	. 7
	3.2	Regional Seismicity	. 7
	3.3	Site Classification	. 7
	3.4	Design Ground Motions	. 7
	3.5	Seismic Sources and Hazards Deaggregation	. 8
	3.6	Liquefaction	. 8
4.0	Flood	ing Hazard	10
	4.1	General	10
	4.2	Precipitation-Induced Flooding	10
	4.3	Scoggins Dam Breach Inundation	10
5.0	Conc	usions	11
6.0	Closu	re	12
7.0	Refer	ences	13

List of Tables

Table 2-1. WTP_1.0 Groundwater Measurement Summary	5
Table 3-1. WTP_1.0 Seismic Design Parameters	8

List of Figures

Figure 1 – Vicinity Map Figure 2 – Exploration Plan Figure 3 – Flood Map WWSP WTP_1.0

Acronyms and Abbreviations

bgs	below ground surface
bpf	blows per foot
CM/GC	Construction Manager/General Contractor
CRB	Columbia River Basalt
ID	Inside Diameter
GDR	Geotechnical Data Report
GER	Geotechnical Engineering Report
GHR	Geologic Hazards Report
HQ3	A triple-tube wireline rock core sampling system
LF	Linear feet
MA	Mega annum (one million years)
McMillen Jacobs	McMillen Jacobs Associates
MFD	Missoula Flood Deposits
MGD	Million Gallons Per Day
PGE	Portland General Electric
Project	WWSP_WTP_1.0 Project
psi	pounds per square inch
PVC	Polyvinylchloride
RQD	Rock Quality Designation
SPT	Standard Penetration Test
TVWD	Tualatin Valley Water District
WTP_1.0	Water Treatment Plant Project 1.0
WWSP	Willamette Water Supply Program

Distribution

To:	Greg Lindstadt, PE CDM Smith
	Michael Hyland CDM Smith
From:	Wolfe Lang, PE, GE McMillen Jacobs Associates
Prepared By:	Farid Sariosseiri, PE McMillen Jacobs Associates
	Jeremy Fissel, PE McMillen Jacobs Associates
Reviewed By:	Bryan Duevel, PE, GE McMillen Jacobs Associates

Revision Log

Revision No.	Date	Revision Description
Final Submittal	May 6, 2020	Incorporated CDM Smith's comments.

1.0 Introduction

1.1 General

McMillen Jacobs Associates (McMillen Jacobs) has been retained by CDM Smith to provide geotechnical services for the Willamette Water Supply Program (WWSP) Water Treatment Plant (WTP_1.0) Project. Tualatin Valley Water District (TVWD), the City of Hillsboro, and the City of Beaverton are the project owners. The project is located in Washington County, Oregon, and shown in Figure 1. This Geological Hazards Report (GHR) summarizes the geologic and geotechnical data collected from the subsurface investigations performed for the WTP_1.0 Project.

1.2 **Project Description**

The Willamette Water Supply Program (WWSP) is a drinking water infrastructure program implemented by the TVWD, the City of Hillsboro, and the City of Beaverton to provide a seismically resilient water supply for their service areas. The WWSP includes more than 30 miles of transmission pipelines, ranging from 36 to 66 inches in diameter, extending from the Willamette River Water in Wilsonville to the TVWD service areas in Washington County, including the cities of Hillsboro and Beaverton. The WWSP also includes two 15-million-gallon water storage tanks, a new water treatment plant, and a raw water pumping station. The new system elements are being designed to meet future demand and to provide redundancy in the event of an emergency.

The WWSP has been divided into multiple design packages and work is proceeding with a phased approach. The WTP_1.0 is a new water treatment plant with an initial treated water design capacity of 60 million gallons per day (mgd) and a future build-out treated water design capacity of 120 mgd, located near the City of Sherwood, Oregon. The project includes construction of several access roads within the treatment plan and construction of a portion of SW Blake Street that connects the SW 124th Avenue to the plant's western property line. The project involves mitigation and/or protection for the existing natural areas (i.e. wetlands).

WTP_1.0 will need to be connected to the existing infrastructure including the raw water pipeline, treated water pipeline, sewer, and storm drain in SW Tualatin-Sherwood Road and SW 124th Avenue. Connection to the existing infrastructure will require coordination with PLM_4.0, the City of Sherwood, Washington County, and the developer of the parcel north of WTP_1.0 site.

The owners have selected a Construction Manager/General Contractor (CM/GC) project delivery method. The CM/GC contractor will be involved throughout the design from the preliminary design to the final detailed design phase. The construction is anticipated to begin in early 2022.

