

Preliminary Storm Drainage Report

Riverside at Cedar Creek Washington County, Oregon

Applicant: Riverside Homes, LLC 17933 NW Evergreen Place Suite 370 Beaverton, Oregon 97006 503.645.0908

Engineer: Pioneer Design Group, Inc. 9020 SW Washington Sq. Rd. Suite 170 Portland, Oregon 97223

503.643.8286

Sherwood Casefile No:

VALID THROUGH 12-31-20

Date: February 8, 2020 Prepared by: Cory Schermesser, EIT Reviewed by: Geoff A. Mihalko, PE PDG Job No. 131-025

Land Use Planning • Civil Engineering • Land Surveying • Landscape Architecture • Construction Management 9020 SW Washington Square Rd. Suite 170 • Portland, Oregon 97223 • 503.643.8286 www.pd-grp.com

TABLE OF CONTENTS

INTRODUCTION
SITE DESCRIPTION AND LOCATION
EXISTING CONDITIONS3-43.1 SITE TOPOGRAPHY3
3.2 SOIL TYPE
PROPOSED IMPROVEMENTS4-64.1HYDROLOGY/HYDRAULIC METHODOLOGY54.2WATER QUALITY54.3DETENTION64.4CONVEYANCE6
CONCLUSION6-7
VICINITY MAP
ENGINEERING CALCULATIONS AND SPREADSHEETS.8-288.1SOIL TYPE EXHIBITS8-118.2EXISTING CONDITIONS PLAN128.3COMPOSITE UTILITY PLAN138.4SOIL FEATURES FOR WASHINGTON COUNTY14-158.5SCS RUNOFF CURVE NUBMERS (TR-55)16-178.5SCS COMPOSITE RUNOFF CURVE NUBMER (TR-55)188.6MANNING'S 'N' VALUES198.7IMPERVIOUS AREA CALCULATIONS AND EXHIBIT20-218.8PREDEVELOPED TIME OF CONCENTRATION AND EXHIBIT22-238.9DEVELOPED TIME OF CONCENTRATION248.10WATER QUALITY POND CALCULATIONS278.12CONVEYANCE CALCULATIONS28

TECHNICAL APPENDIX

APPENDIX 'A' – STORMWATER DETENTION FACILITY REPORT

1.0 INTRODUCTION

This report represents the preliminary storm drainage and storm water analysis for the Riverside at Cedar Creek project. The basis of this report is to comply with City of Sherwood, Clean Water Services (CWS), and the State of Oregon's regulations and engineering standards as well as the latest edition of the Oregon Plumbing Specialty Code (OPSC). Compiled in this report are the design criteria for the site, the hydrologic methodology, and the preliminary drainage analysis.

2.0 SITE DESCRIPTION AND LOCATION

The proposed project is a 28-Lot Single-Family Detached Residential Subdivision located on the north side of SW Brookman Road and approximately 50 feet east of its intersection with SW Oberst Rd in the City of Sherwood. The subject site is approximately 10.47 acres and is specifically identified as Tax Lot 104 of Tax Map 3S1 06. The property is zoned Medium Density Residential Low (MDRL).

3.0 EXISTING CONDITIONS

The site currently contains a single-family detached home, plus associated residential accessory structures and outbuildings. The north end of the site is used primarily as pasture for livestock, storage for landscaping materials and a small horse corral. The southern end of the site is forested with a riparian forested community along Cedar Creek and a short tributary flowing north from SW Brookman Road to a confluence with Cedar Creek in the middle of the site. The plan for the site includes removal of all existing structures to facilitate construction of the development.

3.1 <u>Site Topography</u>

The site topography slopes from the north and south ends to the middle of site along the Cedar Creek riparian corridor. The forested slopes from Cedar Creek and the small tributary in south end range from 20 percent to 42 percent. The topography at the north end is generally flat within the pasture areas with a small depression in the northwest corner. The site currently drains to Cedar Creek running through the center of the project which conveys storm water easterly and then north eventually releasing into the Tualatin River.

3.2 <u>Soil Type</u>

The predominant soils mapped on site with a corresponding hydrologic soil group (HSG) designation are listed below and shown on the attached Natural Resources Conservation Service (NRCS) soil survey for Washington County.

Table 3.2 – NRCS SOIL GROUPS					
Map Unit Name	Map Unit Symbol	HSG Rating			
Aloha Silt Loam	1	C/D			
Wapato Silty Clay Loam	43	C/D			
Willamette Silt Loam, 3 to 7 percent slopes	44B	В			
Woodburn Silt Loam, 3 to 7 percent slopes	45B	С			
Verboort Silt Loam, 0 to 3 percent slopes	2027A	D			

3.3 <u>Runoff Curve Numbers</u>

Based on the various soil and cover types existing throughout the site, a composite Predeveloped runoff curve number (RCN) of 70 will be used for pervious areas. While Table 3.2 above shows all of the soils on-site, we are only proposing to develop a portion of the site due to the riparian corridor, therefore only those soils located in our developed area have been used in our analysis. Those two soils are Map Unit 1 -Aloha Silt Loam with a hydrologic soil group rating of 'C', and Map Unit 45B - Woodburn Silt Loam at 3 to 7 percent slopes, also with a hydrologic soil group rating of 'C'.

