

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT FINAL

Former Frontier Leather Tannery Property

1210 SW Oregon Street

Sherwood, Oregon

Cooperative Agreement BF-00J93201

Prepared for:

City of Sherwood

22580 SW Pine Street Sherwood, OR 97140

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.

7376 SW Durham Road Portland, Oregon 97224 (503) 639-3400

June 2016

Project No. 5-61M-130820.3

June 17, 2016 Project No. 5-61M-130820.3

City of Sherwood 22580 SW Pine Street Sherwood, Oregon 97140

Attention: Ms. Julia Hajduk

Subject: Supplemental Remedial Investigation Report – Final Former Frontier Leather Tannery Property 1210 SW Oregon Street – Sherwood, Oregon Cooperative Agreement BF-00J93201

Dear Julia:

Amec Foster Wheeler Environment & Infrastructure, Inc. is pleased to submit this Supplemental Remedial Investigation Report for the above-referenced property in Sherwood, Oregon. The report was revised to address comments received from the Oregon Department of Environmental Quality (DEQ) dated March 8, 2016. The United States Environmental Protection Agency did not provide comments. Responses to DEQ comments are presented in Appendix H.

We appreciate the opportunity to serve you on this project. If you have any questions or require further information, please feel free to contact us at (503) 639-3400.

Sincerely,

Amec Foster Wheeler Environment & Infrastructure, Inc.

Michelle L. Peterson, RG Project Manager

Charles T. Esler, CHMM Principal Environmental Scientist

Attachment: Supplemental Remedial Investigation Report – Final

MLP/lp/ay

c: Brandon Perkins, US Environmental Protection Agency Mark Pugh, Oregon Department of Environmental Quality

TABLE OF CONTENTS

Page

1.0	INTRODUCTION					
2.0	PROJ 2.1 2.2 2.3 2.4 2.5	ECT BACKGROUND Site History Site Description Proposed Development Plan Previous Investigations Project Objectives	1 2 2 2			
3.0	ASSE 3.1	SSMENT ACTIVITIES Pre-Field Activities 3.1.1 Section 7 ESA and Section 106 NHPA Compliance 3.1.2 Health & Safety Planning 3.1.3 Utility Clearance 3.1.4 Geophysical Investigation	7 7 8 8			
	3.2 3.3	Investigation and Sampling Methods3.2.1 Geophysical Investigation3.2.2 Subsurface Investigation3.2.3 Soil Sampling3.2.4 Groundwater SamplingWaste Characterization & Disposal	9 9 10 10 11			
	3.4	Deviations from the QAPP-SAP				
4.0	ASSE 4.1	4.1.1 Soils & Geology				
	4.2	 4.1.2 Groundwater & Hydrogeology Soil Sampling Results 4.2.1 Metals 4.2.2 Total Petroleum Hydrocarbons 	13 13			
		Groundwater Sampling Results				
5.0	CONC 5.1 5.2 5.3	CEPTUAL SITE MODEL & RISK EVALUATION Locality of Facility Land Use Determination Beneficial Water Use Determination 5.3.1 Current Beneficial Water Uses 5.3.2 Groundwater Use 5.3.3 Surface Water Use 5.3.4 BWUD Summary	16 17 17 18 18 19			
	5.4	 Human Health Risk Evaluation	20 20 23 24			

TABLE OF CONTENTS cont.

		5.4.5	Development of Exposure Point Concentrations	. 26		
			Evaluation of Human Health Risks			
		5.4.7	Uncertainty Analysis	. 29		
			Human Health Risk Evaluation Summary			
	5.5	Ecolog	jical Risk Evaluation	. 30		
6.0	CONC	LUSIO	NS & NEXT STEPS	. 31		
REFERENCES						
LIMITA	TIONS	5		. 36		

TABLES

- Table 1A
 Soil Analytical Results Total Metals
- Table 1B
 Soil Analytical Results Total Petroleum Hydrocarbons
- Table 2A
 Groundwater Analytical Results Total Metals
- Table 2B Groundwater Analytical Results Dissolved Metals
- Table 2C
 Groundwater Analytical Results Volatile Organic Compounds
- Table 2D
 Groundwater Analytical Results Chloride
- Table 3A
 Risk Screening Metals Soils Analytical Results Upland Exposure Unit
- Table 3B
 Risk Screening Metals Soils Analytical Results Wetland Exposure Unit
- Table 3C
 Risk Screening Total Metals Groundwater Analytical Results
- Table 3D
 Risk Screening Dissolved Metals Groundwater Analytical Results
- Table 4
 Summary Statistics and Exposure Point Concentrations for COPCs
- Table 5ACalculation of RME Risks Upland Exposure Unit Surface Soil (0-5 feet) –
Recreational User/Trespasser
- Table 5B
 Calculation of RME Risks Upland Exposure Unit Surface Soil (0-5 feet) –

 Occupational Worker
- Table 5C
 Calculation of RME Risks Upland Exposure Unit Surface Soil (0-5 feet) –

 Construction Worker
- Table 5D
 Calculation of RME Risks Upland Exposure Unit Surface Soil (0-5 feet) –

 Excavation Worker
- Table 5E
 Summary of RME Risks Upland Exposure Unit Surface Soil (0-5 feet)
- Table 6ACalculation of RME Risks Upland Exposure Unit Subsurface Soil (0-15 feet) –
Recreational User/Trespasser

TABLES cont.

- Table 6B
 Calculation of RME Risks Upland Exposure Unit Subsurface Soil (0-15 feet) Construction Worker
- Table 6C
 Calculation of RME Risks Upland Exposure Unit Subsurface Soil (0-15 feet) –

 Excavation Worker
- Table 6D
 Summary of RME Risks Upland Exposure Unit Subsurface Soil (0-15 feet)
- Table 7
 Calculation & Summary of RME Risks Wetland Exposure Unit

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Sampling Locations & Estimated Extent of Hide-Split Landfill
- Figure 4 Locality of Facility & Exposure Units
- Figure 5 Conceptual Site Model for Human Receptors
- Figure 6A Sample Locations where Arsenic Concentrations Exceeded RBCs
- Figure 6B Sample Locations where Copper Concentrations Exceeded RBCs
- Figure 6C Sample Locations where Lead Concentrations Exceeded RBCs
- Figure 6D Sample Locations where Hexavalent Chromium Concentrations Exceeded RBCs

APPENDICES

- Appendix A Geophysical Investigation Report
- Appendix B Boring Logs & Field Forms
 - B-1 Boring Logs
 - B-2 Field Forms
- Appendix C Waste Disposal Records
 - C-1 Disposal Facility Receipts
 - C-2 Laboratory Reports
- Appendix D Data Quality Review & Laboratory Reports
 - D-1 Data Quality Review Report
 - D-2 Laboratory Reports
- Appendix E Surface Water Right Records within the LOF

APPENDICES cont.

- Appendix F Updated Recreational User RBCs
- Appendix G ProUCL Output
 - G-1 Upland EU (0-5 feet)
 - G-2 Upland EU (0-15 feet)
 - G-3 Wetland EU
- Appendix H Response to Comments

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT FINAL

Former Frontier Leather Tannery Property Sherwood, Oregon

1.0 INTRODUCTION

On behalf of the City of Sherwood (City), Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) has prepared this Supplemental Remedial Investigation Report (Supplemental RI) to document the environmental site assessment of Tax Lot 602 at the Former Frontier Leather Property located at 1210 SW Oregon Street in Sherwood, Oregon. The City was awarded a United States Environmental Protection Agency (EPA) Site-Specific Brownfields Assessment Grant in 2014 to conduct assessment and cleanup planning for Tax Lots 600 and 602, collectively referred to as the Site. The Oregon Department of Environmental Quality (DEQ) previously conducted a Remedial Investigation (RI) of Tax Lot 600 (GeoEngineers, 2004), and thus the site assessment reported in this Supplemental RI focused on evaluating Tax Lot 602 which had not previously been assessed. All grant work performed by the City and its contractors was performed in accordance with the Cooperative Agreement (BF-00J93201) executed by the EPA and the City.

2.0 PROJECT BACKGROUND

This section provides a summary of the Site history, a site description, the proposed development plan, a summary of previous investigations, and the project objectives.

2.1 SITE HISTORY

The two tax lots that comprise the Site were historically part of a large tannery operation that existed from the late 1940s through the early 1990s and covered approximately 33 acres on six tax lots. The portion of the Site being assessed under this grant consists of two tax lots (600 and 602) used for landfilling of hide-splits (the non-valued part of the hide) and for processing various tannery wastes. These historical uses indicated the potential for impacts to soil and shallow groundwater from a variety of contaminants associated with the tanning process and waste treatment.

2.2 SITE DESCRIPTION

The Site is located in Washington County, in Township 2 South, Range 1 West of the Willamette Meridian at the southwest corner of Section 29 (Figure 1). The Site consists of two vacant tax lots (Tax Lots 600 and 602) covering approximately 24 acres located in an industrially-zoned area of Sherwood, Oregon along SW Oregon Street (Figure 2). The Site is surrounded by industrially zoned land on the west, north, and east. A railroad right-of-way borders the Site on the north. A residential neighborhood is located south of the Site, across SW Oregon Street. The Site contains wetland areas and is identified as part of the Rock Creek Unit of the Tualatin River National Wildlife Refuge. Rock Creek crosses the northeastern most tip of Tax Lot 600. Washington County currently owns the property as a result of property tax foreclosure.

Current Site features from historical operations include one small shed, two former sedimentation lagoons and their associated bermed perimeters, two shallow depressions from historical aeration ponds used to treat tanning wastes before they were discharged to the bermed sedimentation lagoons, an access road that enters the property from the west, extending to the east between the two aeration ponds, a surficial drainage ditch that runs parallel to the railroad tracks along the northern property boundary, and seven monitoring wells (installed during DEQ's RI in 2003). Prior investigations also identified a hide-split landfill along the western edge of Tax Lot 600.

2.3 PROPOSED DEVELOPMENT PLAN

The Site is being considered for redevelopment as the new location for the City's public works facility. Additionally, those parts of the Site that may not be suitable for development are being considered for potential open space and/or to provide access to the Tualatin River National Wildlife Refuge. Re-locating the public works facilities away from the downtown core will promote downtown development consistent with the permitted uses within the current Old Town zoning overlay for the City of Sherwood (City of Sherwood Code of Ordinances, Title 16, Division IX, Chapter 16.162), and put out-of-use industrial land back into productive service for the community. Development of access to the Tualatin River National Wildlife Refuge is consistent with the City's Parks and Recreation Master Plan (City of Sherwood, 2006).

2.4 **PREVIOUS INVESTIGATIONS**

Previous investigations conducted at the Site include the RI performed by DEQ in 2003 and 2004 (GeoEngineers, 2004), and subsequent groundwater monitoring conducted by DEQ between 2005 and 2007 (DEQ, 2015b). Additional information pertaining to the nature of potential impacts at the Site are included in a Staff Report prepared by DEQ for the Ken Foster Farms Site (DEQ, 2015a),

located approximately 0.5 miles south of the Site. The Ken Foster Farms Site is related because it also received tannery wastes generated at the Former Frontier Leather Tannery property.

The scope and findings of the investigations are summarized below, with additional details presented in the project Quality Assurance Project Plan & Sampling and Analysis Plan (QAPP-SAP) (Amec Foster Wheeler, 2015). Additional information for each site is also available in the relevant DEQ cleanup file. The DEQ file number for the sedimentation lagoon portion of the Former Frontier Leather Property is #2638. The DEQ file number for the Ken Foster Farms Site is #2516.

Remedial Investigation Report, GeoEngineers on behalf of DEQ, June 2004

The RI was conducted in 2003 and 2004 to evaluate potential impacts on Tax Lot 600 (in Section 29) and Tax Lot 400 (in Section 28) from historical tannery operations. Tax Lot 600 is part of the Site covered by this project, while Tax Lot 400 is excluded from the Site. DEQ assigned ECSI #2638 to the property it investigated that contained the sedimentation lagoons and wetland areas extending east to Rock Creek. Tax Lot 602 was not included in the RI completed in 2004 because DEQ was not able to secure access to conduct the investigation.

The RI evaluated the vertical and horizontal extent of hide-splits, and the potential impacts in soil, sediment, groundwater, and surface water. The field investigation was robust and included completion of 24 test pits, 63 hand auger borings, and installation of 7 monitoring wells, which resulted in the sampling and analysis of more than 150 soil samples, 9 sediment samples, 23 groundwater samples, 19 surface water samples from upland seeps, and 8 samples of surface water from Rock Creek. Samples were analyzed for one or more of the following:

- Ten project-specific metals (antimony, arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel, and zinc) using EPA Methods 6000/7000 series;
- Hexavalent chromium using EPA Method 7196;
- Volatile organic compounds (VOCs) using EPA Method 8260B;
- Semivolatile organic compounds (SVOCs) using EPA Method 8270C and 8270-SIM (selected ion mode);
- Organochlorine insecticides (OCIs) using EPA Method 8081A;
- Polychlorinated biphenyls (PCBs) using EPA Method 8082A; and
- Chloride, nitrate, nitrite, and sulfate using EPA Method 300.0.

A summary of the key findings from the RI is provided below.

- The hide-split landfill extends along the western edge of Tax Lots 600 to the north and south of Tax Lot 602. Hides are present from the ground surface to depths of up to 8 feet below ground surface (bgs). The distribution of hides observed during the RI suggested they extended onto Tax Lot 602.
- The depth to groundwater is shallow and varies from a few feet bgs (MW-1) to greater than 15 feet bgs (MW-4), except at MW-3 and MW-5 where the depth to water is artificially deep because these wells are completed on the lagoon berms which are elevated from the surrounding topography.
- Groundwater flow is to the northeast toward Rock Creek at a gradient of approximately 0.04 feet per foot across the Site.
- Metals were widely detected in all media as described below.
 - Concentrations of metals in soil are the highest within the hide-split landfill, within the sedimentation lagoons, and downstream of the breaches in each lagoon berm. All metals were found at concentrations greater than naturally occurring levels in at least a few samples, but arsenic, copper, lead, nickel, and zinc were found primarily at background levels, except at a few locations associated with hide-splits. Chromium concentrations were the highest of the metals most commonly exceeding background levels, with a maximum concentration of 21,000 milligrams per kilogram (mg/kg) detected in TP-3 at 4 feet bgs.
 - All metals detected in the sediments of Rock Creek were found at concentrations consistent with naturally occurring background levels, with the exception of chromium and manganese which were each detected in one sample near the railroad drainage ditch at concentrations above the background level. The railroad drainage ditch appears to have been a historical transport pathway to Rock Creek.
 - Most metals were detected in groundwater or surface water at least once, with chromium and manganese being the mostly frequently detected.
- VOCs and SVOCs were largely not detected in the media where they were analyzed. Three VOCs (1,2-dichlorobenzene; 1,4-dichlorobenzene; chlorobenzene) were detected in groundwater at one monitoring well (MW-4) at concentrations of less than 10 micrograms per liter (µg/L). One SVOC (phenol) was detected in a single soil sample collected within the footprint of the hide-split landfill, at a concentration just above the detection limit.
- A few OCIs (4,4'-DDD; 4,4'-DDE; 4,4'-DDT; chlordane) were detected in about half of the soil and sediment samples, but were not found in the hide-split landfill, and thus are not considered to be site-related. As stated in the RI report, detected OCIs are believed to be representative of regional conditions (GeoEngineers, 2004).

- PCBs were not detected in soil, sediment, surface water, or groundwater.
- The human health risk assessment (HHRA) concluded that:
 - Chromium was the only constituent of potential concern (COPC) identified for soil and sediment, because it was found at concentrations greater than background levels in these media and the concentrations either exceeded the industrial soil Preliminary Remediation Goal (PRG) established by EPA at the time of the investigation, or contributed to an unacceptable level of potential risk when evaluated cumulatively with all other detected metals.
 - Evaluation of groundwater and surface water was not needed because there is no beneficial human use of either.
 - There was no unacceptable risk to human receptors from direct contact with soil or sediment containing total chromium or hexavalent chromium (based on the screening criteria and toxicity information available at the time of the DEQ assessment).
- The ecological risk assessment (ERA) concluded that:
 - The site is used by a wide range of ecological receptors in both aquatic (wetland) and terrestrial (upland) habitats. Federally-listed threatened and endangered species occur in the vicinity of the site, but none were observed at or adjacent to the site during DEQ's assessment.
 - Nine metals were identified as constituents of potential ecological concern (CPECs): (1) antimony, (2) cadmium, (3) copper, (4) total chromium, (5) hexavalent chromium, (6) lead, (7) manganese, (8) mercury, and (9) zinc.
 - There was no unacceptable risk to ecological receptors identified for the CPECs detected in Rock Creek surface water (i.e. total chromium, hexavalent chromium, and manganese).
 - There was unacceptable risk to ecological receptors identified for chromium in soil (or sediment), based on a Streamlined Level III ERA that was prepared to evaluate potential risks to the American Robin as a representative specie using all the habitat types present at the site and exposed to chromium (the most prevalent metal) through bioaccumulation (consumption of worms in direct contact with contaminated soil/sediment).
 - Unacceptable risks were determined to be limited to the chromium management area defined as part of the Streamlined Level III ERA, which includes isolated areas of the northern sedimentation lagoon, the majority of the southern sedimentation lagoon, wetland areas downstream of the breaches in each lagoon, and all of the hide-split landfill area (based on the presumption that elevated chromium concentrations would be widespread in the area where hidesplits were known to be present).

- Ecological hot spots for chromium were identified in three small areas covering approximately 10% of the northern sedimentation lagoon, in two areas covering approximately 30% of the southern sedimentation lagoon, and covering the entire area of the hide-split landfill on Tax Lot 600.
- All other metals samples with soil or sediment concentrations exceeding their respective screening criteria fell within the established chromium management area, except for two isolated samples (HA-55 and HA-64) having elevated concentrations of lead.

Groundwater and Surface Water Data, Collected from the Former Frontier Leather Tannery Property by DEQ, 2005-2007

After the RI was completed, DEQ collected and analyzed groundwater from MW-2, MW-3, MW-5, and MW-7; and of surface water from five locations, in 2005, 2006, and 2007. Groundwater samples were analyzed for dissolved chromium and manganese. Surface water samples were analyzed for total chromium and manganese. Results from the sampling conducted between 2005 and 2007 are consistent with results from samples collected in 2003 and 2004.

Staff Report – Draft, DEQ Northwest Region Office, July 2015

The Ken Foster Farms Site (ECSI #2516) is located approximately a half-mile south of the Former Frontier Leather Tannery Property, and received wastes from the Former Frontier Leather Tannery property from the 1960s through the early 1970s. In the 1980s, the Ken Foster Farms Site was subdivided into 17 large residential lots and single family homes were constructed on many of them. Investigations and cleanups were conducted on four tax lots by the company that constructed the homes, and DEQ issued No Further Action (NFA) determinations for these four lots. DEQ also issued an NFA determination for one additional tax lot following investigation conducted by EPA.

In 2013, DEQ conducted a RI of the remaining tweleve tax lots to evaluate the nature and extent of impacts from tannery wastes to soil, groundwater, sediment, and surface water (DEQ, 2015a). Samples were tested for selected metals (hexavalent chromium, total chromium, lead, and mercury). Hexavalent chromium and mercury concentrations were found to exceed levels protective of residential uses in soil, but were less than risk-based concentrations (RBCs) protective of occupational uses. Hexavalent chromium concentrations also exceeded levels protective of drinking water use in one domestic water supply well, and resulted in implementation of an interim action by DEQ to disconnect the water supply well from the residence and connect the residence to the city water supply. DEQ has completed a Feasibility Study to evaluate multiple cleanup alternatives to address the soil impacts. DEQ is in the process of developing a cleanup plan.