1.3 Purpose and Scope of Work

The purpose of this report is to evaluate geologic and seismic hazards based on anticipated ground motions consistent with building and project seismic design guidelines. Specifically, the scope of work for this report includes the following:

• Summary of the regional geologic, site surface, and site subsurface conditions;

- Summary of regional faulting and seismic sources that control the seismic hazard;
- Identification of the anticipated ground shaking associated with the design seismic event;
- Summary of seismic hazards including liquefaction, liquefaction settlement, and ground rupture;
- Summary of slope stability across the project area considering static and seismic conditions;
- Evaluation of other seismic hazards such as lateral spreading, loss of bearing capacity, etc.;
- Impact of flooding for 100-year and 500-year events, and seismically induced dam failure; and
- Development of this report summarizing our findings and analyses.

1.4 **Project Geotechnical Reports**

This Geotechnical Hazard Report has been developed for the use of the design team to summarize geologic and seismic hazards in support of the project design. Several related geotechnical documents have been developed for this project and are referred to in this report. These documents are as follows:

- Willamette Water Supply Program WTP_1.0 Fault Location Study Technical Memorandum (McMillen Jacobs, 2019a);
- Willamette Water Supply Program WTP_1.0 Geotechnical Data Report (McMillen Jacobs, 2019b),
- Willamette Water Supply Program –WTP_1.0 Geotechnical Engineering Report (McMillen Jacobs, 2020);
- Geotechnical Report Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington County, Oregon (Shannon & Wilson, Inc., 2017).

1.5 Authorization

The Tualatin Valley Water District authorized the WTP_1.0 project work on behalf of the Owners, under the terms and conditions of an agreement between the Owners and CDM Smith dated July 24, 2018. McMillen Jacobs has been retained by CDM Smith to provide geotechnical design services for, or in connection with, the Willamette Water Supply Program WTP_1.0 Project (Project) per their Subconsultant Agreement dated August 17, 2018.

2.0 Site Description

2.1 Site Location

The WTP_1.0 is located on an approximately 90-acre site at 12900 SW Tualatin-Sherwood Road in unincorporated Washington County. The project site is located south of SW Tualatin-Sherwood Road and west of SW 124th Avenue on a vacant and largely wooded parcel. The project's north property line is approximately 1,100 feet south of SW Tualatin Sherwood Road; intervening land, currently vacant, was formerly in agricultural use. SW 124th Avenue borders the project's eastern property boundary. The western boundary is largely bordered by vacant woodland and a construction contractor's equipment yard. The southern boundary is a woodland which is crossed diagonally, northwest to southeast, by a Portland General Electric (PGE) powerline easement.

A woodland and former agricultural land lie east of SW 124th Avenue from the northern portion of the project site. An active rock quarry operation is present east of SW 124th Avenue opposite the southeastern portion of the project site. A rock quarry site is also present south beyond the southern property line.

The project location is shown on Figure 1, Vicinity Map.

2.2 Surface Conditions

The existing ground surface elevation varies across the site from elevation El 284 feet and descends in all directions away from the plant to a low of approximately elevation of 192 feet. Most of the WTP_1.0 future-site and immediately adjacent areas are wooded with thick underbrush, including large thick patches of Himalayan blackberry and pervasive poison oak. The over story incudes numerous large Douglas fir, Oregon white oak, and madrone, among others. Several decomposing saw-cut stumps suggest that the site was logged in the past. An existing farmhouse and several out-buildings are located near the northern edge of the property.

Bare rock outcrops were noted at several locations near the WTP_1.0 site and a prominent rock face with approximately a 10-foot step down toward the north was observed north of the WTP footprint. Although difficult to verify through the thick underbrush, this rock face appears to be continuous from the northeast corner of the site westward and around to the southwest corner. Seven wetland areas have been identified by others within the site. Two small wetland areas, one northeast of the WTP footprint and another near the midpoint of the WTP footprint were saturated at the time of our explorations in December 2018 and February 2019.

2.3 Geology

Regionally, the site lies within the Willamette Valley, a structural lowland between uplifted marine rocks of the Coast Range and volcanic rocks of the Cascade Range. The Coast Range, to the west of the lowland, consists of several thousand feet of Tertiary marine sandstone, siltstone, shale, and associated volcanic and intrusive rocks. The Cascade Range, to the east of the lowland, consists of volcanic lava flows, ash-flow tuffs, and pyroclastic and epiclastic debris. Marine and continental strata interfinger beneath and adjacent to the Willamette Lowland.