Developed pervious areas represent a runoff curve number (RCN) of 79 for "Open Space" cover type in fair hydrologic condition, relative to HSG 'C'. A runoff curve number of 98 will be used for all predeveloped and developed impervious areas (refer to the *Runoff Curve Numbers (TR-55)* and *NRCS Soil Survey*).

Table 3.3 – RUNOFF CURVE NUMBERS					
Land Description	Existing RCN	Proposed RCN			
Open Space, Good Hydrologic Condition	-	79			
Meadows & Woods, Good Hydrologic Condition	70	-			
Impervious	98	98			

4.0 PROPOSED IMPROVEMENTS

Impervious surfaces will be created as a result of public and private streets and sidewalks along with the eventual homes and driveways. The proposed development will create approximately 114,406 square feet (2.63 acres) of impervious area, which comprise 47.9% of the proposed developed area. Public utilities will be extended throughout the site for use by the proposed lots.

Flows generated by the site will be conveyed to a storm water facility which will outfall to Cedar Creek. All proposed improvements are to be elevated out of the existing 100-year flood plain.

4.1 <u>Hydrology/Hydraulic Methodology</u>

Using the Santa Barbara Urban Hydrograph (SBUH) runoff method based on a Type 1A rainfall distribution, the site has been analyzed to determine the proposed peak runoff rates for the water quality storm, 2, 10, and 25-year 24-hour storm events. The SBUH method uses runoff curve numbers in conjunction with the property's hydrologic soil group to model the site's permeability.

A pre-developed time of concentration of 23.51 minutes and a developed time of concentration of 11.6 minutes were calculated using the methodology outlined in the TR-55 technical manual (*refer to the Time of Concentration Calculations and Exhibits*).

Rainfall depths for all storm events used in the calculations and design of the proposed storm drainage system are found in latest edition of Clean Water Services (CWS) Design and Construction Standards and as shown below.

Table 4.1 – 24-Hour Rainfall Depths (CWS)					
Recurrence Interval, Years	2	5	10	25	100
24-Hour Depths, Inches	2.50	3.10	3.45	3.90	4.50

4.2 <u>Water Quality</u>

As required by Clean Water Services, we will treat runoff from any new impervious surface created as a result of the proposed development. All water quality structures shall be designed to treat storm water generated by 0.36 inches of precipitation falling in 4 hours with an average storm return period of 96 hours. The water quality facilities, in conjunction with the sumped catch basins and a water quality manhole will remove a minimum of 65% of the Total Phosphorous (TP) from the storm water runoff.

Based on the CWS R&O 19-22 Section 4.08.1.d.1, the code requires treating all new impervious surface plus three times the modified impervious surface up to the total existing impervious surface. In this case we will be removing and replacing all of the existing impervious area on site, therefore we will be treating all of our new impervious surface as well as the total existing removed and replaced impervious surface on site.

Stormwater runoff from Riverside at Cedar Creek will convey stormwater to a proposed water quality pond designed to accommodate water quality treatment for the proposed subdivision per the water quality pond design below:

Table 4.2 - WATER QUALITY POND	

- Minimum Pond Volume =3,437 ft³
- Water Quality Depth = 0.45 ft.
- Depth = 3.0 ft. max.

• Side Slopes = 3:1

• Design Inflow = 0.24 ft/s

4.3 <u>Detention</u>

Per CWS R&O 19-22 Section 4.08.6.c, we are proposing to meet the hydromodification approach by matching (or releasing less than) the developed to ½ the 2-year pre-developed runoff rate, and then matching (or releasing less than) the consecutive 5 and 10-year storm events. The following table summarizes the developed, pre-developed, and released discharges and pond stage storage elevations:

Table 4.3 – APRIL CREST SUBDIVISION – COMBINED HYDROGRAPH (R&O 19-22)						
Storm Event (yr)	Developed Discharge (cfs)	Pre-Developed Discharge (cfs)	Actual Released Discharge (cfs)	Water Surface Elevation in Pond (ft.)		
2	1.67	0.085 (1/2–2YR)	0.08	188.77		
5	2.39	0.41	0.41	188.91		
10	2.83	0.61	0.53	188.93		

See Appendix 'A' – Stormwater Detention Facility Report for complete analysis.

4.4 <u>Conveyance</u>

The conveyance system for the site consists of an underground pipe system with sumped and flow through catch basins. Stormwater will be conveyed through the site via a series of pipes and routed through the stormwater facility before being discharged into Cedar Creek.

A water quality manhole has been installed upstream of the facility to provide the required stormwater pretreatment. As per the requirements of Clean Water Services, the drainage system has been designed to convey the 25-year storm event.

Using a Manning's 'n' value of 0.013, the minimum slope required to convey the 25-year storm event for the site in n 18" PVC pipe is 0.0050 ft./ft. (refer to the *Stormwater Conveyance Calculations*).

5.0 CONCLUSION

Based on the supporting stormwater calculations and attached analysis, it is the opinion of Pioneer Design Group that the development of the Riverside at Cedar Creek Subdivision project will not adversely affect the existing downstream drainage system or adjacent property owners. Water quality treatment for all new impervious areas created by the development will be treated by an onsite water quality pond and water quantity control is proposed meeting CWS's hydromodification approach. Therefore, all the requirements associated with the City of Sherwood, Clean Water Services' design and construction standards and Washington County have been met for this project.