2.5 **PROJECT OBJECTIVES**

The objective of this assessment was to fill data gaps associated with potential contamination at the Site that were not addressed during the previous RI. The primary data gap was a lack of information on Tax Lot 602 about the nature and extent of potential impacts in soil and groundwater, and the extent of the hide-split landfill. These gaps were filled by conducting a geophysical investigation and collecting soil and groundwater samples for analytical testing on Tax Lot 602. The results of the assessment are presented in Sections 3.0 through 5.0.

3.0 ASSESSMENT ACTIVITIES

The pre-field and assessment activities performed for this project are discussed in this section. All work was performed in accordance with the approved QAPP-SAP (Amec Foster Wheeler, 2015).

3.1 PRE-FIELD ACTIVITIES

A series of pre-field activities were performed prior to conducting the subsurface investigation to ensure compliance with regulatory requirements and to be ready to safely perform the subsurface investigation.

3.1.1 Section 7 ESA and Section 106 NHPA Compliance

In order to comply with Section 7 of the Endangered Species Act (ESA) and Section 106 of the National Historic Preservation Act (NHPA), Amec Foster Wheeler provided notification to the EPA and the State Historic Preservation Officer (SHPO) of the planned scope of work prior to beginning field activities. Amec Foster Wheeler also provided notification to the four federally-recognized Native American Tribes in Oregon that claim Washington County as ancestral territory prior to beginning field work. Notifications were provided on April 3, 2015.

A summary of the responses from each agency or tribe, and how questions were addressed for each is provided below.

• EPA – The EPA posed two questions about the proposed assessment: (1) one question pertained to the potential presence of wetlands in the area to be investigated, and (2) the other question was about potential impacts to listed plants, if present, during the assessment. The question pertaining to wetlands was based on a desktop review of state and/or federal wetland inventory maps. The consultant verified that wetlands are not present in the area of Tax Lot 602 to be investigated by providing a figure illustrating site topography and indicating the investigation would be conducted in upland areas only, and not in lower elevation areas with wetlands that are located in the far northeast corner of Tax

Lot 602. The consultant also confirmed that the assessment would occur after blooms and seeds had formed (late summer/early fall timeframe) to minimize the impact to listed plants, should any be present at the Site. Correspondence regarding potential effects of the investigation was completed on April 30, 2015.

- SHPO The SHPO provided two letters documenting its determination about the proposed assessment. In a letter dated April 23, 2015, SHPO confirmed there would be no impact to aboveground historic resources. In a letter dated April 30, 2015, SHPO indicated the Site was in an area with a high potential for archeological sites and/or buried human remains to be present and to use caution during ground disturbing activities. SHPO further stated that activities should stop if archeological objects are discovered during ground disturbance work until a professional archeologist can perform an evaluation.
- Warm Springs Tribe This tribe expressed concern about the high potential for buried archeological sites and/or remains and requested an archeological monitor to be on-site during the investigation. The consultant proposed preparing an Inadvertent Discovery Plan in lieu of using an archeological monitor because the cost of an archeological monitor was not included in the project, and because a review of boring logs for an investigation completed on an adjacent parcel suggested a limited subsurface stratigraphy that could maintain significant archeological evidence. The Warm Springs Tribe agreed to the proposal in an e-mail on May 19, 2915.
- Coquille Tribe This tribe indicated it would defer to other tribes in an e-mail dated May 1, 2015.

No concerns or requests were expressed by the Grand Ronde tribe and the Siletz tribe.

3.1.2 Health & Safety Planning

A Health and Safety Plan (HASP), as required by Oregon Occupational Safety and Health Division (OR-OSHA) Safety and Health Act, was prepared to describe field safety protocol for Amec Foster Wheeler employees engaged in the project. The HASP was reviewed by Brenda Pittman, Certified Industrial Hygienist (CIH) with Amec Foster Wheeler. Ms. Pittman reviewed the historical analytical soil results to determine that dust monitoring would not be required during the investigation. No dust monitoring was determined to be necessary.

3.1.3 Utility Clearance

Amec Foster Wheeler notified the Oregon Utility Notification Center (UNC) of the intent to drill on the Site and requested marking of underground utilities. Amec Foster Wheeler also contracted with GeoPotential to verify that the sampling locations were not in conflict with underground utilities.

3.1.4 Geophysical Investigation

GeoPotential of Brightwood, Oregon conducted a geophysical investigation to determine the location of Site subsurface features between November 2 and 4, 2015. Prior to conducting the geophysical investigation, proposed boring locations were flagged in the field. An area around each proposed boring location was scanned with ground penetrating radar (GPR) to determine if any natural or manmade subsurface features were present. Pipe and cable locators were used to map the locations of buried utilities and piping remaining from historical Site use. Several proposed boring locations were minimally adjusted based on the geophysical investigation.

3.2 INVESTIGATION AND SAMPLING METHODS

The Site investigation was conducted between November 2 and 11, 2015. The following sections describe field methods to facilitate the investigation.

3.2.1 Geophysical Investigation

A geophysical investigation was conducted between November 2 and 4, 2015 on Tax Lot 602. The objective of the geophysical investigation was to map the conditions of the hide-split landfill within the tax lot boundary. Previous investigations mapped the hide-split landfill for the Site with the exception of Tax Lot 602.

The geophysical investigation was conducted using GPR by acquiring a series of GPR profiles across the Site to identify landfill materials to a depth of approximately 8 to 10 feet bgs. GPR uses short impulses of high frequency radio waves directed into the ground to acquire information about the subsurface. The energy radiated into the ground is reflected back to the antenna by features having different electrical properties to that of the surrounding material.

GeoPotential assessed the GPR data to determine the extent of landfill materials. The geophysical investigation indicated that the hide-split landfill extended onto Tax Lot 602 in its southwest corner, south of the central access road, and around the perimeter of the northern aeration pond to the west, north, and east. Landfill debris was not identified within the north or south aeration ponds or within the central access road. The extent of the estimated hide-split landfill for the entire Site is depicted on Figure 3. The geophysical report is included in Appendix A.

3.2.2 Subsurface Investigation

The subsurface investigation was conducted on November 10 and 11, 2015 using a track-mounted direct-push drill rig operated by Pacific Soil and Water of Tigard, Oregon. Using the drill rig, 24 subsurface borings were installed to a maximum depth of 20 feet bgs, though most borings were advanced to approximately 5 feet bgs. Seven boring were installed within the northern aeration

pond footprint; four borings were installed within the southern aeration pond footprint; and the remaining borings were spatially distributed throughout Tax Lot 602. Groundwater "grab" samples were collected from five borings. Boring locations are shown on Figure 3. Boring logs are provided in Appendix B-1. Field forms are provided in Appendix B-2.

3.2.3 Soil Sampling

Soil samples were collected from each boring with the exception of borings DP-3A, DP-3B, and DP-3C. A surface sample was collected from each boring to maximum depth of 1.5 feet bgs. A deeper sample was collected in each boring between 3.5 and 6 feet bgs. In six borings, the deepest samples were collected between 9 and 15 feet bgs. Soil samples were collected for visual inspection, classification, and field screening (i.e., headspace vapor and water sheen testing). Samples were collected by placing soil into laboratory-provided sample containers and submitted to the analytical laboratory for chemical analytical testing for a selection of the following analyses:

- Total metals (antimony, arsenic, cadmium, copper, lead, manganese, mercury, nickel, and zinc by EPA Method 6020;
- Total chromium by EPA Method 200.8;
- Hexavalent chromium by EPA Method 7199; and,
- Petroleum hydrocarbons by northwest total petroleum hydrocarbons hydrocarbon identification method (NWTPH-HCID).

Laboratory analytical testing for petroleum hydrocarbons and total metals (except for total chromium) was conducted by Apex Laboratories in Tigard, Oregon. Total chromium and hexavalent chromium analyses were conducted by Brooks Rand Laboratories in Bothell, Washington.

3.2.4 Groundwater Sampling

Groundwater "grab" samples were collected from borings DP-2, DP-3, DP-6, DP-13, and DP-17. For each groundwater sample a temporary polyvinyl chloride (PVC) screen was installed into the open borehole. A peristaltic pump and dedicated polyethylene tubing was installed into the PVC screen to extract groundwater. Prior to collecting groundwater samples, water quality field parameters (temperature, pH, specific conductivity, turbidity, dissolved oxygen, and oxygen reduction potential) were collected and recorded. Groundwater samples were then collected by pumping directly into laboratory-supplied sample containers. Groundwater samples for dissolved metals analysis were field filtered. Groundwater samples were analyzed by Apex Laboratories for the following analyses:

- Total and dissolved metals (antimony, arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel, and zinc by EPA Method 6020;
- VOCs by EPA Method 8260; and,
- Chloride by EPA Method 300.0/9056.

3.3 WASTE CHARACTERIZATION & DISPOSAL

To facilitate waste characterization and disposal, composite soil samples were generated by Apex Laboratories. Composite samples were generated by mixing an equal soil aliquot from each soil jar. This composite sample was determined to be representative of the single investigation derived waste soil drum generated during the Site investigation. The composite sample (DP-Composite) was analyzed using the Toxicity Characteristic Leaching Procedure (TCLP) and subsequently analyzed for lead and chromium using EPA Method 1311 and EPA Method 6020. TCLP lead and chromium results from the soil composite sample were both below laboratory reporting limits (0.0500 milligrams per liter [mg/L] and 0.100 mg/L, respectively). Therefore the soil drum was determined to be non-hazardous waste and transported to International Resource Management in Portland, Oregon, on February 12, 2016 by WasteXpress.

Groundwater sample results were used to determine that the decontamination water drum was also non-hazardous. The decontamination water was transported to International Resource Management in Portland, Oregon, on February 12, 2016, also by WasteXpress.

Copies of the waste manifests and facility ticket are included in Appendix C-1. The laboratory analytical results are provided in Appendix C-2.

3.4 DEVIATIONS FROM THE QAPP-SAP

The scope of work described in the QAPP-SAP (Amec Foster Wheeler, 2015) was completed as described. Four additional borings were also advanced during field activities in response to field observations of potential impact at boring DP-3. Three borings (DP-3A, DP-3B, and DP-3C) were completed surrounding DP-3 in the northern aeration pond to further characterize the upper 5 feet around DP-3. One additional boring (DP-21) was completed approximately 40 feet downgradient of the DP-3 location to evaluate soil and groundwater conditions to a depth of approximately 15 feet bgs.

4.0 ASSESSMENT RESULTS

The results of the site characterization activities are presented in this section.

4.1 SUBSURFACE CONDITIONS

The descriptions provided in this section are based on regional geologic and hydrogeologic reference documents, logs of the subsurface conditions observed during field activities from the assessment conducted in November 2015 and the previous RI conducted in 2003-2004, and logs of surrounding wells which were identified during the beneficial water use determination.

4.1.1 Soils & Geology

The site is located within the Tualatin Valley, which is filled with fine to coarse grained flood sediments. Fine alluvium deposited by the Missoula Flood approximately 21,000 to 12,000 years ago fill the Tualatin Valley at depths from 65 to 80 feet thick, up to 115 feet thick (DOGAMI, 2012). Fine alluvium from channels and floodplains of the Tualatin River overlies the Missoula Flood deposits in the Tualatin River floodplain. The entire area is underlain by the basalts of the Columbia River Basalt Group, which erupted 14 to 16 million years ago from fissure volcanoes near the border of Idaho. Bedrock is exposed at Bull Mountain, north of the site, and Pleasant Hill, south of the site (DOGAMI, 2012).

The National Resources Conservation Service maps the site soils as Quatama loam, Aloha silt loam, and Cove clay. The Quatama loam soil series is characterized by moderately well drained loam and clay loam, and a depth to water from 2 to 3 feet bgs. The Aloha silt loam soil series is mapped in the southwest portion of the site and characterized by somewhat poorly drained silt loam from 0 to 65 inches, and a depth to water from 1.5 to 2 feet bgs. The Cove clay soil series is mapped in the east portion of the site, near Rock Creek, and is characterized by poorly drained clay, and a depth to water from 0 to 1 foot bgs.

Field observations correspond with mapped soil series. Most soils identified were fine-grained, primarily silts, and fine to medium sands with trace to some clay. Observation of gravel near the surface is likely associated with imported fill. Possible evidence of disturbance from historical Site operations (e.g., wood, leather scraps, and gravel debris) was observed in some borings as described below.

DP-3 – A thin (approximately 2 inches) layer of black silty fine sand was observed at approximately 1 foot bgs. Small areas of intermittent staining, decreasing with depth, were observed below this layer through approximately 6.5 feet bgs. A burnt organic-like odor and faint/degraded petroleum-like odor were observed between approximately 1 and 6.5 feet bgs, but there was no sheen on any samples or on the water collected for analytical testing. Soil samples at DP-3 were collected at four intervals (0 to 1 foot bgs; 3.5 to 4.5 feet bgs; 9 to 10 feet bgs; and 14.5 to 15 bgs) and a groundwater sample was collected for potential analytical testing. Three step-out borings, placed approximately 15 feet away from DP-3,

were advanced to five feet bgs (DP-3A, B, and C). Similar black staining was not observed in these borings, indicating that conditions in DP-3 are isolated.

- DP-10 Fibers, likely leather, observed through the boring to 5 feet bgs.
- DP-15 Light-weight soil (possibly degraded hides) encountered at 4.5 to 5 feet bgs.
- DP-11 Wood debris observed at 1.5 feet bgs.
- DP-17 Trace black wood debris and rootlets were observed at 15 feet bgs.
- DP-21 This additional boring was added to the scope of investigation to evaluate soil and groundwater conditions downgradient of the DP-3 location. Wood and gravel debris observed at 3 feet bgs; however, no evidence of impact was noted.

4.1.2 Groundwater & Hydrogeology

Based on local topography and the location relative to the Rock Creek, groundwater flow appears to be northeast. Well logs on file with the Oregon Water Resources Department (OWRD) indicate a shallow groundwater layer with significant seasonal variation from 2 to 30 feet bgs and a deeper aquifer 75 to 200 feet bgs. This is consistent with the findings of the previous RI which indicates depths to water ranging from approximately 1.5 feet bgs to greater than 15 feet bgs.

During field activities, groundwater was encountered at approximately 5 feet bgs while drilling at DP-2; 2.6 feet bgs at DP-3; 0.5 foot bgs while drilling at DP-4; 12.5 feet bgs after drilling at DP-13; and 7 feet while drilling at DP-17. Groundwater depths in aeration pond borings (DP-2, DP-3, and DP-4) is shallower compared with those outside of the ponds (DP-13 and DP-17). DP-13 is located at a higher elevation relative to DP-17, which is why the depth to groundwater is greater.

4.2 SOIL SAMPLING RESULTS

The metals soil analytical results are presented on Table 1A (metals) and Table 1B (total petroleum hydrocarbons). Metals background values published by DEQ for the Portland Basin (DEQ, 2013) are also presented on Table 1A. A review of the data quality was conducted and is presented in Appendix D-1. Laboratory analytical reports are provided in Appendix D-2.

4.2.1 Metals

Each metal analyzed was detected at least once. Antimony and mercury were detected the least frequently, with antimony detected in just one sample, and mercury detected in only ten samples. The majority of metals concentrations were below background levels, with the following exceptions:

• Antimony, cadmium, copper, lead, nickel, and zinc were each detected at a concentration exceeding its respective background level in one sample (DP-15-4-5). This sample was

collected within the footprint of the hide-split landfill and the soil texture suggested that a portion of the sample was comprised of degraded hide fibers. All other detections of these metals were below their respective background levels.

- Manganese was also detected at a concentration exceeding its background level in one sample (DP-10-0-1). This sample location is near a small area of hide-splits exposed at the ground surface. All other detections of manganese were below its background level.
- Chromium concentrations exceeded background levels in 11 samples in multiple locations. The presence of chromium concentrations above background levels is consistent with historical Site use.
- Mercury concentrations exceeded background levels in five samples that are typically colocated with elevated concentrations of chromium.
- Hexavalent chromium was detected in each of the nine samples where it was analyzed. Concentrations ranged from 0.212 milligrams per kilogram (mg/kg) to 6.43 mg/kg. The two highest concentrations are from soils within the hide-split landfill collected at boring DP-17.

These metals analytical results are consistent with metals detected in soil and sediment samples analyzed as part of the previous RI, where the highest metals concentrations were found in samples from test pits completed within the hide-split landfill, and from samples collected within the two sedimentation lagoons and downgradient of the breaches in the lagoon berms. Metals concentrations located away from the hide-split, vertically and horizontally, are consistent with naturally occurring background levels.

4.2.2 Total Petroleum Hydrocarbons

In addition to metals testing, a limited number of soil samples were also tested for petroleum hydrocarbons based on field evidence of potential impact at one location (DP-3) within the northern aeration pond. Petroleum hydrocarbons were not detected above laboratory reporting limits in any of the analyzed samples. No additional testing of soil or testing of groundwater was performed because petroleum hydrocarbons were not detected in soil samples from DP-3.

4.3 **GROUNDWATER SAMPLING RESULTS**

The groundwater analytical results are presented on Table 2A (dissolved metals), Table 2B (total metals), Table 2C (VOCs) and Table 2D (chloride). Metals background values for freshwater published by DEQ (DEQ, 2010) are also presented on Tables 2A and 2B. A review of the data quality was conducted and is presented in Appendix D-1. Laboratory analytical reports are provided in Appendix D-2.

4.3.1 Total & Dissolved Metals

Most metals were detected in groundwater analyzed for total concentrations, while only six metals were detected in groundwater analyzed for dissolved concentrations. Antimony and mercury were not detected in either analysis. Cadmium and zinc were not detected in the dissolved analysis.

Most total and dissolved metals concentrations exceeded their naturally occurring background levels. The total concentrations were greater than the dissolved concentrations for each detected metal, which is expected for unfiltered groundwater "grab" samples that have high turbidity levels as is common for water samples collected using direct-push techniques. Concentrations were the greatest at DP-17 which is located within the footprint of the hide-split landfill and is on the downgradient side of the Tax Lot 602. The lowest concentrations were found at DP-13, which is outside the footprint of the hide-split landfill and located on the upgradient side of Tax Lot 602.

In general, groundwater analytical results are consistent with the results from previously collected groundwater samples (Tables 4C and 4D). Chromium and manganese are the most commonly detected metals. Metals groundwater concentrations are greatest around and immediately downgradient of source areas (aeration ponds and sedimentation lagoons) and are lowest at cross gradient locations and at depth below the Site within the first layer of basalt bedrock.

4.3.2 VOCs

One VOC was detected in the sample collected from DP-6. 1,2-Dichlorobenze was detected at a concentration of 0.057 μ g/L, only slightly above the reporting limit of 0.5 μ g/L. No other VOCs were detected in DP-6. No VOCs were detected in DP-2, DP-13, or DP-17. These results are consistent with the VOC results from the previous RI, where just three VOCs (chlorobenzene, 1,2-dichlorobenzene, and 1,4-doichlorbenzen) were detected at very low concentrations in MW-4 during a single sampling event.

4.3.3 Chloride

Chloride was detected in all four groundwater samples at concentrations ranging from 11.4 mg/L (duplicate sample from DP-13) to 225 mg/L (DP-6). The highest concentrations were found within the southern aeration pond (DP-6) and downgradient of the ponds (DP-17). These results are consistent with the chloride results from the previous RI, which indicated the more elevated concentrations of chloride are observed at well downgradient of the aeration ponds, as compared to lower concentrations of chloride observed at wells crossgradient to the aeration ponds.

5.0 CONCEPTUAL SITE MODEL & RISK EVALUATION

The Conceptual Site Model (CSM) describes the potentially complete exposure pathways through which receptors can come into contact with site-related contamination. The CSM is developed through a review of land and water use records to determine the reasonably likely current and future site uses, and review of the available information regarding the nature and extent of potential contamination and its potential for migration away from source areas to other media where exposures could occur. Based on the CSM, an evaluation of potential risks to human and ecological receptors is performed to determine if there are unacceptable risks from exposure to site-related contamination that require mitigation to protect human health or the environment. The risk evaluation was conducted in general accordance with DEQ's Risk-Based Decision Making for Petroleum Contaminated Sites (DEQ, 2003) and DEQ's Human Health Risk Assessment Guidance (DEQ, 2010).