WWSP WTP_1.0

Geological Hazards Report

Four major depositional basins were formed from folding and faulting during and after arrival of the Columbia River Basalt Group. These depositional basins include: the southern Willamette basin, northern Willamette basin, Portland basin, and the Tualatin basin. These basins, separated in most places by folded or faulted uplands of the Columbia River Basalt, have locally accumulated more than 1,600 feet of fluvial sediment derived from adjacent uplifted blocks of Columbia River Basalt, the Cascade and Coast Ranges, and transported into the region by the Columbia River.

Locally, WTP_1.0 lies on the broad summit of the Parrett Mountain uplift which forms the boundary between the Tualatin Valley and the northern Willamette Valley. Parrett Mountain is an uplifted block of Columbia River Basalt. During the period of slow upward movement, exposed surficial basalt gradually developed a deep profile of weathering that graded from decomposed silt and clay soils at the surface through iron-stained and open-jointed weathered rock to relatively fresh dark gray basalt at depth. In the latest Pleistocene, about 15,000 and 12,000 years ago, a series of catastrophic floods reoccurring as outbursts caused by the melting of Glacial Lake Missoula. These flood waters inundated the Columbia River system and back flooded up the Willamette River. The flood waters also surged through the Tualatin Mountains ("Portland Hills") gap at Lake Oswego, dumping boulders and coarse gravel at the mouth of the gap, which grade westward to sand and then to micaceous, clayey to fine sandy silt across the Tualatin Valley. Many of the floods that entered the Tualatin Valley were sufficiently large enough to overtop the Parrett Mountain ridge crest. The flood waters then cascaded south into the Willamette Valley, scouring and eroding the soil and weathered basalt surface of the ridge crest in the process. This area of flood-scoured over-flow channels is now referred to as the Tonquin Scabland. The proposed WTP 1.0 is located on the Parrett Mountain ridge crest and within the area overtopped and scoured by the catastrophic floods.

2.4 Subsurface Conditions

Subsurface explorations completed in December 2018 and February 2019. The explorations included twelve borings, six test pits, fifteen probe holes, and geophysical explorations at three locations. Locations of the explorations are shown on Figure 2. Details of explorations are provided in the GDR (McMillen Jacobs, 2019b)

We identified several geological units consisting of Topsoil, Missoula Flood Deposits, Residual Soil, and Columbia River Basalt. These units were identified based on their geologic origin, stratigraphic position, engineering properties, and their distribution in the subsurface. Variations in subsurface conditions may exist between the locations of the borings.

Brief descriptions of the identified geologic units are provided below. Detailed descriptions of the units and accompanying laboratory test data are included in the GDR for WTP_1.0 (McMillen Jacobs, 2019b).

- **Topsoil**: Consists predominantly of 3- to 12-inches of very soft, dark brown to black, low plasticity Organic Silt;
- Missoula Flood Deposits (MFD): Consists of two facies; (1) Valley Fill deposits; stiff moist slightly yellow to orange-brown mottled Silt (ML); which occur at lower elevations in the former agricultural field at the northeast corner of the project site, and (2) Channel Fill deposits; soft to

stiff slightly yellow-brown Silt with scattered subangular cobbles and boulders which occur in the flood-scoured uplands in and adjacent to the areas now occupied by wetlands;

- **Residual Soil**: Generally, consists of very dense or stiff to hard mixtures of silt with trace sand and scattered to numerous angular, iron-stained gravel- to cobble-sized rock fragments; and
- Columbia River Basalt (CRB): The Columbia River Basalt (CRB) Unit includes basalt that is highly weathered to fresh. The basalt is generally weak to very strong, moderately to slightly weathered, moderately to intensely fractured with iron-stained joint surfaces. The Rock Quality Designation (RQD) of the basalt rock ranged from 0 to 100 percent and averaged about 58 percent. Unconfined compressive strength ranged from approximately 12,000 psi to 34,000 psi, with an average of 22,000 psi. Corrected Point Load Strength Index (I_{S(50)}) ranged from approximately 530 psi and 1,860 psi, with an average value of 1,460 psi.

2.5 Groundwater

Groundwater measurements were made between December 2018 and November 2019 at locations where piezometers were installed. Results of the groundwater measurements and details of piezometer construction are provided in Table 3.4. Groundwater measurements will be continued through the upcoming spring, summer, fall, and winter seasons.