7.0 VICINITY MAP

ENGINEERING CALCULATONS AND SPREADSHEETS

USDA Natural Resources

Conservation Service

Hydrologic Soil Group

		1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Aloha silt loam	C/D	1.8	19.3%
43	Wapato silty clay loam	C/D	1.6	17.1%
44B	Willamette silt loam, 3 to 7 percent slopes	В	0.3	2.8%
45B	Woodburn silt loam, 3 to 7 percent slopes	С	4.3	44.9%
2027A	Verboort silty clay loam, 0 to 3 percent slopes	D	1.5	15.9%
Totals for Area of Intere	st		9.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

P2

Soil name and map symbol	Hydro- logic	Flooding			
	group	Frequency	Duration	Months	
Aloha:		x v			
1	С	NONE	NONE	NONE	
Amity:					
2	С	NONE	NONE	NONE	
Astoria:					
3E, 3F	В	NONE	NONE	NONE	
Briedwell:					
4B, 5B, 5C, 5D	В	NONE	NONE	NONE	
Carlton:		NONE	NONE	NONE	
6B, 6C	В	NONE	NONE	NONE	
Cascade:	G	NONE	NONE	NONE	
7B, 7C, 7D, 7E, 7F	С	NONE	NONE	NONE	
Chehalem:	G	NONE	NONE	NONE	
8C	C	NONE	NONE	NONE	
	р	COMMON	DDIEE	NOV MAD	
9, 10	В	COMMON	BRIEF	NOV-MAR	
Comenus:					
IIB, IIC, IID, IIE, IIF:	C	NONE	NONE	NONE	
Kinton part	C C	NONE	NONE	NONE	
Cornelius Varient:	C	NONE	INDINE	NONE	
12A 12B 12C	C	NONE	NONE	NONE	
Cove:	C	NONE	NONE	NONE	
13 14	D	COMMON	BRIFF	DFC-APR	
Davton:	D	COMMON	DIGE	DLCTIK	
15	D	NONE	NONE	NONE	
Delena:	2	110112	1.01.2	110112	
16C	D	NONE	NONE	NONE	
Goble:					
17B, 17C, 17D, 17E, 18E, 18F	С	NONE	NONE	NONE	
Helvetia:					
19B, 19C, 19D, 19E	С	NONE	NONE	NONE	
Hembre:					
20E, 20F, 20G	В	NONE	NONE	NONE	
Hillsboro:					
21A, 21B, 21C, 21D	В	NONE	NONE	NONE	
Hubberly:					
22	D	NONE	NONE	NONE	
Jory:					
23B, 23C, 23D, 23E, 23F	C	NONE	NONE	NONE	
Kilchis:					
24G					
Kilchis part	C	NONE	NONE	NONE	
Klickitat part	В	NONE	NONE	NONE	

Soil name and map symbol	Hydro-	Flooding			
	logic				
	group	Frequency	Duration	Months	
Klickitat:					
25E, 25F, 25G	В	NONE	NONE	NONE	
Knappa:	_				
26	В	NONE	NONE	NONE	
Lablish:	5				
27	D	FREQUENT	VERY LONG	DEC - APR	
Laurelwood:	D	NONE	NONE	NONE	
28B, 28C, 28D, 28E, 29E, 29F McBee:	В	NONE	NONE	NONE	
30	В	FREQUENT	BRIEF	NOV - MAY	
Melborne:					
31B, 31C, 31D, 31E, 31F	В	NONE	NONE	NONE	
Melby:					
32C, 32D, 32E, 33E, 33F, 33G	С	NONE	NONE	NONE	
Olyic:					
34C, 34D, 34E, 35E, 35F, 35G	В	NONE	NONE	NONE	
Pervina:	~				
36C, 36D, 36E, 36F	C	NONE	NONE	NONE	
Quatama:	a	NONE	NONE	NONE	
37A, 37B, 37C, 37D	C	NONE	NONE	NONE	
Saum:	C	NONE	NONE	NONE	
38B, 38C, 38D, 38E, 38F	C	NONE	NONE	NONE	
	р	NONE	NONE	NONE	
59E, 59F	Б	NOINE	INDINE	NONE	
40	B	FREQUENT	VERVIONG	NOV APP	
Verboot:	D	TREQUENT	VERTEONO	NOV - AI K	
42	D	FREQUENT	BRIEF	DEC - APR	
Wapato:					
43	D	FREQUENT	BRIEF	DEC - APR	
Willamette:					
44A, 44B, 44C, 44D	В	NONE	NONE	NONE	
Woodburn:					
45A, 45B, 45C, 45D	C	NONE	NONE	NONE	
Xerchrepts:					
46F	р	NONE	NONE	NONE	
Xerochrepts part	B	NONE	NONE	NONE	
Hapioxeroiis part	C	NONE	NUNE	INUNE	
4/D Verochronts part	р	NONE	NONE	NONE	
Rock outcrop part	ע	INUINE	INUINE	INCINE	

SOIL FEATURES FOR WASHINGTON COUNTY

RUNOFF CURVE NUMBERS (TR55)