This section defines the locality of facility based on the investigations completed to date, presents the land and beneficial water use evaluations, and provides an evaluation of the potential risks for human and ecological receptors.

5.1 LOCALITY OF FACILITY

The Locality of Facility (LOF) is defined in Oregon Administrative Rules (OAR) 340-122-0115(35) rules to be "any point where a human or ecological receptor contacts or is reasonably likely to come into contact with facility-related hazardous substances...". The LOF also takes into account the potential for contaminant migration based on physical and chemical properties that control fate and transport processes that could affect the distribution of contaminated site media. The LOF was previously defined in the RI to include the majority of Tax Lot 600 west of Rock Creek and the northern portion of Tax Lot 400. The southern margin of each tax lot fell outside the LOF based on the presence of metals concentrations consistent with background levels and no detections of SVOCs, OCIs, or PCBs from samples collected during the previous RI. There are no impacts from historical site operations anticipated for property located south of the site, and thus the residential neighborhood south of the site falls outside of the LOF.

The results of the assessment indicate the LOF should be expanded to include Tax Lot 602. The areal extent of the LOF is illustrated on Figure 4. Based on the limited detection of metals in groundwater at MW-5 (completed in the top of the basalt), the LOF only extends vertically to the top of the first layer of basalt bedrock.

5.2 LAND USE DETERMINATION

The Site (Tax Lots 600 and 602) is currently zoned for light industrial (LI) use, and is located in an area of industrially zoned land. The Site is partially fenced, but access is not controlled nor monitored. The City is considering use of the upland portion of the Site to relocate the City's public works facility out of its downtown core. This future land use would be consistent with the current and reasonably likely future zoning.

The Site is also part of the Rock Creek Unit of the Tualatin River National Wildlife Refuge, and the lower elevation portions of the Site may not be suitable for industrial development. The City envisions preserving those portions of the Site that are not suitable for development to provide open space or overlook access to the Tualatin River National Wildlife Refuge, thus protecting Rock Creek as a Goal 5 resource. This is consistent with the Site's location within the Tualatin River National Wildlife Refuge, with the City's Parks and Recreation Master Plan (City of Sherwood, 2006), and would provide improved access to this resource for residentially developed areas located south of the Site.

Based on current zoning and potential future use, the potential receptors at the Site are current trespasser, future occupational/industrial workers, future construction and excavation workers, and future recreational users. Note that future occupational/industrial workers will not use all parts of the Site equally because only a portion of the Site is anticipated to be developable. The remainder of the Site is expected to remain as open space with potential park uses.

5.3 BENEFICIAL WATER USE DETERMINATION

The objective of the beneficial water use determination (BWUD) is to provide information regarding current and reasonably likely future uses of groundwater and surface water based on information obtained from the OWRD records for supply wells and surface water rights, and to confirm that the conclusions of the BWUD provide in the previous RI are still valid.

DEQ lists general categories of water use in the Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites (DEQ, 1998). With respect to groundwater, these general categories can be described as "direct" or "indirect" uses. Direct uses of groundwater include: drinking water, irrigation, livestock, and industrial uses. Indirect uses of groundwater are considered to be uses involving discharge to surface water and include aquatic habitat, recreation, and aesthetic quality.

A search of water well logs and active water rights permits available in the on-line database maintained by the OWRD was conducted and covered an area approximately within 1 mile of the

LOF. The source of drinking water for the City of Sherwood was also verified through on-line research at the City of Sherwood's webpage. A summary of the beneficial water used identified from the desktop research is provided in the sections that follow.

5.3.1 Current Beneficial Water Uses

Current beneficial water uses within the LOF include aquatic habitat and a water right for irrigation and livestock. Beneficial water uses in the surrounding area include industry, irrigation, and livestock. Drinking water in the area is provided by City of Sherwood and originates from the Willamette River Water Treatment Plant in Wilsonville, approximately 6 miles southeast of Sherwood (City of Sherwood, 2015). Four groundwater wells are also maintained by the City of Sherwood for backup drinking water supply. These wells are located more than 0.5 miles south and upgradient of the Site.

5.3.2 Groundwater Use

No drinking water wells were identified within the LOF. An approximately 1-mile radius surrounding the LOF is captured within Township 2 S, Range 1 W, Sections 28, 29, 32, and 33. A review of well logs within these four sections identified 127 total well logs on file with the OWRD. Categories of use identified on the well logs included domestic (106 wells), irrigation (4 wells), community (5 wells), livestock (3 wells), industrial (3 wells), and dewatering (41 wells). The five community well logs include two which the City of Sherwood reports are no longer in use (Well #1 and Well #2) and two which are used as backup (Well #5 and Well #6). The two active backup community wells draw from a deep basalt aquifer that is deeper than the LOF. One log is improperly categorized as industrial, and is actually a community well (Well #3) registered to City of Sherwood in 1946 and drilled to a depth of 339 feet below ground surface (bgs). No screen information is provided, but it is likely the screened interval occurs at similar depths to the other community wells which are deeper than the LOF. All community wells are located greater than 0.5 mile south and upgradient of the LOF.

A total of 106 domestic well logs are reported within 1 mile of the LOF. The average depth of the domestic wells is 175 feet with average depth to first water at 160 feet. Most wells were drilled from the 1950's to 1970's, and 20% have been reported abandoned. The majority (84%) of wells are drilled greater than 100 feet into the deep basalt aquifer. All wells with location information are located greater than 0.4 mile from the LOF. It is possible that some of these wells are no longer in use, given the availability of potable water through the City of Sherwood. Those which are currently in use are likely producing from the deeper aquifer, which occurs below the LOF for the Site. Based on this information, shallow groundwater does not appear to be used for drinking water.

Of the three industrial wells, one has been abandoned. The two active industrial wells are registered to Tri County Gun Club and Larry Wellens & Associates Inc. The well registered to Tri County Gun Club is located approximately 1 mile southeast of the LOF, in a crossgradient position relative to the LOF, and drilled to 330 feet bgs with perforations from 290 to 330 feet bgs. The well registered to Larry Wellens & Associates Inc. is located approximately 0.4 mile northeast of the site in an inferred downgradient position relative to the LOF, but below the extent of the LOF. The well is drilled to 155 feet bgs and sealed from ground surface to 35 feet bgs. Therefore, only deep groundwater is used for industrial purposes in the 1-mile radius containing the LOF. The 41 dewatering wells are associated with construction of Sherwood Library, and were drilled in 2009. Ten have been registered as abandoned, although it is likely all 41 are abandoned. Although the irrigation and livestock wells do not have exact location, all wells are greater than 0.4 mile from the LOF based on the provided township, range, and quarter-quarter section, except for one livestock well located in the SW quarter of 2S, 1W, section 28. No other location information is provided for the livestock well, and no associated water rights were identified. The well was drilled to 104 feet with a water level of 60 feet below ground surface, and is therefore likely below the LOF.

A search of water rights within the one-mile radius identified 11 non-cancelled groundwater rights. Water rights are maintained by the OWRD. Designated uses for the groundwater permits are irrigation and municipal. The municipal water rights are for the City of Sherwood groundwater wells, of which only four are currently maintained. All four backup wells draw from a deep basalt aquifer, greater than 200 feet bgs. All irrigation water groundwater rights are located greater than 0.5 mile from the LOF.

5.3.3 Surface Water Use

Rock Creek, a tributary of Tualatin River, flows through the LOF. The City of Sherwood Stormwater System Master Plan includes plans to construct a water quality facility within the LOF to treat stormwater prior to discharge into Rock Creek (City of Sherwood, 2007). The portion of Rock Creek which runs through the LOF is also included within the acquisition area for the Tualatin Wildlife Refuge. Beneficial water use of Tualatin River and its tributaries within the greater Tualatin Wildlife Refuge is planned to remain for aquatic and wildlife purposes. The point of diversion for a surface water right issued John/Gladys Cereghino is located on Rock Creek within the LOF, for irrigation and livestock use. The place of use is identified as approximately 22.8 acres surrounding the point of diversion, most of which is within the LOF. No active or recent use of this water right has been applied, based on observations on the site and recent site history. Records for this surface water right are provided in Appendix E.

A total of 17 surface water right permits were identified through a search of permits maintained by the OWRD. Primary uses designated for the water rights are irrigation, livestock, and wildlife. It is

unclear how many water rights are actively used, since the water right only determines availability and does not represent current activities.

5.3.4 BWUD Summary

The findings of this BWUD are consistent with those identified during the previous RI. No drinking water wells are located within the LOF. There is no known use of shallow groundwater (above the first layer of basalt) for domestic purposes within 1 mile of the LOF. The closest wells to the Site are two industrial wells, both of which are completed at depths below the LOF. Shallow groundwater does discharge to wetland areas and to Rock Creek within the LOF.

There is a surface water right point of diversion for irrigation and livestock use within the LOF, but there is no evidence of recent use. Therefore, the reasonably likely future beneficial water uses in the LOF are determined to include irrigation, livestock, and to support wildlife and aquatic habitat.

5.4 HUMAN HEALTH RISK EVALUATION

A human health risk evaluation was prepared for the Site to evaluate potential health risks to current and future receptors from potential exposures to site-related contaminants within the LOF. The evaluation incorporates the land and beneficial water use information presented above in Sections 5.2 (Land Use Determination) and 5.3 (Beneficial Water Use Determination). The evaluation also incorporates the data generated on Tax Lot 602 during the investigation described above in Section 3.0 (Assessment Activities) and Section 4.0 (Assessment Results), as well as the data generated at Tax Lots 600 and 400 by DEQ between 2003 and 2007 to quantitatively assess potential health risks.

5.4.1 Exposure Pathways & Potentially Exposed Populations

The exposure pathway defines how chemicals physically enter the human body (i.e., through ingestion, dermal contact, or inhalation). An exposure pathway is considered incomplete if any of the following four elements is missing:

- A source of the chemical
- A transport medium (such as soil or groundwater)
- An exposure point (the point where human contact occurs)
- An exposure route (such as ingestion)

Potentially exposed populations were identified based on the results of the land and beneficial water use determinations and include the following receptor types:

- Current trespassers
- Future recreational users
- Future occupational workers
- Future construction workers
- Future excavation workers

Current residential receptors south of the Site are not considered a potentially exposed population because: (1) Site-related contaminants in soil are generally not mobile; (2) the results of the prior RI demonstrate that Site-related contamination does not extend to the property boundary at Oregon Street; (3) Site-related contaminants in groundwater, surface water, and sediment, if mobile, would move to the east-northeast toward Rock Creek, or north with the flow of Rock Creek, and thus would migrate away from the neighborhood area; (4) stormwater runoff generated at the Site from rainfall would remain on-Site and drain toward Rock Creek; and (5) the primary contaminants (metals) found at the Site are not volatile and thus are not expected to pose potential risks through inhalation. Future residential receptors are not reasonably likely to be present at the Site because it is zoned for industrial use.

The following paragraphs describe how each potentially exposed population (i.e. receptor) is anticipated to use the Site and which exposure pathways are potentially complete for each.

Current Trespasser/Future Recreational User

A trespasser is a current receptor that would use the Site to play or escape public sight. The Site is large and heavily vegetated and is less likely to be accessed independently by children younger than 6. A recreational user is a future receptor that would come to the Site to access the Tualatin River National Wildlife Refuge or other local trail systems. Both receptor types could include children and adults and the site-specific RBCs calculated for this receptor type includes children of all ages and adults.

A current trespasser or future recreational user are considered to use the Site at similar frequencies and durations. It is not likely that children or adults would use the site at greater than 8 hours per day because there is no current evidence of overnight use and future uses are not anticipated to include overnight activities. Local weather conditions are anticipated to limit use to 6 months of the year, primarily during late spring, summer, and early fall (approximately April to September). During this period, use would also be limited by the magnitude of other recreational and summer break opportunities available locally and regionally, and thus this receptor type is assumed to be present at the Site 18 days per year or less (approximately 3 days a month

between April and September). Additional discussion regarding this receptor is provided in Appendix F.

Trespassers and recreational users could be exposed to surface soils or sediments, but would not be exposed to subsurface soils, groundwater (no drinking water use), surface water (most use occurs during drier months and both receptor types are assumed to avoid standing water), or indoor air (outdoor uses only). Inhalation of volatilized contaminants in outdoor air is not considered a complete exposure pathway because of the infrequent and low VOC concentrations detected in groundwater at the Site.

Future Occupational/Industrial Workers

The City of Sherwood currently envisions redeveloping the upland portion of the Site for its public works facility. Future occupational/industrial workers would use the site for parking, maintenance and repairs, staging, storage, and administrative functions.

These receptors could be exposed to surface soils in unpaved areas, or to subsurface soils where shallow excavations might be necessary for utilities repair, landscaping, or installation/maintenance of other shallow infrastructure (upper 3 feet). Future occupational or industrial workers could infrequently contact groundwater during shallow excavations, but this is not considered significant because groundwater occurs at greater than 5 feet below ground surface across much of the upland portion of the Site. Inhalation of volatilized contaminants in indoor or outdoor air is not considered a complete exposure pathway because of the infrequent and low VOC concentrations detected in groundwater at the Site. This receptor will not be in contact with sediment or surface water because a future public works facility will be located on the upland portion of the Site, away from Rock Creek.

Future Construction Workers

Future construction workers will be on-Site during redevelopment to construct the new public works facility infrastructure. These receptors could be exposed to surface and subsurface soils during construction, as well as to groundwater if encountered during excavations. These receptors are assumed not to contact sediment or surface water because these media are not located where construction would occur. Inhalation of volatilized contaminants in outdoor air is not considered a complete exposure pathway because of the infrequent and low VOC concentrations detected in groundwater at the Site.

Future Excavation Workers

Future excavation workers may also be on-Site during redevelopment to construct the new public works facility infrastructure, or periodically after development is complete for maintenance or repair activities. These receptors could be exposed to surface and subsurface soils during excavation, as well as to groundwater if encountered during excavations. These receptors are assumed not to contact sediment or surface water because these media are not located where construction would occur. Inhalation of volatilized contaminants in outdoor air is not considered a complete exposure pathway because of the infrequent and low VOC concentrations detected in groundwater at the Site.

5.4.2 Selection of Exposure Units & Data Sets

Two exposure units (EUs) were defined for the Site to support characterization of risk to the receptors described above. The two exposure units are shown on Figure 4 and described below.

- Upland EU This exposure unit consists of the western one-third of the Site, which is located primarily west of the two sedimentation lagoons. This area consists of the river terrace that overlooks the flood plain of Rock Creek, and is anticipated to be the developable portion of the Site.
- Wetland EU This exposure unit consists of the eastern two-thirds of the Site and includes both sedimentation lagoons and the wetland areas that comprise the flood plain of Rock Creek. For the purpose of this risk evaluation, the sediments within Rock Creek are also included based on similarities between the sediment analytical results and the analytical results of soil samples collected within the Rock Creek wetland area (away from areas known to be impacted by chromium) during the previous RI.

A single groundwater exposure unit was defined for the Site because of the limited number of sample locations and because construction or excavation workers could potentially come into contact with groundwater anywhere at the Site.

All data collected from Tax Lots 602, 600, and 400 by either the City of Sherwood or DEQ were included in the data sets established for each EU. The following data sets were evaluated:

- Upland EU 0 to 5 feet (trespasser/recreational user; occupational workers) and 0 to 15 feet (construction workers; excavation workers)
- Wetland EU 0 to 5 feet (trespasser/recreational user; construction workers; excavation workers)
- Groundwater Exposure Unit all results from monitoring wells and direct-push borings.

5.4.3 Selection of Screening Criteria

Appropriate screening levels for the Site receptors and exposure pathways were selected from RBCs published by DEQ (DEQ, 2015c). An EPA Regional Screening Level (RSL; EPA 2015) was selected to evaluate compounds for which DEQ does not publish an RBC. For some receptors and exposure pathways, EPA does not publish an RSL for a comparable receptor. In these instances, a review of the RSLs developed for each exposure route was conducted to determine if it was reasonable to rely on a route-specific RSL. Where a route-specific RSL was selected, a note was included in the table providing the rationale. Where a route-specific RSL was not selected, these chemicals will be discussed further in the uncertainty section.

Additionally, a site-specific RBC was developed to evaluate the current trespasser/future recreational user as described above in Section 5.4.1 (Exposure Pathways & Potentially Exposed Populations) and as discussed in more detail in Appendix F. The site-specific RBC was developed by making changes to selected exposure assumptions in DEQ's excel version of the RBC table and recalculating the RBCs for both carcinogenic and non-carcinogenic endpoints. The lowest RBC was selected for the constituents of interest for the Site for use in evaluating potential health risks.

5.4.4 Identification of COPCs & Risk Screening

The quantitative evaluation of health risks focuses on metals in soil and groundwater. Other compounds detected in soil, sediment, or groundwater were not identified as COPCs for the following reasons:

- VOCs Three VOCs were detected in one monitoring well (MW-4) and one VOC was detected in one direct-push boring (DP-6).
 - Chlorobenzene was detected at 9.8 µg/L (MW-4), which is well below the RBC for groundwater in an excavation of 10,000 µg/L. The detected concentration is also well below its solubility limit indicating this chemical is not contributing to potential health risks through volatilization.
 - 1,2-Dichlorobenze was detected at 0.57 µg/L (DP-6) and 4.2 µg/L (MW-4), and is well below the RBC for groundwater in an excavation of 37,000 µg/L. The detected concentration is also well below its solubility limit indicating this chemical is not contributing to potential health risks through volatilization.
 - 1,4-Dichlorobenzene was detected at 1.9 µg/L (MW-4), which is well below the RBC for groundwater in an excavation of 1,500 µg/L. The detected concentration of 1,4-dichlorobezne is also below its groundwater RBC for occupational receptors for

volatilization to outdoor air (21,000 μ g/L) and for vapor intrusion to indoor air (7,100 μ g/L).

- SVOCs One SVOC, phenol, was detected once in soil at a concentration of 0.078 mg/kg. DEQ does not publish an RBC for this analyte, but the detected concentration is well below the EPA Industrial Soil RSL of 2.5 x 10⁵ mg/kg. SVOCs were not detected in groundwater (except for the detection of 1,2-dichlorbenzene described under VOCs) sediment or surface water.
- OCIs One potentially site-related OCI (chlordane) was detected in one soil sample, and one potentially site-related OCI (lindane) was detected in one monitoring well (MW-4). Chlordane was detected at a concentration of 0.0028 mg/kg in a soil sample from the Rock Creek wetland area (HA-40), which is well below the recreational user / trespasser RBC of 12 mg/kg. Lindane was detected at a concentration of 0.13 µg/L, which is well below the groundwater in an excavation RBC of 100 µg/L. The only other OCIs detected were DDx compounds found in wetland soil and sediment. These compounds are not considered to be site-related because there is no record of their use at the Site as part of historical industrial activities, they were not detected in upland soil samples, and are likely representative of regional background levels in the area (GeoEngineers, 2004).
- PCBs PCBs were not detected in soil, sediment, groundwater, or surface water.

The identification of COPCs from the metals analytical results was conducted by comparing the detected concentrations of each metal in each sample to the each applicable RBC (or RSL). All data in each EU (independent of depth) were conservatively included in the risk screening to ensure all potential COPCs were identified for further evaluation. The results of the screening step are shown on Tables 4A, 4B, 4C, and 4D and illustrated on Figures 6A, 6B, 6C, and 6D. A summary of the screening results for each EU is provided below.