Boring ID WTP_1.0-	12/27/2018	12/28/2018	01/03/2019	02/07/2019	02/08/2019	02/14/2019	05/6/2019	07/01/2019	11/05/2019	Groundwater Elevation Range (feet)
B-01	-	2.0	1.7	3.0	-	01	4.5	7.1	8.3	227.7 – 236
B-03					6.7	1.8	9.9	12.7	15.2	228.8 – 242.2
B-08						14.4	17.1	See Note 2		<256 – 261.6
B-10	33.0	-	34.0	35.7	-	34.9	35.5	36.1	37.6	227.4 – 232
B-11						9.7	13.9	16.2	25.8	237.2 – 253.3

Table 2-1. WTP_1.0 Groundwater Measurement Summary

Notes:

1. The monument was underwater, we assumed groundwater at the ground surface.

2. Groundwater was below piezometer screen interval.

Evaluation of nearby water well logs indicate static groundwater level is approximately 100 feet below the ground surface. In our opinion, the measured groundwater elevations in piezometers represent perched groundwater conditions, and likely coincide with groundwater levels in the wetlands.

WWSP WTP_1.0

Geological Hazards Report

Groundwater levels can vary with precipitation, the time of year, and/or other factors. Generally, groundwater highs occur near the end of the wet season in late spring or early summer and groundwater lows occur near the end of the dry season in the early fall.

6

3.0 Seismic and Geologic Hazards Evaluation

3.1 General

Seismic and geologic hazard analyses are summarized in this section. Detailed discussion of local faults and seismic sources are presented in the technical memorandum for WTP_1.0 Fault Location Study (McMillen Jacobs, 2019a). The seismic hazards evaluation has been performed in general accordance with the International Building Code 2018 and American Society for Civil Engineers' (ASCE) Minimum Design Loads for Buildings and Other Structures, 2016 Edition (ASCE 7-16). Design ground motions presented herein are based on the system-wide Probabilistic Seismic Hazard Analysis (PSHA) performed for the WWSP (Shannon & Wilson, 2017). Project design criteria (WWSP, 2017) requires that the new pipeline be designed for the 2,475-year period event.

3.2 Regional Seismicity

The Pacific Northwest is a seismically active region that has three principle seismic sources: (1) the Cascadia Subduction Zone (CSZ) megathrust, which represents the interface between the subducting Juan de Fuca plate and the overriding North American plate; (2) deep faults located within the Juan de Fuca plate (referred to as CSZ intraplate or intraslab sources); and (3) crustal faults principally in the North American plate (Wong and Silva, 1998). Faulting and seismicity associated with Cascade volcanoes are also potential sources of seismicity, though they generally do not impact sites in the Willamette Valley. Seismic sources are further described in the Fault Location Study (McMillen Jacobs, 2019a). These sources are all considered in the system-wide PSHA (Shannon & Wilson, 2017).

3.3 Site Classification

The project site was assigned a seismic site class following code-based procedures in ASCE 7-16, Chapter 20. Site class is used to categorize common subsurface conditions into broad classes to which ground motion attenuation and amplification effects are assigned. Site class accounts for the conditions encountered at the upper 100 feet of subsurface profile. Shallow bedrock was encountered during the subsurface investigation and most of the structures are anticipated to be supported on the bedrock. Therefore, a Site Class B is appropriate for the design purposes.

3.4 Design Ground Motions

A system-wide PSHA has been performed for the WWSP (Shannon and Wilson, 2017). The PSHA provides the 2,475-year return period uniform hazard spectral values for site classes BC, C, CD, D, and E assuming 5-percent damping ratio. For seismic hazard analyses of ground deformation and liquefaction potentials, the peak ground acceleration (PGA) is the most critical property of the spectrum. Spectral accelerations for Site Class B were not provided in PSHA, therefore Site Class BC was used for seismic evaluation of the project.

Parameter	Value
Soil Profile Class	BC
Peak Bedrock Acceleration (g)	0.463
SA Peak Ground Acceleration (g)	0.463
SA 0.2-sec Period Spectral Acceleration (S_{MS})	1.062
SA 1.0-sec Period Spectral Acceleration (S_{M1})	0.400
SA 2.0-sec Period Spectral Acceleration	0.175
SA Peak Ground Velocity (PGV) (cm/sec)	40

Table 3-1. WTP_1.0 Seismic Design Parameters

Note: All spectral accelerations are adjusted for site class.

3.5 Seismic Sources and Hazards Deaggregation

The PSHA produces a mean source event that generates the spectral accelerations included in Table 3-1. The mean magnitude ranges from 7.8 to 8.7 and the mean site-to-source distance ranges from 51 to 86 km.

