Oregon Department of Fish and Wildlife

Fish Passage Plan for a Road-Stream Crossing

- If you unlock and re-lock this Form, information already entered may be lost in certain versions of MS Word.
- If your project includes multiple crossings, please complete this form for each crossing.

APPLICANT INFORMATION

Applicant:
Organization:
Address:
City:
Phone:
FAX:
E-MAIL AdDRESS: WatersJ@SherwoodOregon.gov
Signature:

AUTHORIZED AGENT (if any):
Organization:
ADDRESS:

PHONE:
FAX:
E-MAIL AdDress:

Sage Jensen Jacobs Engineering Group 2020 SW $4^{\text {th }}$ Avenue Portland 503.724.3531

Sage.Jensen@jacobs.com

Date: July 31, 2020

WNER (if different than Applicant):
Title:
AdDress:
City:
State: ZiP:
FAX:
E-MAIL Address:

Signature: \qquad DATE: \qquad

LOCATION

${ }^{\text {a }}$ geographic projection using NAD_83 and formatted as decimal degrees to at least 4 places

Oregon Department of Fish and Wildlife

Fish Passage Plan for a Road-Stream Crossing

- If you unlock and re-lock this Form, information already entered may be lost in certain versions of MS Word. - If your project includes multiple crossings, please complete this form for each crossing.

APPLICANT INFORMATION

SIGNATURE: \qquad DATE: \qquad

AUTHORIZED AGENT (if any): Sage Jensen
ORGANIZATION:
ADDRESS:
CITY:
PHONE:
FAX:
E-MAIL ADDRESS: Sage.Jensen@jacobs.com Jacobs Engineering Group 2020 SW $4^{\text {th }}$ Avenue 503.724 .3531

SIGNATURE:

Portland STATE: OR ZIP: 97201
\qquad

Title: Senior Biologist

NER (if different than Applicant):

TitLe:

ORGANIZATION:
ADDRESS:
CITY:
STATE: ZIP:
PHONE:
FAX:
E-MAIL ADDRESS:

SIGNATURE: \qquad DATE: \qquad

${ }^{\text {a }}$ geographic projection using NAD_83 and formatted as decimal degrees to at least 4 places

STREAM CROSSING INFORMATION

Please indicate measurement units where applicable and see footnotes for supporting descriptions of the information requested.

New Crossing
Replacement of Existing Crossing Modification of Existing Crossing

	- TYPE/SHAPE ${ }^{\text {b }}$ \qquad - Material ${ }^{\text {c }}$ \qquad - LENGTH \qquad - INSIDE DIAMETER (if round) \qquad OR InSIDE RISE (Height) AND....................... Not Applicable (New Crossing) Inside Span (Width) \qquad - Culvert Slope \qquad - Does It Control an Upstream Pond, Wetland, Backwater Area, or Water RIGHT? ${ }^{\text {d }}$ \qquad Yes \square \square
気	- AvERAGE UPSTREAM ACW ${ }^{\text {e,f }}$........... 5.7 ft - Average Downstream ACW ${ }^{\text {e,f }}6 .1 \mathrm{ft}$ - UPSTREAM SLOPE ${ }^{\text {g }}$............................. 0.12 - DOWNSTREAM SLOPE ${ }^{\text {....................... } 0.07}$ - Describe Streambed Material ... Angular rock, stable (moss-covered) - SIZE OF D ${ }_{100}$ ROCK $^{\text {h }}$............................ 16 inches
	- TYPE/SHAPE ${ }^{\text {b }}$ \qquad Bottomless arch culvert - Material ${ }^{\text {c }}$ \qquad Corrugated metal - Length . \qquad .39 ft - INSIDE DIAMETER (if round) \qquad OR Inside RISE (Height) AND...................... 4 ft Inside Span (Width) 12 ft - CULVERT Slope \qquad 11\% - Bed Height - InLet ${ }^{\text {i,j }}$ \qquad N/A (existing material) - Bed Height - Outlet ${ }^{\text {i,k }}$. \qquad N/A (existing material) - BED SLOPE ${ }^{\text {i }}$ \qquad .11\% - Bed Material ${ }^{i}{ }^{i}$ (describe and/or fill in \%s). N/A (existing material) Please see Attachment A. \% Fines (dirt, silt, sand) \qquad \% Small Rock ($1 / 2-6$ " diameter) \qquad \% LARGE Rock ($6^{\prime \prime}-D_{100}$) ${ }^{\text {h }}$ \qquad \% OvER-SIZED ROCK $\left(D_{150}-D_{200}\right)^{\text {h }} \ldots$ - Bed Placement Method ${ }^{\text {i }}$ \qquad Removal, stockpile, replacement - Bed Retention Measures ${ }^{i}$ \qquad N/A (existing material) - Grade Control Measures ${ }^{1}$ \qquad N/A (existing material) - Additional Structures ${ }^{\text {m }}$. \qquad N/A (existing material)
年	- DAte Work Will Begin \qquad Approximately December 1, 2020 - Date Work Will be Completed.. Approximately November 30, 2021 - DETAILS ${ }^{n}$. \qquad Construction means and methods will be the responsibility of the construction contractor in compliance with regulatory permits. All work below the ordinary high water mark, including the