Upland Exposure Unit

Four metals were detected at concentrations that exceeded one or more of the applicable RBCs for recreational users/trespassers, occupational workers, construction workers, and excavation workers:

- 1. Arsenic Arsenic exceeded its RBC in just one sample (TP-5-5) at a concentration of 24 mg/kg.
- Copper Copper exceeded its RBC in just one sample (DP-15-4-5) at a concentration of 56,000 mg/kg.
- 3. Lead Lead exceeded its RBC in two samples (TP-5-1 and DP-15-4-5) at concentrations of 760 mg/kg and 1,420 mg/kg, respectively.

4. Hexavalent chromium – Hexavalent chromium exceeded its RBC in just one sample (DP-17-0-1) at a concentration of 6.43 mg/kg.

Each of these samples is located within the footprint of the hide-split landfill.

Wetland Exposure Unit

One metal (arsenic) was detected at concentrations that exceed one or more of the applicable RBCs for recreational users/trespassers, construction workers, and excavation workers. Arsenic was detected in two samples (HA-46-0.5 and SS-6) at concentrations of 11 mg/kg in each sample. All other detections of arsenic in the wetland exposure unit are consistent with background levels of arsenic at concentrations less than 8.8 mg/kg (DEQ, 2013).

Groundwater Exposure Unit

No concentrations of total or dissolved metals in groundwater exceed the applicable RBCs for groundwater in an excavation. No further quantitative evaluation of groundwater is warranted.

5.4.5 Development of Exposure Point Concentrations

The exposure point concentration (EPC) is the concentration of a particular contaminant in a particular medium at the point of contact by a receptor. DEQ rules require that an upper estimate of the EPC be used in human health risk assessments, and specifies the 90% upper confidence limit (UCL) of the arithmetic mean to be an appropriate upper estimate representative of the reasonable maximum exposure. This approach is considered appropriate for most human receptors because they typically move across the entire site, rather than working exclusively in one single location. The exception to this is the excavation worker where the exposure is more likely to occur in a single excavation over a relatively short duration, and thus using a maximum concentration is considered more representative of the potential EPC.

ProUCL (version 5.0) was used to calculate EPCs following a 2-step process. In the first step, the 95% UCL was calculated to allow ProUCL to identify the distribution of each data set and recommend the appropriate statistical method to calculate the UCL. In the second step, the 90% confidence level was specified to calculate UCLs. The UCLs used as the EPCs are those generated at the 90% confidence level using the statistical method recommended by ProUCL at the 95% confidence level. In some cases, a UCL with a higher confidence level (95%, 97.5%, or 99%) is selected as the EPC if ProUCL makes this recommendation based on the distribution of the data. In cases where ProUCL calculates an EPC that is greater than the maximum detected concentrations, or in cases where there are too few detections to calculate a UCL, the maximum detected concentration can be used in the risk assessment.

The data sets that were used in the calculation of EPCs for each EU are described below.

- Upland EU Surface Soil (0 to 5 feet) All samples collected from the upper 5 feet of soil are included and will be used to evaluate current trespassers, future recreational users, future occupational workers, future construction workers, and future excavation workers.
- Upland EU Subsurface Soil (0 to 15 feet) All soil samples collected between 0 and 15 feet are included and will be used to evaluate current trespassers, future recreational users, future construction workers, and future excavation workers.
- Wetland EU Surface Soil (0 to 5 feet) All samples collected from the upper 5 feet of soil are included and will be used to evaluate current trespassers, future recreational users, future construction workers, and future excavation workers.

The analytical results were used in the calculation of EPCs as described below.

- Results rejected during data quality review were excluded.
- Results qualified with a "J" (estimated value) or "N" (presumptively identified) were included.
- Results qualified with a "U" (not detected) were included as non-detect values.
- Duplicate results were handled as follows:
 - If both results were detections, the higher of the two values is used.
 - If both results were non-detections, the lower of the two reporting limits is used.
 - If one result was non-detect, then the detected value was used.

A statistical summary and the EPCs for each exposure unit and data set are presented in Table 4. ProUCL output for each data set and each EU are provided in Appendix G.

5.4.6 Evaluation of Human Health Risks

The estimate of the potential health risk based on the reasonable maximum exposure was prepared for each exposure unit. The paragraphs that follow summarize the conclusions provided for each EU and data set.

Upland EU - Surface Soil (0 to 5 feet)

Risk calculations are provided in Tables 6A through 6E. An unacceptable hazard index of 1.9 was identified for the future excavation worker exposed to lead in surface soil in the Upland EU. The acceptable hazard index is 1.0. It is important to recognize that the level of hazard predicted for a future excavation worker is based on the following assumptions: (1) the EPC is equal to the maximum detected concentration, and (2) the excavation will occur at the one location at the Site

where the maximum concentration is located or that all potential excavation locations will have the maximum detected concentration of lead present. The maximum concentration is located within the footprint of the hide-split landfill, as are all the lead concentrations that exceed the naturally occurring background levels. Lead concentrations in soil outside of the footprint of the hide-split landfill are consistent with naturally occurring levels of lead in the Portland Basin.

An unacceptable risk of 3×10^{-6} was identified for the future occupational worker exposed to arsenic in surface soil in the Upland EU. The acceptable individual risk level is 1×10^{-6} . No unacceptable risk was identified at the cumulative risk level of 1×10^{-5} . It is important to recognize that the level of risk predicted for a future occupational worker is based on an EPC of 5.26 mg/kg, which is consistent with the naturally occurring background level of arsenic in Portland Basin soils of 8.8 mg/kg. It should also be noted that arsenic was detected in only one (TP-5-5) of 78 upland soil samples at a concentration greater than its naturally occurring background level. As with the lead results, the arsenic concentrations for all soil samples outside the hide-split landfill are consistent with naturally occurring background levels.

No unacceptable risk or hazard was identified for the recreational user/trespasser or future construction worker.

Upland EU – Subsurface Soil (0 to 15 feet)

Risk calculations for subsurface soils (0 to 15 feet) in the Upland EU are provided in Tables 7A through 7D. An unacceptable hazard index of 1.9 was identified for the future excavation worker exposed to lead in subsurface soil in the Upland EU. The acceptable hazard index is 1.0. It is important to recognize that the level of hazard predicted for a future excavation worker from exposure to subsurface soil is the same as that predicted for surface soil. This is because: (1) the maximum detected concentration of lead is found in both data sets, (2) the EPC is equal to the maximum detected concentration, and (3) using the maximum detected concentration assumes that the excavation will occur at the one location at the Site where the maximum concentration of lead present. The maximum concentration is located within the footprint of the hide-split landfill, as are all the lead concentrations that exceed the naturally occurring background levels. Lead concentrations in soil outside of the footprint of the hide-split landfill are consistent with naturally occurring levels of lead in the Portland Basin.

No unacceptable risk or hazard was identified for the recreational user/trespasser or future construction worker.

Wetland EU

Risk calculations are provided on Table 8. No unacceptable risk was identified for receptors exposed to arsenic in soil or sediment.

5.4.7 Uncertainty Analysis

Risk assessment uses multiple sources of information and evaluation methods. Even when the actual chemical intake for an exposed individual may be measured relatively accurately, assumptions are still required to evaluate the associated potential risk. The use of professional judgment, inferences based on analogy, the use of default values, model estimation techniques, and other assumptions result in uncertainty of varying degrees. The risk assessment process and the uncertainties incorporated in that process are generally constructed such that risk estimates tend towards overestimation of the overall risk. Elements of the risk assessment process contributing to uncertainty in the findings are discussed below.

A conservative screening process was employed to identify COPCs. The process identified COPCs based on a sample-by-sample evaluation of potential risks. When considering all the data that was evaluated, it is clear the potential health risks from exposure to metals in Upland EU soils are controlled by one or two elevated detections of a particular metal. In each case, the samples with the highest concentration are located within the footprint of the hide-split landfill. In contrast, samples collected from areas outside the hide-split landfill in the Upland EU have metals concentrations that are indicative of naturally occurring background levels. Thus it is reasonable to conclude that the greatest potential for exposures to site-related chemicals in Upland EU soils occurs within the footprint of the hide-split landfill, and that areas outside the footprint of the hide-split landfill do not contribute to predicted health risks.

For two metals (antimony and zinc), neither DEQ nor EPA publish risk-based screening criteria that are appropriate for use to evaluate the recreational user/trespasser, construction worker, or excavation worker. Review of the data presented for the Upland EU and Wetland EU in Tables 4A and 4B indicates that the highest concentrations of these two metals are co-located with higher concentrations of chromium from samples that are within areas of known site-related impacts (the hide-split landfill and the two sedimentation lagoons). Thus, potential health risks from exposure to these two metals would likely be greatest in these areas. For antimony, most detected concentrations are elevated above the naturally occurring background level of 0.56 mg/kg, but in locations away from areas of impact, concentrations are typically less than 3 mg/kg. For zinc, detected concentrations are all below its naturally occurring background level of 180 mg/kg, except for one sample (DP-15-4-5) located within the hide-split landfill (where the maximum detected concentrations of chromium, copper, and lead were also found) and in one sample (HA-42) located

in the northern sedimentation lagoon (where antimony, chromium, and manganese results are also elevated).

5.4.8 Human Health Risk Evaluation Summary

The human health risk evaluation assessed potential health risks to current trespassers, future recreational users, future occupational workers, future construction workers, and future excavation workers from site-related COPCs. Current residential receptors were not evaluated because the extent of Site-related contamination does not extend off-site to the south. Future residential receptors were not evaluated because the Site is industrially zoned and does not allow for residential use.

The data sets used to evaluate potential health risks included data from the previous RI and the data from this assessment. An evaluation of potential health risks was conducted for three EUs based on anticipated receptors use: (1) Upland EU soils (all receptors), (2) Wetland EU soils (all receptors except occupational workers, and (3) Groundwater EU, Site-wide, (construction worker and excavation worker only). Of the constituents analyzed at the Site during both investigations, only metals were identified as potential COPCs. The specific metals identified for further quantitative evaluation in each EU were:

- Upland EU soils Arsenic, copper, lead, and hexavalent chromium. Concentrations of other constituents were less than their respective RBCs.
- Wetland EU soils Arsenic. Concentrations of other constituents were less than their respective RBCs.
- Groundwater EU (site-wide) None. No constituents exceeded their respective RBCs.

Of the constituents evaluated, unacceptable health risks were identified for only for two constituents: (1) arsenic and (2) lead. The effected receptors include the occupational worker exposed to arsenic in the upper 5 feet of soil in the Upland EU, and the excavation worker exposed to lead in the upper 5 feet of soil, and down to 15 feet, in the Upland EU. In both cases, the predicted health risks are driven by a single elevated detection of arsenic or lead that is found within the footprint of the hide-split landfill. No unacceptable health risks were identified for copper or hexavalent chromium.

5.5 ECOLOGICAL RISK EVALUATION

An ERA was prepared for Tax Lots 400 and 600 in 2004 as part of the previous RI. It concluded that:

- There was no unacceptable risk to ecological receptors identified for CPECs in Rock Creek surface water (antimony, cadmium, total chromium, hexavalent chromium, copper, lead, manganese, mercury, and zinc).
- The unacceptable risks to ecological receptors (based on an evaluation of the American Robin as a representative specie using all site habitat types) in soil (or sediment) are mostly limited to the chromium management area defined as part of the Streamlined Level III ERA. The chromium management area includes isolated areas of the northern sedimentation lagoon, the majority of the southern sedimentation lagoon, wetland areas downstream of the breaches in each lagoon, and all of the hide-split landfill area based on the presumption that elevated chromium concentrations would be widespread in the area where hide-splits were known to be present. There are some areas outside of the chromium management area where there is also the potential for unacceptable risks from manganese and mercury, but these areas are not extensive.

An update to the ERA was not required for this assessment for the following reasons:

- No ecological habitat is anticipated to exist in upland areas of the Site following redevelopment by the City, and thus no evaluation of ecological risks of upland areas of the Site is needed.
- No new data were generated in wetland areas during the assessment that would require an updated evaluation of potential ecological risks.
- There has been no change to types of ecological habitat present at the Site since the RI was completed.
- The assumptions and approach used to evaluate potential ecological risks to the American Robin and identify the chromium management area are still considered valid and reflect a conservative and protective estimate of the area where there is unacceptable risk to ecological receptors. Thus, there are no changes to the conclusions presented in the ERA.

6.0 CONCLUSIONS & NEXT STEPS

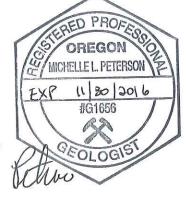
The assessment of Tax Lot 602 was completed in November 2015. The previous RI of Tax Lot 600 and 400 was completed in 2003 and 2004, with a limited amount of additional groundwater sampling conducted by DEQ between 2005 and 2007. The investigations completed to date have defined the nature and extent of potential impacts in soil, groundwater, sediment, and surface water from historical operations that treated and disposed of tannery wastes on Site. The following conclusions can be drawn from the results of these investigations:

- 1. The data gap on Tax Lot 602 was filled through completion of the assessment conducted in November 2015.
- 2. The extent of the hide-split landfill has been defined (Figure 4).
- 3. The results from the November 2015 assessment are consistent with the results of the previous RI and define the nature and extent of Site-related impacts.
- 4. The areas of impact associated with Site-related activities are defined to be within the following historical Site features: (a) the footprint of the hide-split landfill, (b) within the two aeration ponds, (c) within the two sedimentation lagoons, (d) downgradient of the breaches in the berms of each sediment lagoon, and (e) in one small segment of Rock Creek downgradient of the breach in the north sedimentation lagoon.
- Potential health risks were identified in the Upland EU for the occupational receptor from exposure to arsenic in soil and for the excavation worker from exposure to lead in soil. However, the calculated health risks are likely overestimated as summarized below.
 - a. Arsenic The exposure point concentration evaluated is less than the naturally occurring background level for arsenic. All arsenic concentrations in the Upland EU are consistent with naturally occurring background levels, except one sample within the footprint of the hide-split landfill.
 - b. Lead The health risks are overestimated because they are based on the maximum detected concentration (as required for the evaluation of an excavation worker with the potential for a very focused exposure). All lead concentrations in the Upland EU are consistent with naturally occurring background levels, except for two samples within the footprint of the hide-split landfill.

No unacceptable health risks were identified for other metals in soil, including hexavalent chromium.

- 6. The occupational worker and excavation worker receptors are not currently present at the Site, and future redevelopment would incorporate cleanup actions to mitigate the areas of soil impact contributing to human health risks.
- 7. No unacceptable risks were identified for human receptors exposed to metals in soil or sediment in the Wetland EU.
- 8. No unacceptable risks were identified for human receptors exposed to metals in groundwater through direct contact. Shallow groundwater is not used for drinking water within the LOF.
- 9. No unacceptable risks were identified for VOCs, SVOCs, OCIs, or PCBs in any other media at the Site.

Amec Foster Wheeler Environment & Infrastructure, Inc.


Supplemental Remedial Investigation Report – Final Former Frontier Leather Tannery Property, Sherwood, Oregon

10. There are unacceptable risks to ecological receptors in soil (or sediment) from within the chromium management area defined during the previous RI. This conclusion is based on an evaluation of the American Robin as a representative specie using all habitat types present at the site, through the bioaccumulation pathway (consumption of worms in direct contact with soil/sediment). The metals contributing to the unacceptable risk include antimony, lead, chromium, manganese, and mercury. There are some areas outside of the chromium management area where there is also the potential for unacceptable risks from manganese and mercury, but these areas are not extensive.

Based on the assessments performed to date, the investigation of Site-related impacts is complete and the potential risks to human health and ecological receptors have been identified and characterized. The results of the assessments will be used to prepare an Analysis of Brownfields Cleanup Alternatives (ABCA) for the Site. The ABCA will incorporate, where applicable, the Feasibility Study prepared by GeoEngineers, on behalf of DEQ in 2004 and will incorporate the City's conceptual redevelopment plans for the Site.

We appreciate the opportunity to be of service to City of Sherwood on this project. If you have any questions or comments regarding this report, please contact the undersigned at (503) 639-3400.

Amec Foster Wheeler Environment & Infrastructure, Inc.

Michelle L. Peterson, RG Project Manager

MLP/lp/ay

Reviewed By:

Charles T. Esler, CHMM Principal Environmental Scientist

Amec Foster Wheeler Environment & Infrastructure, Inc.

REFERENCES

- Amec Foster Wheeler, 2015. Quality Assurance Project Plan & Sampling and Analysis Plan, prepare for the City of Sherwood. September 4, 2015.
- City of Sherwood, 2006. Parks and Recreation Master Plan, prepared by GreenPlay LLC, October 17, 2006.
- City of Sherwood, 2007. Stormwater System Master Plan, prepared by Murray, Smith & Associates, Inc. and Financial Consulting Solutions Group, Inc., June 2007.
- City of Sherwood, 2015. Draft Water System Master Plan Update, prepared by Murray, Smith & Associates Inc., February 2015.

City of Sherwood Code of Ordinances, Title 16, Division IX, Chapter 16.162

- GeoEngineers, 2004. Remedial Investigation Report, DEQ Frontier Leather Site, Sherwood, Oregon, prepared for the Oregon Department of Environmental Quality. June 22, 2004.
- Oregon Department of Environmental Quality (DEQ), 1998. Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites, Waste Management and Cleanup Division, July 1, 1998.
- DEQ, 2003. Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, September 2003.
- DEQ, 2010. Human Health Risk Assessment Guidance, prepared by the DEQ Environmental Cleanup Program. October 2010.
- DEQ, 2013. Development of Oregon Background Metals Concentrations in Soil Technical Report, Land Quality Division Cleanup Program, March 2013.
- DEQ, 2015a. Staff Report Draft, Recommended Remedial Action for Ken Foster Farm Site, Sherwood, Oregon, prepared by the DEQ Northwest Region Office. July 2015.

DEQ, 2015b. Groundwater and surface water data collected by DEQ from the Former Frontier Leather Tannery property between 2005 and 2007, data provided to Amec Foster Wheeler via e-mail by Mark Pugh on July 13, 2015.

DEQ, 2015c. Risk-Based Criteria Table. Updated November 1, 2015.

- Oregon Department of Geology and Mineral Industries (DOGAMI), 2012. Lidar-Based Surficial Geologic Map and Database of the Greater Portland Area, Clackamas, Columbia, Marion, Multnomah, Washington, and Yamhill Counties, Oregon, and Clark County, Washington. Open-File Report O-12-02.
- Unites States Environmental Protection Agency (EPA), 2015. Regional Screening Level Summary Table, November 2015.

LIMITATIONS

This report was prepared exclusively for the City of Sherwood by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in Amec Foster Wheeler services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This Supplemental Remedial Investigation Report is intended to be used by the City of Sherwood for the Site only, subject to the terms and conditions of its contract with Amec Foster Wheeler. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

Amec Foster Wheeler services have been performed in accordance with the normal and reasonable standard of care exercised by similar professionals performing services under similar conditions and geographic locations. Except for our stated standard of care, no other warranties or guarantees are offered as part of Amec Foster Wheeler's contracted services.