The deaggregation data identify the earthquake sources, magnitudes, and distances that contribute to the ground motion hazard for a particular return interval and spectral period. The deaggregation results indicate that multiple earthquake sources are significant contributors to the ground motion hazards at the project site. The seismic sources and the percentage of relative contribution of the three primary sources are:

- Large megathrust events (between magnitudes 8.6 and 9.4) at distances of 50 to 150 km 60-65% contribution to hazard;
- Shallow crustal events (up to magnitude 7.5) at distances of less than 25 km 30-35% contribution to hazard; and
- Deep intraslab CSZ events (up to magnitude 7.5) at distances of about 45 to 100 km <5% contribution to hazard.

3.6 Liquefaction

Liquefaction is a phenomenon affecting saturated, loose sandy and low-plastic silty soils in which cyclic rapid shearing from an earthquake results in a loss of shear strength and a transformation from a solid mass to a viscous, heavy fluid mass. The results of soil liquefaction potentially include loss of shear strength, loss of soil materials through sand boils, flotation of buried chambers/pipes, and post liquefaction settlement.

The site is underlain by shallow bedrock basalt, which is not susceptible to liquefaction. Therefore, liquefaction is not considered a hazard at the site.

3.7 Slope Stability

Areas surrounding the site are relatively flat to gently sloping. The site is underlain by shallow bedrock and the majority of structures are founded on rock. Slope stability is not considered a hazard.

3.8 Lateral Spreading

Lateral spreading is a liquefaction related phenomenon that results in ground displacement during an earthquake and occurs in sloping ground or flat ground with free face. Liquefaction is not anticipated at the site. Therefore, lateral spreading is not considered a hazard.

3.9 Fault Rupture

There are no known active faults that cross the site. The nearest faults to the site are Sherwood-Lake Oswego fault located approximately 2 kilometers north of the site and Canby-Mollala fault located approximately 8 kilometers east of the site. Therefore, the risk of fault rupture across the WTP_1.0 is negligible.

3.10 Buoyancy and Flotation

When pipes or hollow structures are installed under the groundwater table it is possible that they can float, if the upward buoyant forces on the pipe exceed the downward gravitational forces from the soil cover or weight of the structures. Buoyancy and flotation of hollow deep structure and mitigation options are discussed in the GER (McMillen Jacobs, 2020). For pipes which their cover depth is greater than O.D., factor of safety against flotation is greater than 1.5, meeting the requirements of Seismic Guidelines and Minimum Design Requirements (WWSP, 2018).

3.11 Abrupt Settlement

Abrupt settlement generally occurs due to liquefaction or where structures (i.e. buildings and pipelines) founded on the transition between soil and rock. Liquefaction is not anticipated at the site and most of the structures will be founded on the bedrock. Therefore, abrupt settlement is not considered a hazard.

3.12 Other Hazards

No significant geologic hazards such as landslides, slope instabilities, tsunamis, seiches, debris flows, or collapsible soils were identified within the proposed WTP_1.0 area

4.0 Flooding Hazard

4.1 General

There are two flood hazard sources for the WTP_1.0 site: (1) precipitation events causing flooding along the Willamette River and its tributaries; and (2) a breach of the Scoggins Dam, which is located approximately 20 miles northwest of the project alignment and impounds Henry Hagg Lake. These two sources were considered in the evaluation of the flooding hazard at the WTP_1.0 site.

4.2 Precipitation-Induced Flooding

The Federal Emergency Management Agency (FEMA) has published maps with estimated flood inundation limits in the project area for 100-year and 500-year floods. These flood maps were reviewed to evaluate the precipitation induced flooding hazard along the WTP_1.0 site. Figure 3 shows the published flood inundation limits for the 100-year and 500-year floods. The maps indicate that the flood water surface elevation is between 140 and 150 feet. The maps also indicate the WTP_1.0 site is outside of the range of the 100-year and 500-year floods. Therefore, the risk of flooding resulted from precipitation is negligible and is not considered a hazard.

4.3 Scoggins Dam Breach Inundation

A breach of Scoggins Dam would result in a large outflow of water and flooding along the Tualatin River due to the rapid draining of Henry Hagg Lake. The WTP_1.0 site is topographically isolated from the Tualatin River basin and therefore the risk of flooding due to the Scoggins Dam breach is negligible and is not considered a hazard.