$\left.\begin{array}{ll} & \begin{array}{l}\text { culvert installation, will occur within the regulated ODFW in- } \\ \text { water work window for the Tualatin River tributaries, July } 15\end{array} \\ \text { September 30 (ODFW, 2008). In-water work construction } \\ \text { sequencing is proposed to include the following steps: in-water } \\ \text { work area isolation, fish salvage by a qualified fisheries } \\ \text { biologist, flow bypass allowing for downstream volitional fish } \\ \text { passage, dewatering of the work area, ongoing sediment and } \\ \text { erosion control, removal and stockpile of existing channel } \\ \text { surface and subsurface substrate, excavation, concrete footings } \\ \text { pour/placement, replacement of subsurface and surface } \\ \text { substrate, arch culvert placement, site restoration measures, and } \\ \text { channel rewatering. Anticipated equipment includes an } \\ \text { excavator, haul truck, concrete truck, and hand and power tools. } \\ \text { The work area isolation plan showing the isolation structures, } \\ \text { bypass pipe, and in-water works area is shown in Attachments C }\end{array}\right\}$
${ }^{\text {b }}$ e.g., bridge, open-bottomed arch, pipe arch/squashed, round, rectangular
${ }^{\text {c }}$ e.g., reinforced concrete, concrete, wood, plastic, corrugated metal, metal
d if "Yes", explain how these will be addressed in a separate attachment
e "ACW" is the active channel width, which is the stream width between the ordinary high water lines, or at the channel bankfull elevation if the ordinary high water lines are indeterminate; ordinary high water lines are not the same as the wetted width and are typically determined by changes on the bank in vegetation, changes in sediment size and/or color, water lines on the bank, trees, or leaves, or the point where debris (e.g., needles, leaves, twigs, cones) accumulation begins
f 3 measurements 20 feet apart should be averaged; begin measurements approximately 10 ACWs from the inlet (upstream) or outlet (downstream) of the crossing if this distance is outside of the influence of existing artificial obstructions and prior to adjoining tributaries as you move away from the crossing (if not, take measures at locations which fulfill these requirements); indicate measurement locations on the Profile Design Drawing
${ }^{\mathrm{g}}$ take measurements away from the crossing and at the point where ACW measurement begins
${ }^{\mathrm{h}} D_{100}$ is the average diameter of the 10 largest, naturally-occurring rocks in the stream reach; $D_{150}=D_{100} \times 1.5$; $D_{200}=D_{100}$ X 2
i "bed" refers to the stream bed within or under the crossing structure
j depth of fill material or countersinking/embedding (excluding protruding over-sized rock) at the crossing's inlet
${ }^{\mathrm{k}}$ depth of fill material or countersinking/embedding (excluding protruding over-sized rock) at the crossing's outlet
${ }^{1}$ these are measures outside of the crossing structure intended to prevent up- or downstream channel degradation, especially important to consider in locations where an existing smaller culvert is being replaced and there is the potential for upstream channel degradation (i.e., a "headcut") and associated off-site property or passage problems
${ }^{m}$ e.g., bed retention measures, weirs, baffles, trash racks, aprons, retaining walls, overflow pipes, channel restoration/scour remediation measures
${ }^{n}$ unless already described in an accompanying Department of State Lands Removal-Fill Application, include a description of a) temporary downstream passage, upstream passage, screening, and bypass measures, b) worksite isolation measures, c) fish salvage (note: an ODFW Fish Take Permit may be necessary), d) sediment and erosion control measures, and e) site restoration measures. For more details on Oregon Fill Removal Law see the Oregon Division of State Lands Removal-Fill Guide at http://oregonstatelands.us/DSL/PERMITS/rfg.shtml.