TABLES

TABLE 1A SOIL ANALYTICAL RESULTS - TOTAL METALS (EPA Methods 200.8, 6020, 7199)

Former Frontier Leather Property

Sample Start End En				r						-						
Location ID Date Sample ID (feen) [mg/kg]		Sampla				untimony	vrsenic	admium	Chromium	chromium (VI)	Copper	ead	langanese	lercury	lickel	linc
Background Value 0.56 8.8 0.63 76 34 79 1.800 0.23 47 1.80 DP-01 11/10/15 DP-01-0-1 0 1 1.31 1.301 0.306 466.4 NT 18.6 926 74 0.107 2.22 61.1 DP-02 11/10/15 DP-2.45 3.5 5 1.301 3.27 0.276 1 1.8.3 0.381 1.430 0.111 1.4.9 54.9 DP-02 11/10/15 DP-24.5 3.5 5 1.201 2.80 1.3.3 NT 17.7 5.93 2.82 0.106 U 2.4.7 55.1 DP-03 11/10/15 DP-04.5.1 0 1 1.22 U 3.7 NT 19.8 4.44 1.530 0.437 1.7.7 6.2.9 1.6.7 NT 19.8 4.43 1.530 0.377 2.2.2 6.6.8 DP-04 11/10/15 DP-04.5.1.5 0 2 2.601 <t< th=""><th>Leastian ID</th><th></th><th>Comula ID</th><th></th><th>-</th><th></th><th>-</th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Leastian ID		Comula ID		-		-	-	-							
DP-01 11/10/15 DP-01-1 0 1 1.33 U 4.06 0.366 486.4 NT 17.9 6.74 0.107 U 22.2 61.1 DP-02 11/10/15 DP-03.5.4.5 3.5 5 1.310 2.270 U 16.4 NT 1.77 5.89 875 0.108 U 2.33 486 DP-02 11/10/15 DP-2.5.5.45 3.5 5 1.20U 2.89 0.286 U 31.3 NT 17.7 5.93 282 0.103 U 1.5.8 52.8 DP-03 11/10/15 DP-03.3.4 5 5 2.44 U 4.46 0.286 13.3 NT 16.9 0.16 U 2.47 55.1 DP-04 11/10/15 DP-04.3.4.5 3.5 5 1.41 U 4.21 0.286 NN 11.3 1.3 0.16 U 2.47 7.7 2.2.2 66.8 DP-06 11/10/15 DP-06.3.4.5 3.5 5 2.400 1.80 NT 1.1.3 0.			Sample ID	(feet)	(feet)	0 0	0 0		0 0	0 0	0 0	00	0 0	00		0 0
DP-01 11/10/15 DP-24-1 0 1				-					-		-	-				
DP-02 11/10/15 DP-2-3 0 1 1.38 U 6.22 0.276 U 31.6 1.38 0.266 18.3 0.38 0.38 0.080 0.095 U 23.3 44.60 0.011 U 1.4.80 0.281 0.281 0.31 NT 17.7 5.83 282 0.103 U 18.8 5.82 DP-02 11/10/15 DP-03.0-1 0 1 1.45 U 2.16 0.495 31.3 NT 17.7 5.83 282 0.103 U 18.8 5.83 DP-03 11/10/15 DP-04-01 0 1 1.32 U 4.37 0.304 5.99 NT 11.4 1.42 905 0.137 1.14.2 905 0.137 1.14.2 905 0.137 1.14.2 905 0.137 1.14.2 905 0.137 1.16.9 5.22.0 0.241 1.17.15 2.92 5.23 0.112 U 1.56 5.56.6 DP-05 1.1 2.560 U 0.270 U 2.27 0.247 J				-									-			-
DP-02 11/10/15 DP-23.5.4.5 3.5 5 1.20 U 4.01 0.281 1.33 0.266 11.3 NT 17.7 5.33 282 0.030 11.68 5.28 0.131 NT 17.7 5.33 282 0.103 U 15.8 5.26 0.116 U 15.8 5.26 0.116 U 15.8 5.5 1.41 U 1.21 U 2.20 0.17 NT 19.8 4.84 1,530 0.106 U 24.7 55.1 DP-04 11/10/15 DP-04-3.5.4.5 3.5 5 1.41 U 4.21 0.280 197 NT 19.9 11.3 71.9 0.160 U 24.7 72.7 66.8 DP-05 11/11/15 DP-05-6-1.5 0 2.250 U 2.00 NT 18.10 73.4 0.427 17.7 62.0 0.11 3.46 0.270 U 2.27 0.274 U 17.4 5.49 616 0.108 U 3.9 0.432 0.411 1.3 0.436 0.805 0.270 0.271 </td <td></td>																
DP-02 11/10/15 DP-28-9 8 9 1 29 U 2.89 0.28 U 11.3 T 17.7 5.93 282 0.103 U 15.8 5.28 DP-03 11/10/15 DP-03-3.5-4.5 3.5 5 2.64 U 4.46 0.290 19.7 NT 19.8 4.84 1,530 0.106 U 24.7 55.1 DP-04 11/10/15 DP-04-3.5-4.5 3.5 5 1.41 U 4.20 0.280 U 1.99 NT 11.3 719 0.106 U 23.2 64.8 DP-04 11/11/15 DP-05-3.5-4.5 3.5 5 2.80 U 1.90 0.200 U 1.90 523 0.112 U 15.6 66.6 DP-06 11/10/15 DP-06-5.6 5 6 2.74 U 2.56 0.274 U 1.91 0.0670 1.13 1.46.2 1.74 5.49 616 0.108 U 1.3.9 4.48 0.336 U 389 0.221 2.44 1.42 4.65 0.66 523 <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td>-</td> <td></td>	-			-			-						,		-	
DP-03 11/10/15 DP-03-0-1 0 1 1.45U 2.16 0.405 31.3 NT 16.9 9.24 742 0.116 U 14.1 58.5 DP-04 11/10/15 DP-04-3.5.4.5 3.5 5 2.64 U 4.46 0.230 19.9 11.3 719 0.106 U 24.7 55.1 DP-04 11/10/15 DP-04-3.4.5 3.5 5 2.64 U 4.37 0.230 NT 11.9 11.3 719 0.106 U 22.2 64.8 DP-04 11/11/15 DP-05-0.1.5 0 2 2.65 U 4.60 0.260 U 2.00 NT 18.9 5.85 523 0.110 U 13.9 44.6 DP-06 11/10/15 DP-06-5-1.5 6 2.74 U 2.66 0.241 U 17.1 5.29 5.23 0.110 U 13.9 44.6 DP-06 11/10/15 DP-06-5-1.3 12 13 1.31 U 1.67 0.283 U 3.25 0.284 15.9 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						-									
DP-03 111/01/15 DP-03-54.5 3.5 5 2.6.4.U 4.46 0.290 19.7 NT 19.8 4.43 1,330 0.106 U 23.2 64.8 DP-04 111/01/15 DP-04-3.5-4.5 3.5 5 1.41 U 4.21 0.296 580 NT 21.1 14.2 905 0.137 22.9 66.8 DP-05 11/11/15 DP-05-3.5-4.5 3.5 5 2.80 U 1.80 0.220 NT 18.9 5.85 523 0.112 U 15.6 56.6 DP-06 11/10/15 DP-06-5-6-0 UP 5 6 2.70 U 2.70 0.270 U 2.70 0.271 J 1.4 4.46 0.0620 J 1.1 1.32 U 1.67 0.281 J 1.71 1.4 2.49 616 0.108 U 1.33 U 1.67 0.284 J 1.71 1.7.5 5.3 1.010 U 1.39 44.6 DP-07 11/10/15 DP-06-12-13 12 13 1.31 U 1.67					-								-			
DP-04 11/10/15 DP-04-0-1 0 1 1.22 4.37 0.304 599 NT 19.9 11.3 719 0.106 2.2.9 66.8 DP-05 11/11/15 DP-063-0-1.5 0 2 2.56 U 4.60 0.256 U 3.0 T 21.1 14.2 905 0.177 62.0 DP-05 11/11/15 DP-06-5-6 5 2.74 U 2.56 0.274 U 10.1 0.620 17.1 5.29 523 0.112 15.6 6.6 DP-06 11/10/15 DP-06-5-01-0 1 3.36 U 3.80 0.380 9.021 2.24 4.41 4.65 0.646 1.79 7.90 DP-06 11/10/15 DP-07-3.5-4.5 3.5 5 2.62 3.72 0.262.1 NT 17.7 6.35 1.10 1.30 4.6.2 NT 17.7 6.35 1.10 1.0 1.0 0.0 1.11.0 1.0					-											
DP-04 11/10/15 DP-05-01.5 0 2 2.56 U 4.60 0.256 U 2.30 NT 21.1 14.2 905 0.117 22.9 66.8 DP-05 11/11/15 DP-05-3.5.4.5 3.5 5 2.80 U 1.86 0.256 U 22.0 NT 18.0 5.85 523 0.112 U 15.6 56.66 DP-06 11/10/15 DP-06-56-0 LP 5 6 2.70 U 2.70 0.270 U 2.71 1.7.4 5.29 0.110 U 13.9 44.6 DP-06 11/10/15 DP-06-56-0 LP 0 1 3.88 U 4.38 0.36 U 989 0.212 24.4 14.2 465 0.646 6.19 97.1 DP-06 11/10/15 DP-07-0-1 0 1 2.88 U 3.72 0.262 U 2.0 NT 2.8.6 6.66 588 0.164 6.19 97.1 DP-07 11/10/15 DP-07-0-1 0 1 2.80 U <					-		-									
DP-05 11/11/15 DP-05-3.5.4.5 3.5 5 2.80 U 1.96 0.280 U 223 NT 23.1 8.10 734 0.427 17.7 62.0 DP-05 11/10/15 DP-05-3.5.4.5 3.5 5 2.80 U 1.96 0.280 U 22.0 NT 18.9 5.85 523 0.112 U 15.6 56.6 DP-06 11/10/15 DP-06-5-0 DP 5 6 2.70 U 2.70 0.270 U 2.27 0.247 J 17.4 5.49 616 0.108 U 13.9 48.2 DP-06 11/10/15 DP-06-12.13 12 13 1.31 U 1.67 0.263 U 32.5 0.284 15.9 7.60 955 0.164 6.19 9.7.1 DP-07 11/10/15 DP-07-3.5.4.5 3.5 5 2.62 U 2.0 NT 17.7 5.35 0.112 U 15.6 6.66 580 0.112 U 15.6 5.3 DP-08 11/10/15 DP-08-3.5.4.5																
DP-05 11/11/15 DP-06:35.4.5 3.5 5 2.80 U 1.96 0.270 U P.20 NT 18.9 5.85 523 0.112 U 15.6 56.6 DP-06 11/10/15 DP-06-5-6-DUP 5 6 2.70 U 2.27 0.270 U 2.27 0.247 J 17.4 5.49 616 0.108 U 13.9 44.6 DP-06 11/10/15 DP-06-0-1 0 1 3.36 U 4.38 0.336 U 389 0.212 24.4 14.2 465 0.646 619 87.1 DP-06 11/10/15 DP-06-0-1 0 1 2.68 U 32.5 0.224 1.7 7.53 1.010 0.137 25.6 52.0 DP-07 11/10/15 DP-08-0-1 0 1 2.83 U 3.65 0.283 U 60.6 NT 22.4 8.87 539 0.113 U 18.2 60.6 DP-08 11/10/15 DP-08-3.5.45 3.5 5 1.16 U 1.30	-														-	
DP-06 11/10/15 DP-06-5-6 5 6 2.74 U 2.56 0.274 U 11. 1.0620 J 17.1 5.29 523 0.110 U 13.9 44.6 DP-06 11/10/15 DP-06-5-6-DUP 5 6 2.70 U 2.270 0.270 U 22.7 0.247 J 17.4 5.49 616 0.108 U 13.9 48.2 DP-06 11/10/15 DP-06-0-1 0 1 3.36 U 4.38 0.336 U 989 0.212 24.4 14.2 465 0.646 17.9 79.0 DP-06 11/10/15 DP-06-12-13 12 13 1.31 U 1.657 0.280 U 42.2 NT 77.5 35 1.010 0.137 25.6 52.0 DP-07 11/10/15 DP-08-3.5.4.5 3.5 5 2.60U 301 NT 18.0 9.88 1.600 0.112 U 15.6 6.16 D D 1.12.4 U 4.38 0.328 2.1 NT 13.7 NT 13.7																
DP-06 11/10/15 DP-06-01 0 1 3.36 U 9.270 0.270 U 2.7 0.247 J 17.4 5.49 616 0.108 U 13.3 48.2 DP-06 11/10/15 DP-06-0-1 0 1 3.36 U 4.38 0.336 U 929 0.212 24.4 14.2 465 0.646 17.9 79.0 DP-06 11/10/15 DP-07-0-1 0 1 2.68 U 5.7 0.268 U 46.2 J NT 17.7 5.35 1.010 0.137 25.6 52.0 DP-07 11/10/15 DP-07-0-1 0 1 2.88 U 3.65 0.283 U 60.6 NT 22.4 8.67 539 0.112 U 18.2 60.6 DP-08 11/10/15 DP-90-1 0 1 2.49 U 4.83 0.358 26.1 NT 19.1 10.1 1.030 0.999 U 17.7 75.0 DP-09 11/11/15 DP-10-3.54.5 3.5 5 1									-							
DP-06 11/10/15 DP-06-0-1 0 1 3.36 U 4.38 0.336 U 989 0.212 24.4 14.2 465 0.646 17.9 79.0 DP-06 11/10/15 DP-06-12-13 12 13 1.31 1.67 0.268 1 5.9 7.60 955 0.164 6.19 87.1 DP-07 11/10/15 DP-08-1.5 3.5 5 2.62 1.72 0.268 1 46.2 NT 7.7.6 5.85 0.015 18.0 58.3 DP-08 11/10/15 DP-08-3.54.5 3.5 5 2.80 0 301 NT 18.0 9.88 1,580 0.112 15.6 61.6 DP-09 11/11/15 DP-9.0-1 0 1 1.24 4.83 0.358 26.1 NT 13.7 3.22 592 0.0926 14.4 40.1 DP-10 11/11/15 DP-10-1 0 1 1.30 0.324					-											-
DP-06 11/10/15 DP-06-12-13 12 13 1.31 U 1.67 0.268 U 32.5 0.284 15.9 7.60 955 0.164 6.19 87.1 DP-07 11/10/15 DP-07-0-1 0 1 2.68 U 5.77 0.268 U NT 17.7 5.35 1,010 0.137 25.6 52.0 DP-07 11/10/15 DP-08-0-1 0 1 2.80 U 3.65 0.280 U 0.60 NT 22.4 8.87 539 0.113 U 18.2 60.6 DP-08 11/10/15 DP-9.45.45 3.5 5 2.80 U 3.86 0.280 U 301 NT 18.0 9.98 1,580 0.112 U 15.6 61.6 DP-09 11/11/15 DP-10-1 0 1 1.180 U 3.89 0.283 U 3.0 NT 13.7 3.7 3.7 5.5 1.16 U 4.30 0.284 U NT 12.7 15.5 1.190 U 0.15 U 14.4							-									
DP-07 11/10/15 DP-07-0-1 0 1 2.68 U 5.57 0.288 U 46.2 J NT 17.7 5.35 1,010 0.137 25.6 52.0 DP-07 11/10/15 DP-07-3.5-4.5 3.5 5 2.62 U 3.72 0.262 U 22.0 NT 20.8 6.66 588 0.105 U 18.0 58.3 DP-08 11/10/15 DP-08-0-1 0 1 2.83 U 3.65 0.283 U 60.6 NT 22.4 8.67 539 0.113 U 18.2 60.6 DP-08 11/11/15 DP-9.0-1 0 1 1.48 U 3.38 26.1 NT 19.1 10.1 1.030 0.0989 U 19.7 76.9 DP-10 11/11/15 DP-10-0-1 0 1 1.19 U 3.89 0.263 23.0 NT 22.2 6.29 2.410 0.095 U 17.7 53.0 DP-10 11/11/15 DP-10-0-1 0 1 3.74 0.																
DP-07 11/10/15 DP-07.3.5.4.5 3.5 5 2.62 U 3.72 0.262 U 2.0 NT 20.8 6.66 568 0.105 U 18.0 58.3 DP-08 11/10/15 DP-08-0-1 0 1 2.83 U 5.65 0.283 U 6.66 NT 22.4 8.87 539 0.113 U 18.0 6.66 6.66 568 0.113 U 18.0 6.66 568 0.113 U 15.0 6.16 61.6 61.6 61.6 61.6 568 0.113 U 15.0 0.112 15.0 0.112 15.0 0.112 15.0 0.112 15.0 0.112 15.0 0.114 40.1 0.00 0.263 23.0 NT 13.7 3.22 592 0.0926 U 14.4 40.1 DP-10 11/11/15 DP-11-0.5 0 1 1.23 U 4.24 J 0.284 32.2 NT 15.8 J 7.38							-									-
DP-08 11/10/15 DP-08-0.1 0 1 2.83 U 3.65 0.283 U 60.6 NT 22.4 8.87 539 0.113 U 18.2 60.6 DP-08 11/10/15 DP-08-3.5-4.5 3.5 5 2.80 U 5.88 0.280 U 301 NT 18.0 9.98 1,580 0.112 U 15.6 61.6 DP-09 11/11/15 DP-90-1 0 1 1.24 U 4.83 0.358 26.1 NT 19.1 10.1 10.30 0.0989 U 19.7 78.9 DP-10 11/11/15 DP-10-0-1 0 1 1.19 U 3.89 0.263 23.0 NT 22.2 6.29 2,410 0.0955 U 17.7 53.0 DP-10 11/11/15 DP-11-0-1 0 1 1.23 U 4.80 0.249 U 22.2 NT 15.8 J 7.38 546 J 0.103 U 17.6 J 59.4 DP-11 11/11/15 DP-12-0-1 0 1																
DP-08 11/10/15 DP-08-3.5-4.5 3.5 5 2.80 U 5.88 0.280 U 301 NT 18.0 9.98 1,580 0.112 U 15.6 61.6 DP-09 11/11/15 DP-9.0-1 0 1 1.24 U 4.83 0.358 26.1 NT 19.1 10.1 1,030 0.0980 U 19.7 78.9 DP-10 11/11/15 DP-10.0-1 0 1 1.19 U 3.89 0.232 U 13.7 NT 13.7 3.22 6.29 2.410 0.0955 U 17.7 53.0 DP-10 11/11/15 DP-10.3.5-4.5 3.5 5 1.16 U 4.24 J 0.289 24.0 NT 17.8 J 7.38 546 J 0.10 U 17.6 J 59.4 DP-11 11/11/15 DP-11.3.5-4.5 3.5 5 1.16 U 4.24 J 0.289 23.1 NT 26.1 J 8.98 904 J 0.095 U 24.0 J 71.9 DP-12 11/11/16 DP	-															
DP-09 11/11/15 DP-9-0-1 0 1 1.24 U 4.83 0.358 26.1 NT 19.1 10.1 1,030 0.0989 U 19.7 78.9 DP-09 11/11/15 DP-9-3.5-4.5 3.5 5 1.16 U 1.30 0.232 U 13.7 NT 13.7 3.22 592 0.0926 U 14.4 40.1 DP-10 11/11/15 DP-10-3.5-4.5 3.5 5 1.31 U 3.74 0.280 23.0 NT 22.2 6.29 2.410 0.0955 U 17.7 53.0 DP-11 11/11/15 DP-11-0.1 0 1 1.23 U 4.80 0.246 U 60.1 NT 17.1 24.8 696 0.888 14.4 77.5 DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 4.24 J 0.284 32.2 NT 15.8 J 7.38 546 J 0.103 U 17.6 J 59.4 DP-11 11/11/15 DP-11-2.0-1 0 1 </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-											
DP-09 11/11/15 DP-9.3.5-4.5 3.5 5 1.16 U 1.30 0.232 U 13.7 NT 13.7 3.22 592 0.0926 U 14.4 40.1 DP-10 11/11/15 DP-10-0-1 0 1 1.19 U 3.89 0.263 23.0 NT 22.2 6.29 2.410 0.0955 U 17.7 53.0 DP-10 11/11/15 DP-10-3.5-4.5 3.5 5 1.31 U 3.74 0.289 24.0 NT 12.7 15.5 1,190 0.105 U 14.8 97.5 DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 4.24 J 0.284 32.2 NT 15.8 J 7.38 546 J 0.103 U 17.6 J 59.4 DP-11 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 25.3 8.37 809 0.101 U 26.2 60.7 DP-13 11/11/15 DP-13-3-5 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