5.0 Conclusions

Based on the results of our geologic hazards assessments and analyses, we make the following conclusions with respect to the WWSP WTP_1.0 project:

- The risk of liquefaction and lateral spreading is negligible.
- The risk of slope instability is negligible.
- No known active fault crosses the WTP_1.0 site.
- Considering WTP_1.0 includes hollow structures below groundwater level, flotation may be an issue. Discussions about flotation and potential mitigation options are provided in the project GER (McMillen Jacobs, 2020).
- The risk of abrupt settlement is negligible.
- No geologic hazards such as landslide, debris flows, tsunami, and seiche were identified.
- The risk of flooding negligible.

WWSP WTP_1.0

Geological Hazards Report

6.0 Closure

This Geologic Hazards Report has been prepared for the Willamette Water Supply Program WTP_1.0 Project located in Washington County, Oregon. The data, analyses, conclusions and recommendations presented in this report are based on the subsurface conditions at the time that the geotechnical investigation for the project was completed. This report also contains information and data collected from other relevant studies, as well as our site reconnaissance and our professional experience and judgement.

In the performance of geotechnical work, specific information is obtained at specific locations at specific times, and geologic conditions can change over time. It should be acknowledged that variations in soil conditions may exist between exploration and exposed locations and this report does not necessarily reflect variations between different explorations. The nature and extent of variation may not become evident until construction. McMillen Jacobs Associates is not responsible for the interpretation of the data contained in this report by anyone; as such interpretations are dependent on each person's subjectivity. If, during construction, conditions different from those disclosed by this report are observed or encountered, McMillen Jacobs Associates should be advised at once, so we can observe and review these conditions and reconsider our recommendations where necessary.

The site investigation and this report were completed within the limitations of the McMillen Jacobs Associates approved scope of work, schedule and budget. The services rendered have been performed in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same area. McMillen Jacobs Associates is not responsible for the use of this report in connection with anything other than the project at the location described above.

MCMILLEN JACOBS ASSOCIATES

1270

Farid Sariosseiri, PE Associate Jeremy Fissel, PE Project Engineer

7.0 References

- American Society of Civil Engineers (ASCE), 2017, Minimum Design Loads for Buildings and other Structures. ASCE/SEI Standard 7-16.
- McMillen Jacobs Associates, 2019a, Willamette Water Supply Program, WTP_1.0 Fault Location Study Memorandum, December 2019.
- McMillen Jacobs Associates, 2019b, Willamette Water Supply Program, WTP_1.0 Geotechnical Data Report, December 2019.
- McMillen Jacobs Associates, 2020, Willamette Water Supply Program, WTP_1.0 Geotechnical Engineering Report, May 2020.
- Shannon & Wilson, Inc., 2017, Geotechnical Report Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington County, Oregon. August 3, 2017.
- Willamette Water Supply Program (WWSP), 2017, Pipeline Design Guide. March 2017.
- Willamette Water Supply Program (WWSP), 2018, Seismic Guidelines and Minimum Design Requirements. June 2019
- Wong, I. G., and Silva, W. J., 1998, Earthquake Ground Shaking Hazards in the Portland and Seattle Metropolitan Areas. American Society of Civil Engineering Geotechnical Special Publication ASCE, no. 75, Vol. 1, p. 66-78.

Figures

LEGEND:			<u>NC</u>	DTES:			
WTP_1.0-P-1	0	AIR-TRACK DRILLING PROBE LOCATION	1.	BASE MAP PROVIDED BY CDM SMITH IN JAN 2019.			
WTP_1.0-B-1	+	BOREHOLE LOCATION	2.	EXPLORATION LOCATIONS ARE APPROXIMATE.			
WTP_1.0-TP-1	1-	TEST PIT LOCATION					WILLAN
B-1	\oplus	BOREHOLE COMPLETED AS PART OF PLM_3.0					
TP-1	\bigtriangleup	TEST PIT COMPLETED AS PART OF PLM_3.0		0" 200' 400'	1	JACOBS	
SR-1 🚃 💻		GEOPHYSICAL EXPLORATIONS				ASSOCIATES	

IETTE WATER SUPPLY PROGRAM WTP_1.0

GEOTECHNICAL HAZARDS REPORT EXPLORATION PLAN uth: C:\Users\cburke\Box\Jobs\5887.0 WWSP WTP 1.0\CADD_GHR\Fiq.2.dwg Plot date: Dec 10, 2019,

MAY 2020

FIG.2

Appendix H

Site-Specific Seismic Response Spectrum for WTP_1.0

Technical Memorandum

To:	Greg Lindstadt, PE, CDM Smith Mike Hyland, CDM Smith	Project:	WWSP WTP_1.0					
From:	Wolfe Lang, PE, GE	cc:	File					
Prepared by:	Farid Sariosseiri, PE Todd LaVielle	Job No.:	5887.0					
Date:	May 6, 2020							
Subject:	Site-Specific Seismic Response Spectrum							

Revision Log

Revision No.	Date	Revision Description
Final Submittal	May 6, 2020	Incorporated CDM Smith's comments.