Cover description	CN for hydrologic soil group				oup	
	Average percent					_
Cover type and hydrologic condition	impervious area ²	А	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.) ³ :						
Poor condition (grass cover <50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%)		49	69	79	84	POST
Good condition (grass cover >75%)		39	61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc. (excluding right-of-		08	0.9	08	09	
way)		98	98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding right-of-way)		98	98	98	98	
Paved; open ditches (including right-of-way)		83	89	92	93	
Gravel (including right-of-way)		76	85	89	91	
Dirt (including right-of-way)		72	82	87	89	
Western desert urban areas:						
Natural desert landscaping (pervious areas only) ⁴		63	77	85	88	
Artificial desert landscaping (impervious weed barrier, desert						
shrub with 1- to 2-inch sand or gravel mulch and basin borders)		06	06	06	06	
Urban districts		90	90	90	90	
Commercial and husiness	85	80	02	04	05	
Industrial	85 72	81	92 88	94 01	93	
Residential districts by average lot size:	12	01	00	71)5	
1/8 acre or less (town houses)	65	77	85	90	92	
1/4 acre	38	61	75	83	92 87	
1/3 acre	30	57	72	81	86	
1/2 acre	25	54	70	80	85	
1 acre	20	51	68	79	84	
2 acres	12	46	65	77	82	
Developing urban areas						
Newly graded areas (pervious areas only, no vegetation) ⁵	77	86	91	94		
Idle lands (CNs are determined using cover types similar to those in table 2-2c)						

Table 2-2a: Runoff curve numbers for urban areas

1: Average runoff condition, and $I_a = 0.2S$.

2: The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas hava a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

3: CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

4: Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

5: Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

RUNOFF CURVE NUMBERS (TR55)

Cover description		Curve r	numbers f	or hydrolog	gic soil	
Cover description	Underslagia	1	gro	ար		_
Cover type	condition	А	В	С	D	
Desture creasiand or range continuous forces for creating						
Pasture, grassiand, or range continuous forage for grazing	Deen	(9	70	97	80	
< 50% ground cover of neavity grazed with no mulch.	Poor	08	/9	80 70	89	
50% to 75% ground cover and hot neaviny grazed.	Fair	49	69	79	84	
>75% ground cover and rightly of only occasionary grazed.	Good	39	61	74	80	
Meadow continuous grass, protected from grazing and generally mowed for hay		30	58	71	78	PRE
Brush – weed-grass mixture with brush as the major element						
<50% ground cover	Poor	48	67	77	83	
50% to 75% ground cover	Fair	35	56	70	77	
>75% ground cover	Good	30 ²	48	65	73	
Woods – grass combination (orchard or tree farm) 3	Poor	57	73	82	86	
6	Fair	43	65	76	82	
	Good	32	58	72	79	
Woods						
Forest litter, small trees, and brush are destroyed by heavy						
grazing or regular burning.	Poor	45	66	77	83	
Woods are grazed but not burned, and some forest litter covers the soil.	Fair	36	60	73	79	
Woods are protected from grazing, and litter and brush adequately cover the soil.	Good	30 ²	55	70	77	PRE
Farmsteads buildings, lanes, driveways, and surrounding lots		50	74	22	96	
		39	/4	82	80	

Table 2-2c: Runoff curve numbers for other agricultural lands

1: Average runoff condition, and $I_a = 0.2S$.

2: Actual curve number is less than 30; use CN = 30 for runoff computations.

3: CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

EXISTING CONDITIONS - PERVIOUS COMPOSITE CURVE NUMBERS

JOB NUMBER:131-025PROJECT:Riverside at Cedar CreekFILE:131-025_Preliminary Hydro.xls

TOTAL AREA= 238,944 SF

EXISTING CONDITIONS

COVER TYPE	SOIL TYPE	AREA (SF)	SOIL GRADE	CURVE NUMBER
MEADOWS	1 Aloha silt loam	87,176	C/D	71
WOODS "GOOD CONDITION"	45B Woodburn silt loam	151,768	С	70

EXISTING COMPOSITE CN		(109,447 x 71) + (130569 x 84)	70
(PERVIOUS)	=	238,944 =	10

SHEET FLOW EQUATION MANNING'S VALUES	n _s
Smooth Surfaces (concrete, asphault, gravel, or bare hand packed soil)	0.011
Fallow Fields or loose soil surface (no residue)	0.05
Cultivated soil with residue cover ($\leq 20\%$)	0.06
Cultivated soil with residue cover $(> 20\%)$	0.17
Short prairie grass and lawns	0.15
Dense grasses	0.24
Bermuda grasses	0.41
Range (natural)	0.13
Woods or forrest with light underbrush	0.40
Woods or forrest with dense underbrush	0.80
SHALLOW CONCENTRATED FLOW (after initial 300 ft of sheet flow, $K = 0.1$)	k _s
Forest with heavy ground litter and meadows $(n = 0.010)$	3
Brushy ground with some trees $(n = 0.060)$	5
Fallow or minimum tillage cultivation $(n = 0.040)$	8
High grass $(n = 0.035)$	9
Short grass, pasture and lawns $(n = 0.030)$	11
Nearly bare ground $(n = 0.25)$	13
Paved and gravel areas $(n = 0.012)$	27
CHANNEL FLOW (Intermittent) (At the beginning of all visible channels, $R = 0.2$)	k _c
Forested swale with heavy ground cover $(n = 0.10)$	5
Forested drainage course/ravine with defined channel bed $(n = 0.050)$	10
Rock-lined waterway ($n = 0.035$)	15
Grassed waterway ($n = 0.030$)	17
Earth-lined waterway ($n = 0.025$)	20
CMP pipe $(n = 0.024)$	21
Concrete pipe ($n = 0.012$)	42
Other waterways and pipe 0.508/n	
CHANNEL ELOW (continuous stream $\mathbf{D} = 0.4$)	
CHAINNEL FLOW (continuous stream, $K = 0.4$) Manufacture stream (r. 0.040)	<u>K_c</u>
Meandering stream (n = 0.040)	20
Kock-lined stream (n = 0.035)	23
Grass-lined stream (n = 0.030)	27
Other streams, man-made channels and pipe $(n = 0.807/n)$	