DP-10 11/11/15 DP-10-0-1 0 1 1.19 U 3.89 0.263 23.0 NT 22.2 6.29 2.410 0.0955 U 17.7 53.0 DP-10 11/11/15 DP-10-3.5-4.5 3.5 5 1.31 U 3.74 0.289 24.0 NT 12.7 15.5 1,190 0.105 U 14.8 97.5 DP-11 11/11/15 DP-11-0-1 0 1 1.23 U 4.80 0.246 U 60.1 NT 17.1 24.8 696 0.888 14.4 97.5 DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 6.64 J 0.289 33.3 NT 26.1 J 8.98 904 J 0.0925 U 24.0 J 71.9 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.105 U 26.2 60.7 DP-13 11/11/15 DP-13-3-5 3 5					-											
DP-10 11/11/15 DP-10-3.5-4.5 3.5 5 1.31 U 3.74 0.289 24.0 NT 12.7 15.5 1,190 0.105 U 14.8 97.5 DP-11 11/11/15 DP-11-0-1 0 1 1.23 U 8.08 0.246 0.601 NT 17.1 24.8 696 0.888 14.4 77.5 DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 4.24 0.284 32.2 NT 15.8 7.38 546 J 0.0925 U 0.925 J 7.19 DP-12 11/11/15 DP-12-0-1 0 1 1.26 U 2.26 0.289 3.3 NT 25.3 8.37 809 0.101 26.2 69.6 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 3.27 0.213 17.4 14.3 724 0.100 13.1 1.1 1.1 1																
DP-11 11/11/15 DP-11-0-1 0 1 1.23 U 4.80 0.246 U 60.1 NT 17.1 24.8 696 0.888 14.4 77.5 DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 4.24 J 0.284 32.2 NT 15.8 J 7.38 54 J 0.103 U 17.6 J 59.4 DP-11 11/11/15 DP-11-3.5-4.5 DUP 3.5 5 1.16 U 6.64 J 0.289 33.3 NT 26.1 J 8.96 J0.4 J 0.0925 U 24.0 J 71.9 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.105 U 26.2 60.7 DP-13 11/11/15 DP-13-3-5 3 5 1.31 U 4.27 0.213 17.4 14.3 724 0.100 U 13.1 71.5 DP-13 11/11/15 DP-13-8-9 8 9 1.29 U 2.83																
DP-11 11/11/15 DP-11-3.5-4.5 3.5 5 1.16 U 4.24 J 0.284 32.2 NT 15.8 J 7.38 546 J 0.103 U 17.6 J 59.4 DP-11 11/11/15 DP-11-3.5-4.5 DUP 3.5 5 1.16 U 6.64 J 0.289 33.3 NT 26.1 J 8.98 904 J 0.0925 U 24.0 J 71.9 DP-12 11/11/15 DP-12-0.1 0 1 1.26 U 5.26 0.289 25.1 NT 25.3 8.37 809 0.101 U 26.2 69.6 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.100 U 13.1 71.9 DP-13 11/11/15 DP-13-3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 25.5 65.4 DP-13 11/11/15 DP-13-3-3-5-DUP 3	-															
DP-11 11/11/15 DP-11-3.5-4.5 DUP 3.5 5 1.16 U 6.64 J 0.289 33.3 NT 26.1 J 8.98 904 J 0.0925 U 24.0 J 71.9 DP-12 11/11/15 DP-12-0-1 0 1 1.26 U 5.26 0.289 25.1 NT 25.3 8.37 809 0.101 U 26.2 69.6 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.105 U 26.2 69.6 DP-13 11/11/15 DP-13-3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 26.5 59.8 DP-13 11/11/15 DP-13-3-5-DUP 3 5 1.38 U 4.85 0.331 2.0 0.342 23.5 7.51 883 0.110 U 26.5 59.8 DP-13 11/11/15 DP-13-3-5-0UP 3																
DP-12 11/11/15 DP-12-0-1 0 1 1.26 U 5.26 0.289 25.1 NT 25.3 8.37 809 0.101 U 26.2 69.6 DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.105 U 26.2 60.7 DP-13 11/11/15 DP-13-0-1 0 1 2.51 U 3.84 0.264 27.7 0.213 17.4 14.3 724 0.100 U 13.1 71.5 DP-13 11/11/15 DP-13-3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 25.5 65.4 DP-13 11/11/15 DP-13-8-9 8 9 1.29 U 2.83 0.259 U 19.2 NT 17.0 5.55 612 0.104 U 17.1 49.1 DP-14 11/11/15 DP-14.3.5-4.5 3.5 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
DP-12 11/11/15 DP-12-3.5-4.5 3.5 5 1.31 U 4.27 0.353 29.8 NT 29.3 6.69 820 0.105 U 26.2 60.7 DP-13 11/11/15 DP-13.0-1 0 1 2.51 U 3.84 0.264 27.7 0.213 17.4 14.3 724 0.100 U 13.1 71.5 DP-13 11/11/15 DP-13.3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 25.5 65.4 DP-13 11/11/15 DP-13.8-9 8 9 1.29 U 2.83 0.259 U 19.2 NT 17.0 5.55 612 0.104 U 17.1 49.1 DP-14 11/11/15 DP-14.0-1 0 1 2.58 U 4.24 0.258 354 NT 22.1 15.8 924 0.104 U 24.8 57.2 DP-14 11/11/15 DP-14.3.5 4.5 3.5 5																
DP-13 11/11/15 DP-13.0-1 0 1 2.51 U 3.84 0.264 27.7 0.213 17.4 14.3 724 0.100 U 13.1 71.5 DP-13 11/11/15 DP-13.3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 25.5 65.4 DP-13 11/11/15 DP-13.3-5-DUP 3 5 1.33 U 3.91 0.306 20.1 NT 24.6 6.99 950 J 0.106 U 26.5 59.8 DP-13 11/11/15 DP-13.3-5.4.5 3.5 5 2.61 U 4.025 354 NT 22.1 15.8 924 0.103 U 20.5 80.4 DP-14 11/11/15 DP-14-3.5-4.5 3.5 5 2.61 U 4.03 0.261 U 20.6 NT 21.3 6.18 679 0.104 U 24.8 57.2 DP-15 11/11/15 DP-15-0-1 0 1 1.21 U																
DP-13 11/11/15 DP-13.3-5 3 5 1.38 U 4.85 0.331 22.0 0.342 23.5 7.51 883 0.110 U 25.5 65.4 DP-13 11/11/15 DP-13.3-5-DUP 3 5 1.33 U 3.91 0.306 20.1 NT 24.6 6.99 950 J 0.106 U 26.5 59.8 DP-13 11/11/15 DP-13.3-5-DUP 3 5 1.33 U 3.91 0.306 20.1 NT 24.6 6.99 950 J 0.106 U 26.5 59.8 DP-13 11/11/15 DP-14-0.1 0 1 2.58 U 4.24 0.258 354 NT 22.1 15.8 924 0.103 U 20.5 80.4 DP-14 11/11/15 DP-14-3.54.5 3.5 5 2.61 U 4.03 0.261 U 20.6 NT 21.3 6.18 679 0.104 U 24.8 57.2 DP-15 11/11/15 DP-15-4-5 4.0 5					-										-	
DP-13 11/11/15 DP-13-3-5-DUP 3 5 1.33 U 3.91 0.306 20.1 NT 24.6 6.99 950 J 0.106 U 26.5 59.8 DP-13 11/11/15 DP-13-8-9 8 9 1.29 U 2.83 0.259 U 19.2 NT 17.0 5.55 612 0.104 U 17.1 49.1 DP-14 11/11/15 DP-14-0.1 0 1 2.66 U 4.24 0.258 354 NT 22.1 15.8 924 0.103 U 20.5 80.4 DP-14 11/11/15 DP-14-3.5-4.5 3.5 5 2.61 U 4.03 0.261 U 20.6 NT 21.3 6.18 679 0.104 U 24.8 57.2 DP-15 11/11/15 DP-15-4-5 4.0 5 2.92 5.36 6.77 32.300 NT 17.30 11.90 0.527 68.1 6.800 DP-16 11/10/15 DP-16-0-1 0 1 1.12 UJ <t< td=""><td>-</td><td></td><td></td><td>-</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td></t<>	-			-	5							-			-	-
DP-13 11/11/15 DP-13-8-9 8 9 1.29 U 2.83 0.259 U 19.2 NT 17.0 5.55 612 0.104 U 17.1 49.1 DP-14 11/11/15 DP-14-0-1 0 1 2.58 U 4.24 0.258 354 NT 22.1 15.8 924 0.103 U 20.5 80.4 DP-14 11/11/15 DP-14-3.5-4.5 3.5 5 2.61 U 4.03 0.261 U 20.6 NT 21.3 6.18 679 0.104 U 24.8 57.2 DP-15 11/11/15 DP-15-0-1 0 1 1.21 U 5.56 6.77 32.300 NT 17.3 11.9 1.030 0.0968 U 16.1 63.2 DP-15 11/11/15 DP-15-4-5 4.0 5 2.92 5.36 6.77 32.300 NT 56.00 1.420 1.40 1.41 2.77 67.4 DP-16 11/10/15 DP-16-0.1 0 1 1.27	-								-							
DP-14 11/11/15 DP-14·3.5-4.5 3.5 5 2.61 U 4.03 0.261 U 20.6 NT 21.3 6.18 679 0.104 U 24.8 57.2 DP-15 11/11/15 DP-15-0-1 0 1 1.21 U 5.56 0.363 310 NT 17.3 11.9 1,030 0.0968 U 16.1 63.2 DP-15 11/11/15 DP-15-4-5 4.0 5 2.92 5.36 6.77 32,300 NT 56,000 1,420 1,190 0.527 68.1 6,800 DP-16 11/10/15 DP-16-0.1 0 1 1.12 UJ 3.86 0.348 1,550 NT 20.5 9.76 674 0.144 22.7 67.4 DP-16 11/10/15 DP-16-3.5-4.5 3.5 5 1.39 U 6.95 0.279 U 60.2 NT 14.5 8.55 1,280 0.111 U 16.6 57.8 DP-17 11/10/15 DP-17-0-1 0 1	DP-13									NT						
DP-15 11/11/15 DP-15-0-1 0 1 1.21 U 5.56 0.363 310 NT 17.3 11.9 1.030 0.0968 U 16.1 63.2 DP-15 11/11/15 DP-15-4-5 4.0 5 2.92 5.36 6.77 32,300 NT 56,000 1,420 1,190 0.527 68.1 6,800 DP-16 11/10/15 DP-16-0-1 0 1 1.12 UJ 3.86 0.348 1,550 NT 20.5 9.76 674 0.144 22.7 67.4 DP-16 11/10/15 DP-16-3.5-4.5 3.5 5 1.39 U 6.95 0.279 U 60.2 NT 14.5 8.55 1,280 0.111 U 16.6 57.8 DP-17 11/10/15 DP-17-0-1 0 1 1.27 U 4.80 0.369 181 6.43 20.9 15.2 759 1.52 21.1 71.5 DP-17 11/10/15 DP-17.3.5-4.5 3.5 5 <t< td=""><td>DP-14</td><td>11/11/15</td><td>DP-14-0-1</td><td>0</td><td>1</td><td>2.58 U</td><td>4.24</td><td>0.258</td><td>354</td><td>NT</td><td>22.1</td><td>15.8</td><td>924</td><td>0.103 U</td><td>20.5</td><td>80.4</td></t<>	DP-14	11/11/15	DP-14-0-1	0	1	2.58 U	4.24	0.258	354	NT	22.1	15.8	924	0.103 U	20.5	80.4
DP-15 11/11/15 DP-15.4-5 4.0 5 2.92 5.36 6.77 32,300 NT 56,000 1,420 1,190 0.527 68.1 6,800 DP-16 11/10/15 DP-16-0-1 0 1 1.12 UJ 3.86 0.348 1,550 NT 20.5 9.76 674 0.144 22.7 67.4 DP-16 11/10/15 DP-16.3.5.4.5 3.5 5 1.39 U 6.95 0.279 U 60.2 NT 14.5 8.55 1,280 0.111 U 16.6 57.8 DP-17 11/10/15 DP-17-0.1 0 1 1.27 U 4.80 0.369 181 6.43 20.9 15.2 759 1.52 21.1 71.5 DP-17 11/10/15 DP-17-3.5-4.5 3.5 5 1.28 U 4.95 0.384 44.9 2.26 19.4 8.76 827 0.102 U 25.2 71.2 DP-17 11/10/15 DP-17-8-9 8 9 <t< td=""><td>DP-14</td><td></td><td></td><td></td><td>5</td><td></td><td>4.03</td><td>0.261 U</td><td>20.6</td><td></td><td></td><td></td><td>679</td><td></td><td>24.8</td><td>57.2</td></t<>	DP-14				5		4.03	0.261 U	20.6				679		24.8	57.2
DP-15 11/11/15 DP-15-4-5 4.0 5 2.92 5.36 6.77 32,300 NT 56,000 1,420 1,190 0.527 68.1 6,800 DP-16 11/10/15 DP-16-0-1 0 1 1.12 UJ 3.86 0.348 1,550 NT 20.5 9.76 674 0.144 22.7 67.4 DP-16 11/10/15 DP-16.3.5.4.5 3.5 5 1.39 U 6.95 0.279 U 60.2 NT 14.5 8.55 1,280 0.111 U 16.6 57.8 DP-17 11/10/15 DP-17-0.1 0 1 1.27 U 4.80 0.369 181 6.43 20.9 15.2 759 1.52 21.1 71.5 DP-17 11/10/15 DP-17-3.5-4.5 3.5 5 1.28 U 4.95 0.384 44.9 2.26 19.4 8.76 827 0.102 U 25.2 71.2 DP-17 11/10/15 DP-17-8-9 8 9 <t< td=""><td>DP-15</td><td>11/11/15</td><td></td><td>0</td><td>1</td><td></td><td>5.56</td><td>0.363</td><td>310</td><td>NT</td><td>17.3</td><td>11.9</td><td>1,030</td><td>0.0968 U</td><td></td><td>63.2</td></t<>	DP-15	11/11/15		0	1		5.56	0.363	310	NT	17.3	11.9	1,030	0.0968 U		63.2
DP-16 11/10/15 DP-16-0-1 0 1 1.12 UJ 3.86 0.348 1,550 NT 20.5 9.76 674 0.144 22.7 67.4 DP-16 11/10/15 DP-16-3.5-4.5 3.5 5 1.39 U 6.95 0.279 U 60.2 NT 14.5 8.55 1,280 0.111 U 16.6 57.8 DP-17 11/10/15 DP-17-0.1 0 1 1.27 U 4.80 0.369 181 6.43 20.9 15.2 759 1.52 21.1 71.5 DP-17 11/10/15 DP-17-3.5-4.5 3.5 5 1.28 U 4.95 0.384 44.9 2.26 19.4 8.76 827 0.102 U 25.2 71.2 DP-17 11/10/15 DP-17-8-9 8 9 1.28 U 16.4 NT 18.3 7.96 10.01 0.113 U 18.1 55.8 DP-18 11/11/15 DP-18-0-1 0 1 2.20 U 15.4	DP-15			4.0	5				32,300	NT	56,000	1,420	,		68.1	6,800
DP-17 11/10/15 DP-17-0.1 0 1 1.27 U 4.80 0.369 181 6.43 20.9 15.2 759 1.52 21.1 71.5 DP-17 11/10/15 DP-17-3.5-4.5 3.5 5 1.28 U 4.95 0.384 44.9 2.26 19.4 8.76 827 0.102 U 25.2 71.2 DP-17 11/10/15 DP-17-8-9 8 9 1.41 U 5.91 0.283 U 16.4 NT 18.3 7.96 1,010 0.113 U 18.1 55.8 DP-18 11/11/15 DP-18-0-1 0 1 2.20 U 1.54 0.220 U 51.7 NT 19.6 5.17 525 0.100 9.58 47.6	DP-16	11/10/15	DP-16-0-1	0	1	1.12 UJ		0.348	1,550	NT	20.5	9.76	674	0.144	22.7	67.4
DP-17 11/10/15 DP-17-3.5-4.5 3.5 5 1.28 U 4.95 0.384 44.9 2.26 19.4 8.76 827 0.102 U 25.2 71.2 DP-17 11/10/15 DP-17-8-9 8 9 1.41 U 5.91 0.283 U 16.4 NT 18.3 7.96 1,010 0.113 U 18.1 55.8 DP-18 11/11/15 DP-18-0-1 0 1 2.20 U 51.7 NT 19.6 5.17 525 0.100 9.58 47.6	DP-16	11/10/15	DP-16-3.5-4.5	3.5	5	1.39 U	6.95	0.279 U	60.2	NT	14.5	8.55	1,280	0.111 U	16.6	57.8
DP-17 11/10/15 DP-17.8-9 8 9 1.41 5.91 0.283 16.4 NT 18.3 7.96 1,010 0.113 18.1 55.8 DP-18 11/11/15 DP-18-0-1 0 1 2.20 1.54 0.220 51.7 NT 19.6 5.17 525 0.100 9.58 47.6	DP-17	11/10/15	DP-17-0-1	0	1	1.27 U	4.80	0.369	181	6.43	20.9	15.2	759	1.52	21.1	71.5
DP-17 11/10/15 DP-17-8-9 8 9 1.41 U 5.91 0.283 U 16.4 NT 18.3 7.96 1,010 0.113 U 18.1 55.8 DP-18 11/11/15 DP-18-0-1 0 1 2.20 U 1.54 0.220 U 51.7 NT 19.6 5.17 525 0.100 9.58 47.6	DP-17	11/10/15	DP-17-3.5-4.5	3.5	5	1.28 U	4.95	0.384	44.9	2.26	19.4	8.76	827	0.102 U	25.2	71.2
	DP-17	11/10/15	DP-17-8-9	8	9		5.91	0.283 U	16.4	NT	18.3	7.96	1,010	0.113 U	18.1	55.8
DP-18 11/11/15 DP-18-3.5-4.5 3.5 5 2.63 U 4.09 0.263 U 43.9 NT 23.6 6.60 739 0.105 U 22.6 56.2		11/11/15		0	1	2.20 U	1.54	0.220 U	51.7	NT	19.6	5.17	525	0.100	9.58	47.6
	DP-18	11/11/15	DP-18-3.5-4.5	3.5	5	2.63 U	4.09	0.263 U	43.9	NT	23.6	6.60	739	0.105 U	22.6	56.2
DP-19 11/10/15 DP-19-0-1 0 1 1.33 U 5.32 0.346 45.2 NT 18.8 9.78 883 0.106 U 21.2 71.7	DP-19	11/10/15	DP-19-0-1	0	1	1.33 U	5.32	0.346		NT	18.8	9.78	883	0.106 U	21.2	71.7
DP-19 11/10/15 DP-19-3.5-4.5 3.5 5 1.22 U 6.71 0.317 42.8 NT 15.4 8.36 1,050 0.0975 U 20.2 88.3	DP-19	11/10/15	DP-19-3.5-4.5	3.5	5	1.22 U	6.71	0.317	42.8	NT	15.4	8.36	1,050	0.0975 U	20.2	88.3
DP-20 11/10/15 DP-20-0-1 0 1 1.18 U 3.92 0.272 24.9 NT 19.3 8.27 1,060 0.0981 19.5 58.6	DP-20	11/10/15	DP-20-0-1		1	1.18 U	3.92	0.272	24.9		19.3	8.27	1,060	0.0981	19.5	58.6
DP-20 11/10/15 DP-20-3.5-4.5 3.5 5 1.24 U 4.17 0.347 24.3 NT 18.1 6.32 791 0.0992 U 21.1 57.3	DP-20	11/10/15	DP-20-3.5-4.5	3.5	5	1.24 U	4.17	0.347	24.3	NT	18.1	6.32	791	0.0992 U	21.1	57.3