1.0 Introduction

The Willamette Water Supply Program (WWSP) is a reginal drinking water infrastructure project being implemented by the Tualatin Valley Water District (TVWD) and the Cities of Hillsboro and Beaverton to provide a seismically resilient water supply for their service areas. The WWSP includes more than 30 miles of transmission pipelines, ranging from 24 to 66 inches in diameter, extending from the Willamette River Water Treatment Plant, in Wilsonville, to the TVWD and Hillsboro service areas in Washington County, which include the cities of Hillsboro and Beaverton. The WWSP also includes two 15-million-gallon water storage tanks, a new water treatment plant, and an expansion of the existing Willamette River Water Treatment Plant. The new system elements are being designed to meet future demand and to provide redundancy in the event of an emergency.

The WTP_1.0 is a new water treatment plant with an initial treated water design capacity of 60 million gallons per day (mgd) and a future build-out treated water design capacity of 120 mgd. The project includes construction of several access roads within the treatment plan and construction of a portion of SW Blake Street that connects the SW 124th Avenue to the plant's western property line. The project involves mitigation and/or protection for the existing natural wetland areas.

The project is located west of SW 124th Avenue, approximately 2,000 feet south of the intersection of SW 124th Avenue and SW Tualatin-Sherwood Road in Sherwood, Oregon. The site is currently undeveloped. The existing ground surface elevation is near 260 feet and descends in all directions away from the site

WWSP WTP_1.0

within the proposed development. Most of the WTP_1.0 site and immediately adjacent areas are wooded with thick underbrush, including large thick patches of Himalayan blackberry and pervasive poison oak

This memorandum presents the horizontal and vertical site-specific seismic response spectra for design.

2.0 Geotechnical Data and Seismic Site Classification

Subsurface data from the site investigation of WTP_1.0 project and other projects in the immediate vicinity of the pipeline were reviewed for site characterization. These data are presented in the Geotechnical Data Report for WTP_1.0 (McMillen Jacobs Associates, 2019)

The site classification was developed following the procedures outlined in ASCE 7-16, Section 20 (2016). Site classification is used to categorize common subsurface conditions into broad classes to which ground motion attenuation and amplification effects are assigned. Site classification is based on the weighted average of the shear wave velocity in the upper 100 feet of subsurface profile. Shallow bedrock was encountered during the subsurface investigation. Most of the structures are anticipated to be supported on the bedrock. Therefore, Site Class B is appropriate for the design.

3.0 Spectral Acceleration

To provide an update to the USGS 2014 seismic hazard maps, a program-wide probabilistic seismic hazard analysis (PSHA) report was prepared (Shannon & Wilson, 2017). The study found that the ground motion hazard for the project area was adequately represented by PSHAs completed at two locations: Site A and Site B. The results from Site A should be applied to the portion of the WWSP alignment north of latitude 45.44° N, and the results from Site B should be applied south of latitude 45.44° N. The PSHA report provides a horizontal, 2,475-year return period, mean uniform hazard acceleration spectra for site classes BC, C, CD, D, and E assuming 5 percent damping ratio, and represent the risk-targeted maximum considered earthquake (MCE_R) which is typically used for structure design, and some geotechnical seismic evaluations.

Because the WTP_1.0 site is located south of latitude 45.44° N the Site B spectrum should be used (Shannon & Wilson, 2017). The PSHA did not include a spectrum for Site Class B, therefore an acceleration spectrum for Site Class BC should be used. Table 1 and Figure 1 summarize the acceleration spectrum.

The PSHA was performed for horizontal ground motions only. A vertical response spectrum was developed based on the horizontal PSHA, following the code-based procedures outlined in ASCE 7-16, Section 11.9. The vertical acceleration response spectrum for Site Class B/C are presented in Table 2 and shown on Figure 1. ASCE 7-16 requires spectral acceleration values for periods beyond 2 seconds be developed by performing site-specific procedures. Because it is unlikely that any of the proposed structures have a period greater than 2 seconds, a site-specific vertical, analysis was deemed unnecessary and was not performed. The provided vertical acceleration spectrum represent the risk-targeted maximum considered earthquake (MCE_R).