2/8/2020 11 10 50 AM

B:\Projects\131-025\Engineering\Hydro\Planning\13125_IMPERVIOUS_EXHIBIT.dwg

IMPERVIOUS AREA CALCULATIONS

JOB NUMBER:131-025PROJECT:Riverside at Cedar CreekFILE:131-025_Preliminary Hydro.xls

PROPOSED IMPERVIOUS AREA

28 LOTS AT 2,640-SF IMPERVIOUS AREA / LOT	73,920.00 ft ²	
SIDEWALKS	12,309.00 ft ²	
STREET PAVEMENT	28,177.00 ft ²	
	114,406.00 ft ²	2.63 ac
MODIFIED IMPERVIOUS AREA		
BUILDINGS	488.00 ft ²	
SIDEWALKS	0.00 ft ²	
GRAVEL AT 60% IMPERVIOUS	3,848.00 ft ²	
STREET PAVEMENT	0.00 ft ²	
	4,336.00 ft ²	0.10 ac
NEW IMPERVIOUS AREA	110,070.00 ft ²	2.53 ac
Total Shed Area	238,944.00 ft ²	5.49 ac
Existing Impervious Area	4,336.00 ft ²	0.10 ac
% Impervious		1.8 %
Proposed Impervious Area	114,406.00 ft ²	2.63 ac
% Impervious		47.9 %

PREDEVELOPED TIME OF CONCENTRATION

JOB NUMBER:	131-025
PROJECT:	Riverside at Cedar Creek
FILE:	131-025_Preliminary Hydro.xls

			Accum.
LAG ONE: SHEET FLOW (FIRST 300 FEET)			Тс
Tt = Travel time			
Manning's "n " =	0.15		
Flow Length, $L =$	300 ft	(300 ft. max.)	
P = 2-year, 24hr storm =	2.5 in		
Slope, $S_0 =$	0.041 ft/ft		
$T_{T} = \frac{(0.42)(n * L)^{0.8}}{(P)^{0.5} (S_{0})^{0.4}}$	19.97 min.		19.97 min.

LAG TWO: SHALLOW CONCENTRATED	FLOW (NEXT 200.4 FEET)
Tc Velocity factor, k=	3
Slope, $S_0 =$	0.099 ft/ft
$V = k \sqrt{S_0}$	0.94 ft/s
Flow Length, $L =$	200.4 ft
$T = \frac{L}{(60)(V)}$	3.54 min.

TOTAL PREDEVELOPED TIME OF CONCENTRATION (Tc) = 23.51 min.

23.51 min.

DEVELOPED TIME OF CONCENTRATION

JOB NUMBER:	131-025
PROJECT:	Riverside at Cedar Creek
FILE:	131-025_Preliminary Hydro.xls

TOTAL DEVELOPED Tc =	11.6 min.
Time in Pipe = $(1187 \text{ ft})/(3.00 \text{ ft/s}) =$	396 s
Velocity of Flow	3 ft/s
Longest Run of Pipe	1187 ft
Catchment Time	5 min.

WATER QUALITY POND CALCULATIONS

131-025
Riverside at Cedar Creek
131-025_Preliminary Hydro.xls

REFERENCES:

1. Clean Water Services R&O 07-20.

2. Discussions with Clean Water Services.

REQUIRED WATER QUALITY TREATMENT: 65% Phosphorus Removal.

PROPOSED TREATMENT METHODS:

1. Sumped Catch Basins 2. Water quality Pond		15% 50%	
2	total	65%	
DESIGN STORM			
Precipitation:	0.36	inches	
Storm Duration:	4	hours	
Storm Return Period:	96	hours	
Storm Window:	2	weeks	
IMPERVIOUS AREA:			
Watershed Area:	5.49 acres		
Percent imp:	47.88 %		
Impervious Area:	2.63 acres		
Design Inflow = $(2.63 \text{ ac})^*(43)$	3560 ft^2/ac)*(0.36 in / 4.0	hrs) =	
VOLUME CALCULATION:			
POND VOLUME = (2.63 acr	es)(43560 sqft/acre)(0.36 i	nch)/(12 in/ft) =	
POND PARAMETERS:			
Storage Volume (Sd)=		3,437 ft ³	
Storage Depth (Hd)=		3 ft ((3' maximum)
Side Slopes =		3 :1	
SOLVE FOR BOTTOM ARE	EA:		
Bottom Area (Ab) =		558 ft ²	

0.24 cfs

3,437 ft³

STAGE VS STORAGE CALCULATIONS:

Stage, H* ft	Storage, $S(H)$ ft ³	Water Surface Area S.F.
0.0	0.0	558.3
0.5	316.9	709.1
1.0	718.1	877.9
1.5	1217.3	1064.7
2.0	1827.8	1269.4
2.5	2563.2	1492.2
3.0	3437.0	1733.0
3.5	4462.7	1991.8
4.0	5653.8	2268.5
4.5	7023.7	2563.3
5.0	8586.1	2876.1

POND OUTLET ORIFICE CALCULATIONS:

Q = (3,437 ft3)/(48 hrs)/(60 min)	0.02 cfs	
h = average hydraulic head =		48 inches below high flow
$A = \frac{1}{4} - \pi r^2$	0.00 ft ²	
r = d - 2r	0.03 ft. radius	
$\mathbf{d} = 2\mathbf{l}$	0.61 in. diameter, use	6/8 " orifice

WATER QUALITY MANHOLE (SUMP CALCULATION)

JOB NUMBER:	131-025
PROJECT:	Riverside at Cedar Creek
FILE:	131-025_Preliminary Hydro.