Notes:

Data reported to method reporting limit BOLD = detection DUP = Field Duplicate mg/kg = milligrams per kilogram

-- = Not Published

J = estimated result

U = not detected at or above the stated level

EPA = United States Environmental Protection Agency

shaded Exceeds background value

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR and Brooks Applied Labs in Bothell, WA.

NT = Not tested

Amec Foster Wheeler completed a data quality review and qualifiers added during the review are included in this table. ¹ Development of Oregon Background Metals Concentrations in Soil, Oregon Department of Environmental Quality (DEQ) Technical Report, Table 4 - Portland Basin, DEQ 2013.

TABLE 1B SOIL ANALYTICAL RESULTS - TOTAL PETROLEUM HYDROCARBONS (NWTPH-HCID)

Former Frontier Leather Tannery Property

	Sample	Occurred a ID	Start Depth		Diesel Range Hydrocarbons	Gasoline Range Hydrocarbon	Residual Range Hydrocarbon
Location ID	Date	Sample ID	(feet)	(feet)	mg/kg	mg/kg	mg/kg
DP-03	11/10/15	DP-03-0-1	0	1	63.3 U	25.3 U	127 U
DP-03	11/10/15	DP-03-3.5-4.5	3.5	5	62.5 U	25.0 U	125 U
DP-03	11/11/15	DP-3-9-10	9	10	60.5 U	24.2 U	121 U
DP-03	11/11/15	DP-3-14.5-15	15	15	64.6 U	25.8 U	129 U

Notes:

Data reported to method reporting limit

BOLD = detection

DUP = Field Duplicate

mg/kg = milligrams per kilogram

U = not detected at or above the stated level

EPA = United States Environmental Protection Agency

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR. Amec Foster Wheeler completed a data quality review and qualifiers added during the review are included in this table.

TABLE 2A GROUNDWATER ANALYTICAL RESULTS - TOTAL METALS

(EPA Method 6020A)

Former Frontier Leather Tannery Property

Location ID	Sample Date	Sample ID	Start Depth (feet)		D ∏/ā Antimony	D/d ∏/arsenic	D D D D D D D D D D D D D D D D D D D	Chromium ∏/ద	Cobber μg/L	Γead μg/L	Manganese ⊤√āπ	Mercury Marcury	Dickel Nickel	ziuc μg/L
Background V	alue 1				< 1	2	< 1	1	9	13		< 0.1	6	38
DP-02	11/10/15	DP-2-GW	10	15	2.00 U	9.56	0.411	53.9	30.3	10.3	735	0.0800 U	28.0	68.1
DP-06	11/10/15	DP-6-GW	7	12	2.00 U	7.73	0.300	32.1	10.0	2.73	1,690	0.0800 U	6.39	23.3
DP-13	11/11/15	DP-13-GW	15	20	2.00 U	1.40 J	0.211 J	9.36 J	10.2 J	4.70 J	521 J	0.0800 U	10.1 J	25.4
DP-13	11/11/15	DP-13-W-DUP	15	20	1.00 U	3.09 J	0.867 J	31.1 J	61.3 J	9.23 J	3,780 J	0.0800 U	55.5 J	146
DP-17	11/10/15	DP-17-GW	10	15	10.0 UJ	24.1 J	2.74	931	448	108	4,350	0.800 U	211 J	511

Notes:

Data reported to method reporting limit **BOLD** = detection DUP = Field Duplicate $\mu g/L$ = micrograms per liter J = estimated result U = not detected at or above the stated level R = rejected EPA = United States Environmental Protection Agency

shaded Exceeds background value

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR.

TABLE 2B GROUNDWATER ANALYTICAL RESULTS - DISSOLVED METALS

(EPA Method 6020)

Former Frontier Leather Tannery Property

Location ID	Sample Date	Sample ID	Start Depth (feet)	End Depth (feet)	D ∏/ā T	 ∏/āπ	T/Ω T/D	Dhromium T∕D	Copper hdd	Γead μgμ	Manganese	∭α L	[∏] β ^π	Zinc μά/Γ
Background Va		Gampio ib	(1001)	(1001)	<u>µg</u> /⊑ <1	2 2	_ <u>µg</u> ,∟ <1	1 1	9 9	13	μ <u>g</u> , <u>–</u>	< 0.1	<u>µg/∟</u> 6	38
DP-02	11/10/15	DP-2-GW	10	15	1.00 U	1.00 U	0.200 U	29.4	2.90	0.200 U	106	0.0800 U	12.2	4.00 U
DP-06	11/10/15	DP-6-GW	7	12	1.00 U	7.54	0.200 U	7.13	2.00 U	0.200 U	918	0.0800 U	3.51	4.00 U
DP-13	11/11/15	DP-13-GW	15	20	1.00 U	1.00 U	0.200 U	3.64	2.00 UJ	0.200 UJ	10.3	0.0800 U	1.00 U	4.00 U
DP-13	11/11/15	DP-13-W-DUP	15	20	1.00 U	1.00 U	0.200 U	3.97	17.2 J	0.400 J	11.2	0.0800 U	1.00 U	4.00 U
DP-17	11/10/15	DP-17-GW	10	15	1.00 U	1.00 U	0.200 U	11.5	2.00 U	0.200 U	530	0.0800 U	21.1	4.00 U

Notes:

Data reported to method reporting limit **BOLD** = detection

DUP = Field Duplicate

µg/L = micrograms per liter

J = estimated result

U = not detected at or above the stated level

EPA = United States Environmental Protection Agency

shaded Exceeds background value

Chemical analytical testing performed by APEX Laboratories, LLC in Tigard, OR.

AMEC completed a data quality review and qualifiers added during the review are included in this table.

¹ Background values from DEQ's Human Health Risk Assessment Guidance, Table 1 - Oregon Default Background Concentrations for Inorganic Chemicals (Freshwater), DEQ 2010.

TABLE 2C GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (EPA Method 8260B)

Former Frontier Leather Tannery Property

	Sample	Occurrente IP		End Depth		1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	
Location ID	Date	Sample ID	(feet)	(feet)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	╇
				I																L
DP-02	11/10/15	DP-2-GW	10	15					0.500 U		1.00 U	2.00 U	1.00 U	2.00 U	1.00 U			0.500 U		
DP-06	11/10/15	DP-6-GW	7	12					0.500 U		1.00 U	2.00 U	1.00 U	2.00 U	1.00 U		0.500 U		0.500 U	
DP-13	11/11/15	DP-13-GW	15	20					0.500 U		1.00 U	2.00 U	1.00 U	2.00 U	1.00 U			0.500 U		
DP-13	11/11/15	DP-13-W-DUP	15	20					0.500 U			2.00 U	1.00 U	2.00 U	1.00 U			0.500 U		
DP-17	11/10/15	DP-17-GW	10	15	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	1.00 U	2.00 U	1.00 U	2.00 U	1.00 U	5.00 U	0.500 U	0.500 U	0.500 U	(

	Sample		Start Depth	End Depth	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene	4-Isopropyltoluene	4-Methyl-2-Pentanone (MIBK)	Acetone	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon tetrachloride	Chlorobenzene	Chloroethane
Location ID	Date	Sample ID	(feet)	(feet)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
DP-02	11/10/15	DP-2-GW	10	15	1.00 U	10.0 UJ	1.00 U	1.00 U	10.0 U	20.0 UJ		0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	0.500 U	5.00 U
DP-06	11/10/15	DP-6-GW	7	12	1.00 U	10.0 UJ	1.00 U	1.00 U		20.0 UJ		0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	0.500 U	
DP-13	11/11/15	DP-13-GW	15	20	1.00 U	10.0 U	1.00 U	1.00 U	10.0 U			0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	0.500 U	
DP-13	11/11/15	DP-13-W-DUP	15	20	1.00 U	10.0 U	1.00 U	1.00 U	10.0 U		0.200 U		1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	0.500 U	
DP-17	11/10/15	DP-17-GW	10	15	1.00 U	10.0 UJ	1.00 U	1.00 U	10.0 U	20.0 UJ	0.200 U	0.500 U	1.00 U	1.00 U	1.00 U	5.00 U	1.00 U	0.500 U	5.00 U

Notes:

Data reported to method reporting limit

BOLD = detection

DUP = Field Duplicate

 $\mu g/L = micrograms per liter$

J = estimated result

U = not detected at or above the stated level

EPA = Environmental Protection Agency

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR. Amec Foster Wheeler completed a data quality review and qualifiers added during the review are included in this table.

Former Frontier Leather Tannery Property Supplemental Remedial Investigation Report K:\13000\13082\Reports\Supp RI Rpt\Tables\T1AB-T2ABCD_20160126_November_2015_Samples

	bt □1,2-Dichloropropane	bt 1,3,5-Trimethylbenzene	tation de la contra de la cont	bt 1,3-Dichloropropane	bt → 1,4-Dichlorobenzene	ta b □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	bd bd T
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	0.500 U 0.500 U 0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	0.500 U 0.500 U 0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	0.500 U 0.500 U 0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	10.0 UJ 10.0 UJ 10.0 U 10.0 U 10.0 U 10.0 UJ
	Dright Driedorm	b⊄ D⊤/Chloromethane	© © □	od b⊂ r cis-1,3-Dichloropropene	bibromochloromethane	bibromomethane	Dichlorodifluoromethane
-							
	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	5.00 U 5.00 U 5.00 U 5.00 U 5.00 U	0.500 U 0.500 U 0.500 U 0.500 U 0.500 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U	1.00 U 1.00 U 1.00 U 1.00 U 1.00 U

TABLE 2C GROUNDWATER ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDS (EPA Method 8260B)

Former Frontier Leather Tannery Property

	Sample			End Depth		Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methyl tert-Butyl Ether (MTBE)	Methylene chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl chloride
Location ID	Date	Sample ID	(feet)	(feet)	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				1	1																			
DP-02	11/10/15	DP-2-GW	10		0.500 U		1.00 U	1.00 U	1.00 U		2.00 U	1.00 U				1.00 U		0.500 U		0.500 U		0.500 U		0.500 U
DP-06	11/10/15	DP-6-GW	7		0.500 U		1.00 U	1.00 U			2.00 U					1.00 U		0.500 U		0.500 U		0.500 U		
DP-13	11/11/15	DP-13-GW	15		0.500 U		1.00 U	1.00 U	1.00 U		2.00 U		0.500 U			1.00 U		0.500 U		0.500 U		0.500 U		
DP-13	11/11/15	DP-13-W-DUP	15		0.500 U		1.00 U	1.00 U		5.00 U			0.500 U			1.00 U		0.500 U		0.500 U			2.00 U	
DP-17	11/10/15	DP-17-GW	10	15	0.500 U	5.00 U	1.00 U	1.00 U	1.00 U	5.00 U	2.00 U	1.00 U	0.500 U	0.500 U	1.00 U	1.00 U	1.00 U	0.500 U	1.00 U	0.500 U	1.00 U	0.500 U	2.00 U	0.500 U

Notes:

Data reported to method reporting limit **BOLD** = detection DUP = Field Duplicate $\mu g/L$ = micrograms per liter J = estimated result U = not detected at or above the stated level EPA = Environmental Protection Agency

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR. Amec Foster Wheeler completed a data quality review and qualifiers added during the review are included in this table.

TABLE 2D GROUNDWATER ANALYTICAL RESULTS - CHLORIDE

(EPA Method 300.0)

Former Frontier Leather Tannery Property

Location ID	Sample Date	Sample ID	Start Depth (feet)	End Depth (feet)	D D D D Chloride (as Cl)
DP-02	11/10/15	DP-2-GW	10	15	24.7
DP-06	11/10/15	DP-6-GW	7	12	225
DP-13	11/11/15	DP-13-GW	15	20	11.8
DP-13	11/11/15	DP-13-W-DUP	15	20	11.4
DP-17	11/10/15	DP-17-GW	10	15	125

Notes:

Data reported to method reporting limit

BOLD = detection

DUP = Field Duplicate

mg/L = milligrams per liter

EPA = United States Environmental Protection Agency

Chemical analytical testing performed by Apex Laboratories, LLC in Tigard, OR. Amec Foster Wheeler completed a data quality review and qualifiers added during the review are included in this table.

TABLE 3A RISK SCREENING - METALS SOIL ANALYTICAL RESULTS

Upland Exposure Unit

Former Frontier Leather Tannery Property

-					1	1								
			Depth	Antimony ⁴	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Manganese	Mercury	Nickel	Zinc ⁴
Location	Sample ID	Sample Date	(ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Recreational	User / Trespasser RE	BC ¹			10.0	1,500	> Max	6.5	61,000	400	36,000	460	30,000	
Occupational				470	1.9	1,100	> Max	6.3	47,000	800	25,000	350	22,000	350,000
	Worker RBC ²				15	350	530,000	49	14,000	800	8,200	110	7,000	
Excavation W					420	9,700	> Max	1,400	390,000	800	230,000	2,900	190,000	
Background \				0.56	8.8	0.63	76		34	79	1,800	0.23	47	180
North Landfill					0.0				•		.,			
HA-52	HA-52-0.5	6/6/2003	0.5	4.1	1.7	0.13 U	200	NT	19	160	220	0.29	15	91
HA-52	HA-52-3.0	6/6/2003	3.0	1.9	3.4	0.13 U	37	NT	21	6.2	590	0.017 U	17	53
MW-1	MW-1-12.0	6/5/2003	12.0	1.8	0.89	0.25	18	NT	17	4.1	280	0.079 U	9.8	52
TP-1	TP-1-1	6/5/2003	1	21	2.9 U	0.41	1800	NT	22	200	580	2.4	12	72
TP-1	TP-1-2	6/5/2003	2	17	3 U	0.57	1500	NT	29	72	580	1.9	17	110
TP-1	TP-1-8	6/5/2003	8	16	3.2 U	0.44	1400	NT	20	13	210	0.15	19	63
TP-2	TP-2-4	6/5/2003	4	59	16 U	0.6	5200	NT	35	43	740	0.91	18	96
TP-2 TP-3	TP-2-9 TP-3-1	6/5/2003 6/5/2003	9 1	66 3.3	14 U 2.9	0.55	6300 100	0.28 U NT	41 20	52 14	830 850	1.1 0.5	16 19	95 60
TP-3 TP-3	TP-3-1 TP-3-4	6/5/2003	4	220	2.9 42 U	0.52	21000	NT	20 19	14 28	400	0.5	19	54
TP-3	TP-3-10	6/5/2003	10	220	3.3	0.24	56	NT	19	4	590	0.017 U	29	54
TP-4	TP-4-8	6/5/2003	8	2.2	3.6	0.54	35	NT	19	5.1	1000	0.017 0	25	65
TP-5	TP-5-1	6/5/2003	1	13	0.6 U	0.6	670	NT	22	760	900	0.62	14	120
TP-5	TP-5-4	6/5/2003	4	3.2	3.5	0.32	170	NT	44	51	390	0.21	17	65
TP-5	TP-5-5	6/5/2003	5	6.6	24	1.2	66	NT	51	140	830	0.33	11	91
TP-22	TP-22-4.5	6/6/2003	4.5	120	0.63 U	0.22	11000	NT	26	100	560	13	15	120
Central Area				-				-						
DP-01	DP-01-0-1	11/10/2015	1	1.33 U	4.05	0.306	456 J	NT	18.6	9.82	674	0.107 U	22.2	61.1
DP-01	DP-01-3.5-4.5	11/10/2015	5	1.35 U	3.17	0.270 U	16.4	NT	17.9	5.58	875	0.108 U	21.3	50.8
DP-02	DP-2-0-1	11/10/2015	1	1.38 U	6.22	0.276 U	31.6	1.36	13.7	8.39	1,480	0.111 U	14.9	54.9
DP-02	DP-2-3.5-4.5	11/10/2015	5	1.20 U 1.29 U	4.01 2.89	0.287	18.3	0.266	18.3	5.30	860	0.0957 U	23.3 15.8	49.6
DP-02 DP-03	DP-2-8-9 DP-03-0-1	11/10/2015 11/10/2015	9 1	1.29 U 1.45 U	2.69	0.258 U 0.405	31.3 31.3	NT NT	17.7 16.9	5.93 9.24	282 742	0.103 U 0.116 U	15.0	52.8 58.9
DP-03	DP-03-3.5-4.5	11/10/2015	5	2.64 U	4.46	0.405	19.7	NT	19.8	9.24 4.84	1,530	0.116 U	24.7	55.1
DP-04	DP-04-0-1	11/10/2015	1	1.32 U	4.37	0.304	599	NT	19.9	11.3	719	0.100 U	23.2	64.8
DP-04	DP-04-3.5-4.5	11/10/2015	5	1.41 U	4.21	0.296	580	NT	21.1	14.2	905	0.137	22.9	66.8
DP-05	DP-05-0-1.5	11/11/2015	2	2.56 U	4.60	0.256 U	203	NT	23.1	8.10	734	0.427	17.7	62.0
DP-05	DP-05-3.5-4.5	11/11/2015	5	2.80 U	1.96	0.280 U	22.0	NT	18.9	5.85	523	0.112 U	15.6	56.6
DP-06	DP-06-5-6	11/10/2015	6	2.74 U	2.56	0.274 U	19.1	0.0620 J	17.1	5.29	523	0.110 U	13.9	44.6
DP-06	DP-06-5-6-DUP	11/10/2015	6	2.70 U	2.70	0.270 U	22.7	0.247 J	17.4	5.49	616	0.108 U	13.9	48.2
DP-06	DP-06-0-1	11/10/2015	1	3.36 U	4.38	0.336 U	989	0.212	24.4	14.2	465	0.646	17.9	79.0
DP-06	DP-06-12-13	11/10/2015	13	1.31 U	1.67	0.263 U	32.5	0.284	15.9	7.60	955	0.164	6.19	87.1
DP-07	DP-07-0-1	11/10/2015	1	2.68 U	5.57	0.268 U	46.2 J	NT	17.7	5.35	1,010	0.137	25.6	52.0
DP-07 DP-08	DP-07-3.5-4.5 DP-08-0-1	11/10/2015 11/10/2015	5	2.62 U	3.72 3.65	0.262 U 0.283 U	22.0 60.6	NT NT	20.8 22.4	6.66 8.87	588 539	0.105 U 0.113 U	18.0 18.2	58.3 60.6
DP-08	DP-08-3.5-4.5	11/10/2015	5	2.83 U 2.80 U	5.88	0.283 U 0.280 U	301	NT	18.0	9.98	1,580	0.113 U 0.112 U	15.6	61.6
DP-09	DP-9-0-1	11/11/2015	1	1.24 U	4.83	0.358	26.1	NT	19.1	10.1	1,030	0.0989 U	19.7	78.9
DP-09	DP-9-3.5-4.5	11/11/2015	5	1.16 U	1.30	0.232 U	13.7	NT	13.7	3.22	592	0.0926 U	14.4	40.1
DP-10	DP-10-0-1	11/11/2015	1	1.19 U	3.89	0.263	23.0	NT	22.2	6.29	2,410	0.0955 U	17.7	53.0
DP-10	DP-10-3.5-4.5	11/11/2015	5	1.31 U	3.74	0.289	24.0	NT	12.7	15.5	1,190	0.105 U	14.8	97.5
DP-11	DP-11-0-1	11/11/2015	1	1.23 U	4.80	0.246 U	60.1	NT	17.1	24.8	696	0.888	14.4	77.5
DP-11	DP-11-3.5-4.5	11/11/2015	5	1.16 U	4.24 J	0.284	32.2	NT	15.8 J	7.38	546 J	0.103 U	17.6 J	59.4
DP-11	DP-11-3.5-4.5 DUP	11/11/2015	5	1.16 U	6.64 J	0.289	33.3	NT	26.1 J	8.98	904 J	0.0925 U	24.0 J	71.9
DP-12	DP-12-0-1	11/11/2015	1	1.26 U	5.26	0.289	25.1	NT	25.3	8.37	809	0.101 U	26.2	69.6
DP-12 DP-13	DP-12-3.5-4.5 DP-13-0-1	11/11/2015 11/11/2015	5	1.31 U 2.51 U	4.27 3.84	0.353 0.264	29.8 27.7	NT 0.213	29.3 17.4	6.69 14.3	820 724	0.105 U 0.100 U	26.2 13.1	60.7 71.5
DP-13	DP-13-3-5	11/11/2015	5	1.38 U	4.85	0.204	22.0	0.213	23.5	7.51	883	0.100 U	25.5	65.4
DP-13	DP-13-3-5-DUP	11/11/2015	5	1.33 U	3.91	0.306	20.1	NT	24.6	6.99	950 J	0.110 U	26.5	59.8
DP-13	DP-13-8-9	11/11/2015	9	1.29 U	2.83	0.259 U	19.2	NT	17.0	5.55	612	0.100 U	17.1	49.1
DP-14	DP-14-0-1	11/11/2015	1	2.58 U	4.24	0.258	354	NT	22.1	15.8	924	0.103 U	20.5	80.4
DP-14	DP-14-3.5-4.5	11/11/2015	5	2.61 U	4.03	0.261 U	20.6	NT	21.3	6.18	679	0.104 U	24.8	57.2
DP-15	DP-15-0-1	11/11/2015	1	1.21 U	5.56	0.363	310	NT	17.3	11.9	1,030	0.0968 U	16.1	63.2
DP-15	DP-15-4-5	11/11/2015	5	2.92	5.36	6.77	32,300	NT	56,000	1,420	1,190	0.527	68.1	6,800
DP-16	DP-16-0-1	11/10/2015	1	1.12 UJ	3.86	0.348	1,550	NT	20.5	9.76	674	0.144	22.7	67.4
DP-16	DP-16-3.5-4.5	11/10/2015	5	1.39 U	6.95	0.279 U	60.2	NT	14.5	8.55	1,280	0.111 U	16.6	57.8
DP-17	DP-17-0-1	11/10/2015	1	1.27 U	4.80	0.369	181	6.43	20.9	15.2	759	1.52	21.1	71.5
DP-17 DP-17	DP-17-3.5-4.5 DP-17-8-9	11/10/2015 11/10/2015	5 9	1.28 U 1.41 U	4.95 5.91	0.384 0.283 U	44.9	2.26 NT	19.4 18.3	8.76 7.96	827 1,010	0.102 U 0.113 U	25.2	71.2 55.8
DP-17 DP-18	DP-17-8-9 DP-18-0-1	11/11/2015	9	2.20 U	5.91	0.283 U 0.220 U	16.4 51.7	NT	18.3	7.96 5.17	525	0.113 U 0.100	18.1 9.58	55.8 47.6
DP-18	DP-18-3.5-4.5	11/11/2015	5	2.20 U	4.09	0.220 U	43.9	NT	23.6	6.60	739	0.105 U	22.6	56.2
DP-19	DP-19-0-1	11/10/2015	1	1.33 U	5.32	0.346	45.2	NT	18.8	9.78	883	0.105 U	21.2	71.7
DP-19	DP-19-3.5-4.5	11/10/2015	5	1.22 U	6.71	0.317	42.8	NT	15.4	8.36	1,050	0.0975 U	20.2	88.3
DP-20	DP-20-0-1	11/10/2015	1	1.18 U	3.92	0.272	24.9	NT	19.3	8.27	1,060	0.0981	19.5	58.6
DP-20	DP-20-3.5-4.5	11/10/2015	5	1.24 U	4.17	0.347	24.3	NT	18.1	6.32	791	0.0992 U	21.1	57.3
									•				•	