ADDITIONAL INFORMATION - NOT APPLICABLE

Provide this information only if the bed within the proposed crossing is not as wide as the active channel width or will not be embedded.

	High Design Flow ${ }^{\mathrm{o}}$	Llow Design Flow $^{\mathrm{p}}$
Flow ${ }^{\mathrm{q}}$ (cfs)		
Water Depth in Crossing (in.) $^{\text {Water Velocity in Crossing (fps) }}$		
Water Drop $^{\mathrm{r}}$ at Inlet (in.)		
Water Drop $^{\mathrm{r}}$ at Outlet (in.)		
Pool Depth Below Outlet (in.)		
Water Drop ${ }^{\mathrm{r}}$ at Weirs/Baffles (in.)		
Pool Depth Below Weirs/Baffles (in.)		
Depth of Nappe ${ }^{\mathrm{s}}$ at Weirs/Baffles (in.)		

${ }^{\circ}$ High Design Flow is the mean daily average stream discharge that is exceeded 5 percent of the time during the period when ODFW determines that native migratory fish require fish passage
${ }^{\mathrm{p}}$ Low Design Flow is the mean daily average stream discharge that is exceeded 95 percent of the time, excluding days with no flow, during the period when ODFW determines that native migratory fish require fish passage ${ }^{\mathrm{q}}$ attach a description of the methodology, calculations, and assumptions used to determine the high and low design flows
${ }^{\mathrm{r}}$ drop should be measured from the upstream water surface elevation to the downstream water surface elevation
${ }^{s}$ the nappe is the water flowing over weirs/baffles

DESIGN DRAWINGS

Please attach the following design drawings with the specified information on them.
\boxtimes-- Plan, including: Please see Exhibits 1 and 3 and Attachments A and C.

- active channel (i.e., ordinary high water or bankfull lines)
- existing crossing and additional structures
- proposed crossing and additional structures
- dimensions
- -- Profile, including: Please see Exhibits 1 and 3 and Attachments A, B, and C. - existing grade (measured at the deepest part of the stream channel from 10 ACWs downstream of the outlet [i.e., downstream end of crossing] to 10 ACWs upstream of the inlet [i.e., upstream end of crossing], at 5 -foot intervals), including road - existing crossing and additional structures
- proposed grade (measured at the deepest part of the stream channel from 10 ACWs downstream of the outlet to 10 ACWs upstream of the inlet, at 5-foot intervals), including road
- proposed crossing, bed, and additional structures
- dimensions
- location of Stream Channel Cross-Sections (see below), ACW measurements, and Slope measurements
- water surface elevations at high and low design flows for the proposed crossing, if the proposed crossing will not be as wide as the active channel width or will not be embedded
\boxtimes-- Cross-Section of Proposed Crossing, including bed details Please see Exhibit 3 and Attachment A.
\boxtimes-- STREAM CHANNEL CROSS-SECTIONS (2 cross-sections total, with one located downstream where the ACW measurements begin and one located upstream where the ACW measurements begin; measurements should be taken at 1-foot intervals perpendicular to the flow of the stream and should encompass the entire active channel plus 0.5 ACW on each side of the stream [for a total cross-section measurement of $2 \times \mathrm{ACW}$; measurements may be taken with survey equipment or by measuring the distance from a level line to the bottom of the streambed or ground) Please see Attachment B.
\square-- Details of Additional STructures (e.g., grade control measures, bed retention measures, weirs/baffles, trash racks, aprons, retaining walls, overflow pipes, channel restoration/scour remediation measures) Not applicable.

Please submit this application along with project design plans to the appropriate ODFW District Fish Biologist for the crossing's location. The complete application can also be sent electronically to the ODFW Fish Passage Coordinator at greg.d.apke@state.or.us and send one signed original paper copy of the application to the ODFW Fish Passage Coordinator at 4034 Fairview Industrial Dr. SE, Salem, OR 97302.