Q ₂₅	=	3.	39 cfs	
V _{REQ}	=	20 CF/ $_{1}$ CFS		
V _{REQ}	=	67.8	cf	
WQ MH Radius	=	2.5	ft	

Volume for a	60" Manhole
36" min. to 6	0" max. sump depth

$$V = H \times \pi r^2$$

(depth of sump)	Н	=	4.0	ft
(radius of manhole)	r	=	2.5	ft
	V	=	78.5	ft^3

Is 78.5 cf > 67.8 cf

 \checkmark

STORMWATER CONVEYANCE CALCULATIONS

JOB NUMBER:	131-025															
PROJECT:	Riverside at Cedar Creek															
FILE:	131-025	_Prelimina	ary Hydr	o.xls												
Design Storm: Storm Duration: Precipitation: Manning's "n"	25 24 3.9 0.013	YR HRS IN														
	INC.	AREA	%	AREA	CN	AREA	CN	TIME	Q	PIPE	SLOPE	Qf	Q/Qf	Vf	V/Vf	ACTUAL
LNE	AKEA	IOTAL	IMP.	PEKV.	PEK.	IMP.	IIVIP.	(MIIN)	(CFS)	SIZE			$\langle 0 \rangle$		$\langle 0 \rangle$	V (FDC)
LINE	(AC)	(AC)		(AC)		(AC)				(IN)	(F1/F1)	(CFS)	(%)	(FPS)	(%)	(FPS)
ENTIRE SHED	5.49	5.49	47.88	2.86	79	2.63	98	5.00	4.02	18	0.0050	7.45	53.94%	4.21	1.03	4.32

APPENDIX 'A' – STORMWATER DETENTION FACILITY REPORT

Friday, Feb 7 2020, 2:3 PM

Hydrograph Return Period Recap	
--------------------------------	--

Year	
Summary Report	. 2
Hydrograph Reports	. 3
Hydrograph No. 1. SBLIH Bunoff. Pre Developed	3
Hydrograph No. 2 SBUH Bunoff, Developed	. U
Hydrograph No. 2, Bosonvoir Pond	т Б
Dend Denort	. 5
Pond Repon	. 0
Veer	
Year	
Summary Report	. 7
Hydrograph Reports	. 8
Hydrograph No. 1, SBUH Runoff, Pre Developed	. 8
Hydrograph No. 2. SBUH Runoff. Developed	9
Hydrograph No. 3. Reservoir Pond	10
Pond Report	11
- Voar	
- ICAI	10
	12
Hydrograph Reports	13
Hydrograph No. 1, SBUH Runoff, Pre Developed	13
Hydrograph No. 2, SBUH Runoff, Developed	14
Hydrograph No. 3, Reservoir, Pond	15
	Year Summary Report

25 - Year

Summary Report	17
Hydrograph Reports	18
Hydrograph No. 1, SBUH Runoff, Pre Developed	18
Hydrograph No. 2, SBUH Runoff, Developed	19
Hydrograph No. 3, Reservoir, Pond	20
Pond Report	21

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SBUH Runoff	0.17	5	540	9,073				Pre Developed
2	SBUH Runoff	1.67	5	480	27,531				Developed
3	Reservoir	0.08	5	1455	21,271	2	188.77	24,812	Pond
3	Reservoir	0.08	5	1455	21,271	2	188.77	24,812	Pond
									
1312	∠5_HydroF	iow Cale	cs.gpw		Keturn	Period: 2	Year	🗆 Friday, Fe	0 7 2020, 2:03 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Pre Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 0.17 cfs
Storm frequency	= 2 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 23.51 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 9,073 cuft

Friday, Feb 7 2020, 2:3 PM

3

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 1.67 cfs
Storm frequency	= 2 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.60 min
Total precip.	= 2.50 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 27,531 cuft

Friday, Feb 7 2020, 2:3 PM

4

Hydrograph Return Period Recap

Hyd.	Hydrograph	/drograph Inflow Peak Outflow (cfs)						Hydrograph			
NO.	type (origin)	Hya(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description
				0.47		0.44	0.01	0.00			Der Develand
2	SBUH Runoff			0.17		0.41 2.39	2.83	0.90			Pre Developed
3	Reservoir	2		0.08		0.41	0.53	0.68			Pond

Proj. file: 13125_HydroFlow Calcs.gpw

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.08 cfs
Storm frequency	= 2 yrs	Time interval	= 5 min
Inflow hyd. No.	= 2	Max. Elevation	= 188.77 ft
Reservoir name	= Pond	Max. Storage	= 24,812 cuft

Storage Indication method used.