Table 1. Horizontal, 2,475-Year Return Period, Mean Uniform Hazard Spectra for Site Class B/C (5 percent damping ratio)¹

Period ² (seconds)	Spectral Acceleration (g)
0.01	0.463
0.02	0.487
0.03	0.530
0.05	0.620
0.075	0.809
0.10	0.965
0.15	1.088
0.20	1.062
0.30	0.928
0.50	0.703
0.75	0.505
1.0	0.400
1.5	0.257
2.0	0.175
3.0	0.093
5.0	0.0391
7.5	0.0174
10	0.0098

Notes:

1. From Shannon & Wilson PSHA Report (2017)

2. Spectral acceleration at 0.01 second may be used for peak ground acceleration.

Table 2. Vertical, 2,475-Year Return Period, Mean Uniform Hazard Spectra for Site Class B/C (5percent damping ratio)¹

Period (seconds)	Spectral Acceleration (g)
0.01	0.29
0.02	0.29
0.02	0.29
0.05	0.76
0.10	0.76
0.15	0.76
0.20	0.62
0.25	0.52
0.50	0.31
0.75	0.23
1.00	0.18
1.25	0.16
1.50	0.14
1.75	0.12
2.00	0.11

Note:

Spectral acceleration at 0.01 second may be used for peak ground acceleration.

4.0 References

- American Society of Civil Engineers (ASCE), 2016. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-16.
- American Society of Civil Engineers (ASCE), 2006. Seismic Rehabilitation of Existing Buildings. ASCE/SEI Standard 41-06
- McMillen Jacobs Associates, 2019. Willamette Water Supply Program, WTP_1.0 Geotechnical Data Report, May 2019.
- Shannon & Wilson, Inc., 2017. Geotechnical Report Probabilistic Seismic Hazard Analysis, Willamette Water Supply Program, Clackamas and Washington County, Oregon, August 2017

Appendix I

SW Blake Street 60-Percent Design Drawing

FILENAME: WTP1-03-GR-30000.dwg

PLOT DATE AND TIME: 3/14/2019 3:14:51 PM

Willamette Water Supply Our Reliable Water WILLAMETTE WATER SUPPLY PROGRAM

CIVIL CIVIL ROADWAY TYPICAL SECTIONS	SHEET		
	DWG	03-GR-30001	
	DATE	MARCH 2019	
	PROJ	WTP_1.0	

PVI STA 19+27.23 PVI EL 238.00 AD=1.39% LP STA 19+77.23 LP EL 237.69 K=72.19 100' VC			PVI STA 22 PVI EL 23 A.D.=3.4 HP STA 21 LP EL 23 K=71.4 250' V	2+47.23 36.00' 49% +22.23 36.78 66 /C	
PVT 19+77.23	EL 237.69	PVC 21+22.23 EL 236.78			PVT 23+72.23 EL 230.86
	EXIST GR @ RD C/L				
19+00	20+00	21+00	22+00	23+00	

SITE	SHEET	
CIVIL BLAKE STREET PROFILES 1	DWG	03-GR-70001
	DATE	MARCH 2019
	PROJ	WTP_1.0

PLOT DATE AND TIME: 3/13/2019 9:43:38 AM

1 PROFILE -

HORZ 0	40	80
VERT 0	5 SCALE IN FEET	10

SITE CIVIL BLAKE STREET PROFILES 2	SHEET	
	DWG	03-GR-70002
	DATE	MARCH 2019
	PROJ	WTP_1.0

PLOT DATE AND TIME: 3/13/2019 9:43:38 AM

HORZ	40) 80
VERT C	5 SCALE II	10 N FEET

SITE CIVIL ROAD B PROFILES	SHEET	
	DWG	03-GR-70102
	DATE	MARCH 2019
	PROJ	WTP_1.0

PLOT DATE AND TIME: 3/13/2019 9:46:22 AM

HORZ 0	40	80
VERT 0	5	10
	SCALE IN FEET	

SITE CIVIL ROAD C PROFILES 1	SHEET	
	DWG	03-GR-70103
	DATE	MARCH 2019
	PROJ	WTP_1.0

PLOT DATE AND TIME: 3/11/2019 4:38:14 PM

HORZ	40) 80
VERT C	5 SCALE II	10 N FEET

SITE CIVIL ROAD C PROFILES 1	SHEET	
	DWG	03-GR-70103
	DATE	MARCH 2019
	PROJ	WTP_1.0