For ODFW Use Only		
YES	NO	N/A
1. Is the bed within the crossing as wide as the active channel	\square	\square
2. Is the bed within the culvert at the same slope, and at grades continuous with, the surrounding stream: \qquad	\square	\square
3a. If the crossing is open-bottomed, is there 3 feet of vertical clearance between the active channel width elevation and the inside top of the crossing: \qquad \square OR	\square	\square
3 b. If the crossing is closed-bottomed, will bed depth within the culvert be $20-50 \%$ of the crossing height:	\square	\square
4. Is the bed material that will be used sufficient to assure water depth will be similar to that in the surrounding stream (i.e., will not go sub-surface prematurely): \qquad \square	\square	\square
5. Are the bed material or retention measures that will be used sufficient to assure that the bed will be maintained through time: \qquad	\square	\square
6. If the crossing is longer than 40 feet, will partially-buried, over-sized rock be placed within the crossing's bed:	\square	\square
7. Will the bed within the crossing be placed during construction: \square	\square	\square
8. If trash racks are present, are they above the active channel width elevation and do vertical bars have at least 9 inches of clear space between them: \qquad	\square	\square
9. If there is an upstream pond, wetland, or backwater area, has its desired state after construction been determined, and have these considerations been addressed in the design: \qquad	\square	\square
10. Are upstream grade control measures satisfactory: .. \square	\square	\square
11. Are the construction timing and measures adequate based on the location:............. \square	\square	\square
12. Are there plans to maintain the crossing:... \square	\square	\square

- If all answers are "Yes" or "Not Applicable", this plan is eligible for approval by an ODFW biologist.
- If any answer is "No" or there are other concerns, consult with the Fish Passage Coordinator.

APPLICATION IDENTIFIER: (insert name of project \& applicant) ODFW \# PA-00-0000 DATE RECEIVED: (insert date)

Exhibit 2. Tributary 7 photo (facing upstream) taken from immediately downstream of the proposed multi-use trail crossing location. Conifers in the background are near the top of bank where the houses/buildings are lo cated.

Attachment A. Project Details: Longitudinal Profile, Cross Sections, and Substrate Characterization

The channel survey extended approximately 240 ft overall, with 100 ft upstream of the crossing, 40 ft through the crossing, and 100 ft downstream of the crossing. The longitudinal profile has a slope of 0.07 for the overall reach (240 ft), with a defined inflection through the crossing, resulting in a slope of 0.12 immediately upstream of the crossing and 0.07 immediately downstream of the crossing (Exhibit 4).

Exhibit 4. Tributary 7 longitudinal profile measured April 8, 2020; crossing location is marked by vertical lines
A total of 13 ACW measurements were collected, approximately every 20 ft along the channel. Upstream of the crossing, ACWs ranged from 3.3 to 6.9 ft , and downstream of the crossing ACWs ranged from 4.6 to 7.3 ft (Exhibit 5). Through the crossing, the three ACW measurements were $9.0 \mathrm{ft}, 4.5 \mathrm{ft}$, and 7.6 ft , from upstream to downstream.

Exhibit 5. Tributary 7 active channel widths measured April 8, 2020; crossing location is marked by vertical lines
The channel shape is generally trapezoidal and uniform. Two cross sections, measured during the field investigation at XS 80 above the proposed culvert and XS 140 directly below the proposed culvert, are shown in Exhibit 6.

Note: Lidar source data, dogami lidar portal. Data collected in 2014.
(https://gis.dogami.oregon.gov/maps/lidarviewer/)
Exhibit 6. Tributary 7 cross sections at STA 80 (above proposed culvert) and STA 140 (outlet of proposed cul vert) measured April 8, 2020

At 12 of the 13 cross section locations, surface substrate was also visually estimated by percent of three categories: boulders, cobbles, and fines (Exhibit 7). Through the crossing, boulders and cobbles dominant (Exhibit 7).