Hydrograph Volume = 21,271 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Friday, Feb 7 2020, 2:3 PM

Pond No. 1 - Pond

Pond Data

Bottom LxW = 121.3 x 60.7 ft Side slope = 3.0:1

Bottom elev. = 186.00 ft

Weir Structures

Depth = 8.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	186.00	7,357	0	0	
0.40	186.40	7,799	3,031	3,031	
0.80	186.80	8,253	3,210	6,241	
1.20	187.20	8,719	3,394	9,635	
1.60	187.60	9,196	3,583	13,217	
2.00	188.00	9,684	3,776	16,993	
2.40	188.40	10,184	3,973	20,966	
2.80	188.80	10,696	4,176	25,142	
3.20	189.20	11,219	4,383	29,525	
3.60	189.60	11,754	4,594	34,119	
4.00	190.00	12,300	4,810	38,929	
4.40	190.40	12,857	5,031	43,960	
4.80	190.80	13,426	5,256	49,216	
5.20	191.20	14,007	5,486	54,703	
5.60	191.60	14,599	5,721	60,424	
6.00	192.00	15,203	5,960	66,384	
6.40	192.40	15,818	6,204	72,587	
6.80	192.80	16,445	6,452	79,040	
7.20	193.20	17,083	6,705	85,745	
7.60	193.60	17,733	6,963	92,708	
8.00	194.00	18,394	7,225	99,933	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.75	1.65	0.00	Crest Len (ft)	= 5.00	0.00	0.00	0.00
Span (in)	= 18.00	0.75	1.65	0.00	Crest El. (ft)	= 188.83	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	3.33	0.00	0.00
Invert El. (ft)	= 181.25	179.25	188.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	Yes	Yes	No	Exfiltration = 0	.000 in/hr (Wet	area) Tail	water Elev.	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SBUH Runoff	0.41	5	495	15,356				Pre Developed
2	SBUH Runoff	2.39	5	480	38,011				Developed
3	Reservoir	0.41	5	1100	31,601	2	188.91	26,397	Pond
3	Reservoir	0.41	5	1100	31,601	2	188.91	26,397	Pond
131:	25 HydroF	low Cal	cs.gpw		Return	Period: 5	Year	Friday, Fe	b 7 2020, 2:03 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Pre Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 0.41 cfs
Storm frequency	= 5 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 23.51 min
Total precip.	= 3.10 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 15,356 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 2.39 cfs
Storm frequency	= 5 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.60 min
Total precip.	= 3.10 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 38,011 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.41 cfs
Storm frequency	= 5 yrs	Time interval	= 5 min
Inflow hyd. No.	= 2	Max. Elevation	= 188.91 ft
Reservoir name	= Pond	Max. Storage	= 26,397 cuft

Storage Indication method used.

Hydrograph Volume = 31,601 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Friday, Feb 7 2020, 2:3 PM

Pond No. 1 - Pond

Pond Data

Bottom LxW = 121.3×60.7 ft Side slope = 3.0:1

Bottom elev. = 186.00 ft

Weir Structures

Depth = 8.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	186.00	7,357	0	0	
0.40	186.40	7,799	3,031	3,031	
0.80	186.80	8,253	3,210	6.241	
1.20	187.20	8,719	3,394	9,635	
1.60	187.60	9,196	3.583	13.217	
2.00	188.00	9.684	3.776	16.993	
2.40	188.40	10,184	3.973	20.966	
2.80	188.80	10,696	4,176	25.142	
3.20	189.20	11.219	4.383	29.525	
3.60	189.60	11.754	4,594	34.119	
4.00	190.00	12,300	4,810	38,929	
4.40	190.40	12,857	5.031	43,960	
4.80	190.80	13,426	5,256	49.216	
5.20	191.20	14,007	5,486	54,703	
5.60	191.60	14,599	5,721	60,424	
6.00	192.00	15,203	5,960	66,384	
6.40	192.40	15.818	6,204	72,587	
6.80	192.80	16 445	6 452	79 040	
7 20	193 20	17 083	6 705	85 745	
7.60	193.60	17,333	6 963	92 708	
8.00	194.00	18,394	7,225	99,933	

Culvert / Orifice Structures

	[4]	[B]	101	וחז		[A]	[B]	[0]	וחז
	[~]		[0]	נטן		[~]		[0]	
Rise (in)	= 18.00	0.75	1.65	0.00	Crest Len (ft)	= 5.00	0.00	0.00	0.00
Span (in)	= 18.00	0.75	1.65	0.00	Crest El. (ft)	= 188.83	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	3.33	0.00	0.00
Invert El. (ft)	= 181.25	179.25	188.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	Yes	Yes	No	Exfiltration = 0	.000 in/hr (Wet	area) Tail	water Elev.	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SBUH Runoff	0.61	5	490	19,478				Pre Developed
2	SBUH Runoff	2.83	5	480	44,304				Developed
3	Reservoir	0.53	5	935	37,891	2	188.93	26,606	Pond
3	Reservoir	0.53	5	935	37,891	2	188.93	26,606	Pond
131	25_HydroF	low Cal	cs.gpw	<u> </u>	Return	Period: 10) Year	Friday, Fe	b 7 2020, 2:03 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Pre Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 0.61 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 23.51 min
Total precip.	= 3.45 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 19,478 cuft

Friday, Feb 7 2020, 2:3 PM

13

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 2.83 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.60 min
Total precip.	= 3.45 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 44,304 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.53 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Inflow hyd. No.	= 2	Max. Elevation	= 188.93 ft
Reservoir name	= Pond	Max. Storage	= 26,606 cuft

Storage Indication method used.