Note: No bed material data collected at XS 80
Exhibit 7. Tributary 7 bed substrate visually estimated April 8, 2020; crossing location is marked by vertical lines
Subsurface conditions in the vicinity of the crossing are characterized by two test bores collected on November 15, 2015, TB 18026-14 and TB 18026-15 (Exhibit 6). Located on the right (west) bank of Tributary 7, the bore at TB 18026-14 extended 12 ft deep and consists of sandy silt (ML), clayey silt (CL-ML), and fine sand (SM) (RhinoOne Geotechnical, 2016). Located on the left (east) bank of Tributary 7, the bore at TB 18026-15 extended 35 ft deep and consists of sandy silt (ML), clayey silt (CL-ML), and Silty fine sand (SM) (Rhino One, 2016). Both bores include liquefiable soils, which require a more conservative design approach to channel source and structural stability.

Exhibit 6. Tributary 7 subsurface test bore locations collected November 15, 2015

The existing channel bed material will be retained for reuse (removed during construction, stockpiled, and replaced). This material is currently stable (i.e., no field observations of bed or bank erosion) and generally consistent in size and shape with the bed material upstream and downstream of the crossing (Exhibit 7 and Attachment B).
Replacement of the bed material with smaller imported "spawning gravel" substrate would significantly increase the potential for erosion of bed material causing an upstream headcut through this relatively short, steep tributary. Any potential small gain in 40 ft of channel length for spawning would be greatly offset by the potential increased risk of a headcut and subsequent unraveling of up to 200 ft of channel, impacts to upstream drainage infrastructure at the transition to the residential area, displacement of the trail crossing arch culvert, and downstream sediment deposition in Tributary 7 and Cedar Creek.

Attachment B. Bottomless Arch Culvert Hydraulic Analysis

Exhibit 7. Proposed bottomless arch culvert (12-ft wide channel width)
and channel cross section at Sta 140
Hydraulics for the proposed bottomless arch culvert were simulated using the Federal Highway Administration's (FHWA) Culvert Hydraulic Analysis Program, HY-8 version 7.60. At the $25-$ year flow of 63 cfs , depths and velocities through the bottomless arch culvert are consistent with hydraulics in the adjacent channel. All flow is contained within the active channel, and no narrowing of the floodplain occurs. Hydraulic model results are summarized in Exhibit 8 and detailed in Attachment C.

	At Inlet		At Outlet		
Total Discharge	Headwater Elevation	Vertical Clearance	Outlet Depth	Tailwater Vertical Clearance	Velocity
$c f s$	$f t$	$f t$	$f t$	$f t$	$c f s$
$34(\mathrm{Q} 2)$	1.6	3.7	1.6	4.9	8.6
$63(\mathrm{Q} 25)$	2.0	3.3	2.0	4.6	10.0
$76(\mathrm{Q} 100)$	2.2	3.1	2.1	4.5	10.5

Exhibit 8. Proposed bottomless arch culvert hydraulic analysis (HY-8) results

Attachment C. Design Drawings

Attachment D. Construction Schedule, Construction Methods, and Project Maintenance

Construction Schedule

Construction is estimated to start around December 1, 2020, and last approximately 12 months. All work below the ordinary high water mark, including the culvert installation, will occur within the regulated ODFW in-water work window for the Tualatin River tributaries, July 15 to September 30 (ODFW, 2008).

Construction Methods

Construction means and methods will be the responsibility of the construction contractor in compliance with regulatory permits. In-water work construction sequencing is proposed to include the following steps: in-water work area isolation, fish salvage by a qualified fisheries biologist, flow bypass allowing for downstream volitional fish passage, dewatering of the work area, ongoing sediment and erosion control, removal and stockpile of existing channel surface and subsurface substrate, excavation, concrete footings pour/placement, replacement of subsurface and surface substrate, arch culvert placement, site restoration measures, and channel rewatering. Anticipated equipment includes an excavator, haul truck, concrete truck, and hand and power tools.

Project Maintenance

Because the watershed upstream of the Tributary 7 crossing is residential, little input of sediment and native large wood material is anticipated. Also, with no changes proposed to the existing channel width and profile and the large span (lateral and vertical) of the bottomless arch culvert, no changes to the existing conveyance are expected. Required maintenance (e.g., removal of Christmas trees dumped into the creek) would be the responsibility of the City of Sherwood.

Attachment E. Temporary Bypass Plan
Final construction means and methods to be determined by construction contractor.

15-JUL-2020 09:17