Hydrograph Volume = 37,891 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Friday, Feb 7 2020, 2:3 PM

Pond No. 1 - Pond

Pond Data

Bottom LxW = 121.3×60.7 ft Side slope = 3.0:1

Bottom elev. = 186.00 ft

Weir Structures

Depth = 8.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	186.00	7,357	0	0	
0.40	186.40	7,799	3,031	3,031	
0.80	186.80	8,253	3,210	6,241	
1.20	187.20	8,719	3,394	9,635	
1.60	187.60	9,196	3,583	13,217	
2.00	188.00	9,684	3,776	16,993	
2.40	188.40	10,184	3,973	20,966	
2.80	188.80	10,696	4,176	25,142	
3.20	189.20	11,219	4,383	29,525	
3.60	189.60	11,754	4,594	34,119	
4.00	190.00	12,300	4,810	38,929	
4.40	190.40	12,857	5,031	43,960	
4.80	190.80	13,426	5,256	49,216	
5.20	191.20	14,007	5,486	54,703	
5.60	191.60	14,599	5,721	60,424	
6.00	192.00	15,203	5,960	66,384	
6.40	192.40	15,818	6,204	72,587	
6.80	192.80	16,445	6,452	79,040	
7.20	193.20	17,083	6,705	85,745	
7.60	193.60	17,733	6,963	92,708	
8.00	194.00	18,394	7,225	99,933	

Culvert / Orifice Structures

	[4]	[B]	101	וחז		[A]	[B]	[0]	וחז
	[~]		[0]	נטן		[~]		[0]	
Rise (in)	= 18.00	0.75	1.65	0.00	Crest Len (ft)	= 5.00	0.00	0.00	0.00
Span (in)	= 18.00	0.75	1.65	0.00	Crest El. (ft)	= 188.83	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	3.33	0.00	0.00
Invert El. (ft)	= 181.25	179.25	188.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	Yes	Yes	No	Exfiltration = 0	.000 in/hr (Wet	area) Tail	water Elev.	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SBUH Runoff	0.90	5	485	25,178				Pre Developed
2	SBUH Runoff	3.39	5	480	52,536				Developed
3	Reservoir	0.68	5	800	46,119	2	188.96	26,863	Pond
131:	25_HydroF	low Cal	cs.gpw		Return	Period: 25	5 Year	Friday, Fe	b 7 2020, 2:03 PM

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

Pre Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 0.90 cfs
Storm frequency	= 25 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 23.51 min
Total precip.	= 3.90 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 25,178 cuft

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Developed

Hydrograph type	= SBUH Runoff	Peak discharge	= 3.39 cfs
Storm frequency	= 25 yrs	Time interval	= 5 min
Drainage area	= 5.490 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 11.60 min
Total precip.	= 3.90 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= N/A

Hydrograph Volume = 52,536 cuft

Friday, Feb 7 2020, 2:3 PM

19

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

Pond

Hydrograph type	= Reservoir	Peak discharge	= 0.68 cfs
Storm frequency	= 25 yrs	Time interval	= 5 min
Inflow hyd. No.	= 2	Max. Elevation	= 188.96 ft
Reservoir name	= Pond	Max. Storage	= 26,863 cuft

Storage Indication method used.

Hydrograph Volume = 46,119 cuft

Pond Report

Hydraflow Hydrographs by Intelisolve

Friday, Feb 7 2020, 2:3 PM

Pond No. 1 - Pond

Pond Data

Bottom LxW = 121.3×60.7 ft Side slope = 3.0:1

Bottom elev. = 186.00 ft

Weir Structures

Depth = 8.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	186.00	7,357	0	0	
0.40	186.40	7,799	3,031	3,031	
0.80	186.80	8,253	3,210	6,241	
1.20	187.20	8,719	3,394	9,635	
1.60	187.60	9,196	3,583	13,217	
2.00	188.00	9,684	3,776	16,993	
2.40	188.40	10,184	3,973	20,966	
2.80	188.80	10,696	4,176	25,142	
3.20	189.20	11,219	4,383	29,525	
3.60	189.60	11,754	4,594	34,119	
4.00	190.00	12,300	4,810	38,929	
4.40	190.40	12,857	5,031	43,960	
4.80	190.80	13,426	5,256	49,216	
5.20	191.20	14,007	5,486	54,703	
5.60	191.60	14,599	5,721	60,424	
6.00	192.00	15,203	5,960	66,384	
6.40	192.40	15,818	6,204	72,587	
6.80	192.80	16,445	6,452	79,040	
7.20	193.20	17,083	6,705	85,745	
7.60	193.60	17,733	6,963	92,708	
8.00	194.00	18,394	7,225	99,933	

Culvert / Orifice Structures

	[4]	[B]	101	וחז		[A]	[B]	[0]	וחז
	[~]		[0]	נטן		[~]		[0]	
Rise (in)	= 18.00	0.75	1.65	0.00	Crest Len (ft)	= 5.00	0.00	0.00	0.00
Span (in)	= 18.00	0.75	1.65	0.00	Crest El. (ft)	= 188.83	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 2.60	3.33	0.00	0.00
Invert El. (ft)	= 181.25	179.25	188.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.013					
Orif. Coeff.	= 0.60	0.60	0.60	0.60					
Multi-Stage	= n/a	Yes	Yes	No	Exfiltration = 0	.000 in/hr (Wet	area) Tail	water Elev.	= 0.00 ft

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