Former Frontier Leather Tannery Property Supplemental Remedial Investigation Report K:\13000\13000\13082\Reports\Supp RI Rpt\Tables\T3ABCD_Risk Screening 5-61M-130820.3 June 2016 Table 3A | Page 1 of 2

TABLE 3A RISK SCREENING - METALS SOIL ANALYTICAL RESULTS

Upland Exposure Unit

Former Frontier Leather Tannery Property

			Depth	Antimony ⁴	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Manganese	Mercury	Nickel	Zinc ⁴
Location	Sample ID	Sample Date	(ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Recreational	User / Trespasser RE	BC ¹			10.0	1,500	> Max	6.5	61,000	400	36,000	460	30,000	
Occupational				470	1.9	1,100	> Max	6.3	47,000	800	25,000	350	22,000	350,000
	Worker RBC ²				15	350	530.000	49	14,000	800	8,200	110	7,000	
Excavation W					420	9.700	> Max	1,400	390,000	800	230,000	2.900	190.000	
Background V				0.56	8.8	0.63	76		34	79	1,800	0.23	47	180
South Landfil				0.00	0.0	0.00			0.		1,000	0.20		100
MW-6	MW-6-12	6/17/2003	12	1.5	3.6	0.52	19	NT	22	4.1	110	0.017 U	22	65
MW-7	MW-7-7	6/17/2003	7	2.3	4.2	0.94	14	NT	21	3.1	850	0.016 U	11	55
TP-6	TP-6-5	6/5/2003	5	3.2	3.5	0.42	92	NT	20	8.7	950	0.11	19	54
TP-7	TP-7-9	6/5/2003	9	2.4	2.7	0.38	34	0.26 U	19	4.4	650	0.017 U	19	50
TP-8	TP-8-7	6/5/2003	7	1.8	1.9	0.38	17	NT	19	4.7	660	0.017 U	20	52
TP-9	TP-9-1	6/5/2003	1	2.8	3.5	0.47	33	NT	14	7.3	630	0.028	15	69
TP-9	TP-9-3.5	6/5/2003	3.5	5.1	2	0.47	240	NT	16	12	830	0.14	17	81
TP-9	TP-9-5	6/5/2003	5	1.8	2.5	0.43	50	NT	18	4.5	790	0.017 U	17	48
TP-10	TP-10-6	6/5/2003	6	2.2	4.6	0.46	19	NT	20	5.5	650	0.017 U	19	53
TP-11	TP-11-2.5	6/5/2003	2.5	2.7	4.4	0.6	28	NT	20	6.2	770	0.023	23	61
TP-12	TP-12-2	6/5/2003	2	2.1	3.8	0.38	27	NT	19	6.1	720	0.082 U	24	62
TP-13	TP-13-2	6/5/2003	2	2.1	3.9	0.36	29	NT	18	6.5	600	0.081 U	20	62
TP-14	TP-14-3	6/5/2003	3	2	1.8	0.29	23	0.23 U	13	5.6	1600	0.077 U	16	80
TP-14	DUP-19	6/5/2003	3	2	0.6 U	0.29	21	0.28	13	5.6	1700	0.078 U	16	84
TP-16	TP-16-2.5	6/5/2003	2.5	2	3.7	0.34	19	NT	20	5.2	910	0.083 U	19	51
TP-17	TP-17-3	6/5/2003	3	2	2.5	0.28	17	NT	20	5	690	0.083 U	18	51
TP-18	TP-18-2.5	6/5/2003	2.5	1.5	2.2	0.25	17	NT	19	4.3	890	0.084 U	20	46
TP-21	TP-21-2.5	6/6/2003	2.5	1.8	1.7	0.26	13	NT	16	2.7	960	0.014 U	14	54

Notes:

Data reported to method reporting limit BOLD = detection

U = not detected at or above the stated level J = estimated result

mg/kg = milligrams per kilogram

NT = not tested

DUP = Field Duplicate DEQ = Oregon Department of Environmental Quality

EPA = United States Environmental Protection Agency

RBC = Risk-Based Concentration

- = Not Published shaded Concentration exceeds 1 or more RBCs

Analytical results from one of the following: EPA Methods 200.8, 6010B, 6020, 7471, 7196A, or 7199. ¹ Site-Specific RBC for Recreational User/Trespasser (Appendix F of this Supplemental RI Report).

² DEQ RBCs for direct contact (soil ingestion-dermal contact-inhalation), November 2015.

³ Development of Oregon Background Metals Concentrations in Soil, DEQ Technical Report , Table 4 - Portland Basin, DEQ 2013. ⁴ EPA Industrial Regional Screening Levels for soil, November 2015.

ft = feet bgs = below ground surface

> Max = The RBC is greater than 1,000,000 mg/kg, therefore, this analyte is not deemed to pose risk for the indicated exposure pathway.

TABLE 3B RISK SCREENING - METALS SOIL ANALYTICAL RESULTS Wetland Exposure Unit

Former Frontier Leather Tannery Property

									-	-			r	
			Depth	Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Manganese	Mercury	Nickel	Zinc
Location	Sample ID	Sample Date	(ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	User / Trespasse		(ge/		10.0	1,500	> Max	6.5	61,000	400	36,000	460	30,000	
					15	350	530,000	49	14,000	800	8,200	110	7,000	
	Worker RBC ²													
Excavation V					420	9,700	> Max	1,400	390,000	800	230,000	2,900	190,000	
Background				0.56	8.8	0.63	76		34	79	1,800	0.23	47	180
Rock Creek V			-					- 1999						
DRAIN-1	DRAIN-1-5	6/6/2003	5	1.1	1	0.11	25	NT	16	5.4	98	0.019	12	56
HA-1	HA-1-0.5	6/10/2003	0.5	16	12 U	0.83	1800	0.24 U	27	13	190	33	13	61
HA-1	HA-1-2.0	6/10/2003	2.0	1.3 U	1.5	0.51	20	NT	16	4.3	210	0.082 U	12	47
HA-2	HA-2-0.5	6/10/2003	0.5	5.7	3.8	1.6	380	NT	9.4	8.5	2900	0.66	17	43
HA-2	DUP-14	6/10/2003	0.5	4.9	5.9	1.2	300	NT	9.3	9.2	4100	0.24	20	44
HA-2	HA-2-2.0	6/10/2003	2.0	6.4	1.2 U	1.6	510	NT	15	4.4	1300	1.9	9.2	49
HA-3	HA-3-1.0	6/10/2003	1.0	35	24 U	1.1	4200	NT	22	12	250	2.4	14	62
HA-3	HA-3-3.5	6/10/2003	3.5	1.3 U	1.5	0.69	23	NT	23	6.5	90	0.12	13	54
HA-4	HA-4-0.5	6/10/2003	0.5	16	14 U	0.72	1900	NT	17	14	130	14	12	59
HA-4	HA-4-3.0	6/10/2003	3.0	1.9 U	7.4	0.82	35	NT	28	7.8	120	0.13	12	76
HA-5	HA-5-0.5	6/10/2003	0.5	1.5 U	4.5	0.7	44	NT	16	10	180	0.55	11	43
HA-5	DUP-13	6/10/2003	0.5	1.6 U	3.9	0.4	45	NT	14	12	170	0.11	12	46
HA-5	HA-5-3.0	6/10/2003	3.0	1.5	2.4	0.69	19	NT	17	5	110	0.093 U	13	54
HA-6	HA-6-0.5	6/10/2003	0.5	3.5	1.7	0.7	240	NT	15	5.1	150	0.19	13	48
HA-6	HA-6-4.0	6/10/2003	4.0	1.3	1.6	0.47	15	NT	18	7	120	0.086 U	9.2	60
HA-7	HA-7-0.5	6/10/2003	0.5	12	1.2 U	0.65	1400	NT	19	11	240	2.9	16	56
HA-7	DUP-11	6/10/2003	0.5	8.9	1.2 U	0.6	990	NT	18	10	280	0.4	17	57
HA-7	HA-7-2.5	6/10/2003	2.5	1.2 U	1.9	0.39	22	NT	14	4.7	110	0.08 U	16	47
HA-8	HA-8-0.5	6/10/2003	0.5	1.7	2.9	0.52	63	NT	12	6.7	100	0.19	11	53
HA-8	HA-8-1.5	6/10/2003	1.5	1.3	1.8	0.51	19	NT	17	4.5	130	0.077 U	14	55
HA-9	HA-9-0.5	6/10/2003	0.5	1.7	3	0.43	52	NT	13	10	440	0.91	14	50
HA-9	HA-9-3.0	6/10/2003	3.0	1.4 U	2.4	0.4	16	NT	18	5.9	110	0.088 U	18	58
HA-10	HA-10-0.5	6/9/2003	0.5	1.3 U	3.5	0.28	34	NT	13	11	120	0.13	0.93	43
HA-10	DUP-12	6/10/2003	0.5	3.3	2.5	0.54	190	NT	16	8.4	230	0.2	14	64
HA-10	HA-10-1.5	6/9/2003	1.5	1.3 U	1.5	0.19	21	NT	11	3.5	80	0.017 U	8.1	42
HA-11	HA-11-0.5	6/9/2003	0.5	39	32 U	0.44	4900	0.31 U	22	21	230	2.8	15	73
HA-11	HA-11-3.5	6/9/2003	3.5	2.4 U	2.8	0.24	36	NT	18	4.8	89	0.031 U	14	52
HA-12	HA-12-0.5	6/9/2003	0.5	20	14 U	0.78	2200	NT	18	13	1300	0.52	21	120
HA-12	DUP-10	6/9/2003	0.5	30	15 U	1.5	3400	NT	18	17	1200	0.65	22	130
HA-12	HA-12-2.5	6/9/2003	2.5	4.4	3.2	0.45	260	NT	17	7.3	1100	0.033	17	64
HA-13	HA-13-0.5	6/9/2003	0.5	74	62 U	0.71	8800	NT	23	32	330	2.5	17	110
HA-13	HA-13-3.5	6/9/2003	3.5	3.5	3.7	0.48	190	NT	16	7.9	800	0.055	16	62
HA-14	HA-14-1.0	6/9/2003	1.0	1.8	5	0.62	21	NT	18	5.2	4300	0.016 U	16	52
HA-14	HA-14-2.5	6/9/2003	2.5	1.8	2.1	0.39	40	NT	11	7.9	190	0.034	13	44
HA-15	HA-15-0.5	6/9/2003	0.5	21	13 U	0.37	2600	NT	17	17	130	1.1	9.5	49
HA-15	HA-15-2.0	6/9/2003	2.0	2.5	1.4 U	0.19	160	NT	11	5.2	61	0.15	7.6	23
HA-16	HA-16-0.5	6/9/2003	0.5	2.3	13 U	0.52	2500	NT	19	13	240	1.8	14	66
HA-16	HA-16-2.5	6/9/2003	2.5	6.7	6.4 U	0.32	720	NT	15	8.4	110	0.17	13	48
HA-17	HA-17-0.5	6/10/2003	0.5	13	1.2 U	0.71	1500	NT	13	13	660	3.7	12	68
HA-17	HA-17-0.5	6/10/2003	2.5	1.3	1.8	0.37	28	NT	12	3.3	89	0.076 U	11	48
HA-18	HA-18-0.5	6/10/2003	0.5	6.7	1.8	0.77	550	NT	20	12	300	0.070 0	18	82
HA-18	HA-18-2.5	6/10/2003	2.5	1.4	3	0.37	30	NT	9.9	5.8	150	0.03	12	57
HA-19	HA-19-1.0	6/9/2003	1.0	2.9	3.2	0.57	95	NT	18	5.3	200	0.079	12	58
HA-19	HA-19-2.0	6/9/2003	2.0	1.6	3	0.44	12	NT	16	4.5	240	0.017 U	14	48
HA-20	HA-20-1.0	6/9/2003	1.0	35	24 U	0.56	4000	2.1	16	16	270	0.36	13	72
HA-20	DUP-8	6/9/2003	1.0	22	12 U	0.81	2400	0.34	14	14	280	0.30	13	68
HA-20	HA-20-3.5	6/9/2003	3.5	1.7	1.7	0.61	23	NT	17	4.7	190	0.017 U	12	50
HA-20	DUP-9	6/9/2003	3.5	1.9	2.1	0.9	57	NT	15	4.9	200	0.017 0	12	52
HA-21	HA-21-0.5	6/9/2003	0.5	30	24 U	0.56	3600	NT	13	18	480	1.1	13	65
HA-21	HA-21-2.5	6/9/2003	2.5	1.5	3.7	0.68	31	NT	13	5.4	130	0.017 U	13	53
HA-22	HA-22-1.0	6/6/2003	1.0	1.6	3	0.15	42	NT	13	6.7	800	0.017 0	14	53
HA-22	HA-22-2.5	6/6/2003	2.5	1.7	2.9	0.093	47	NT	8.8	11	690	0.075	9.3	47
HA-23	HA-23-0.5	6/6/2003	0.5	3.2	0.82	0.035	220	NT	12	9.8	840	0.3	12	49
HA-23	HA-23-4.0	6/6/2003	4.0	2.4 U	4.7	0.24 U	22	NT	17	4.1	130	0.031 U	18	51
HA-24	HA-24-0.5	6/9/2003	0.5	2.40	3.8	0.49	71	NT	10	11	400	0.083	10	57
HA-24	HA-24-0.5	6/9/2003	2.0	3.3	1.5	0.49	190	NT	4.8	7.2	150	0.05	9.4	41
HA-24 HA-25	HA-25-0.5	6/9/2003	0.5	5.2	3.6	0.04	420	NT	4.0	8.9	250	0.036	9.4 11	56
HA-25	HA-25-2.5	6/9/2003	2.5	2	3.0	1.1	28	NT	15	7	3200	0.016 U	24	59
HA-25 HA-26	HA-25-2.5 HA-26-1.0	6/9/2003	2.5	13	o 1.3 U	1.1	1300	NT	22	14	1000	0.016 0	16	76
HA-26	HA-26-1.0 HA-26-2.5	6/9/2003	2.5	2.1	6.8	0.99	21	NT	22	7.9	1300	0.003 0.018 U	15	57
HA-26 HA-27	HA-26-2.5 HA-27-0.5	6/4/2003	0.5	14	3 U	0.99	1300	NT	12		1300	0.018 U 0.12	15	57 69
HA-27 HA-27	HA-27-0.5 HA-27-2.0	6/4/2003	2.0	6.6	3 U 1.9	0.23	620	NT	8.8	13 8.7	570	0.12	12	69
		6/4/2003					220	NT						
HA-28	HA-28-0.5		0.5	4.3	2.3	0.34			18	7.4	690	0.12	20	65 52
HA-28	HA-28-2.5	6/4/2003	2.5	1.4	3.4	0.22	20	NT	8.2	7.6	2300	0.019	11	53

TABLE 3B RISK SCREENING - METALS SOIL ANALYTICAL RESULTS Wetland Exposure Unit

Former Frontier Leather Tannery Property

									-	-				
			Depth	Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	ead	Manganese	Mercury	Nickel	Zinc
Location	Sample ID	Sample Date	(ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	 mg/kg	 mg/kg	mg/kg	mg/kg
			(it bgs)											
	User / Trespasse	er RBC			10.0	1,500	> Max	6.5	61,000	400	36,000	460	30,000	
	Worker RBC ²				15	350	530,000	49	14,000	800	8,200	110	7,000	
Excavation W	Vorker RBC ²				420	9,700	> Max	1,400	390,000	800	230,000	2,900	190,000	
Background V	Value ³			0.56	8.8	0.63	76		34	79	1,800	0.23	47	180
HA-29	HA-29-0.8	6/4/2003	0.8	4.5	3.9	0.23	220	NT	12	7.5	810	0.017 U	13	57
HA-29	HA-29-2.5	6/4/2003	2.5	2	6.6	0.36	40	NT	8.5	8.2	2700	0.017 U	17	54
HA-30	HA-30-0.8	6/4/2003	0.8	37	14 U	0.34	4000	NT				0.010 0	19	89
									22	27	710			
HA-30	HA-30-2.6	6/4/2003	2.6	2.7	3	0.27	84	NT	14	7.8	1300	0.019 U	17	62
HA-31	HA-31-0.7	6/4/2003	0.7	3.2	0.65 U	0.27	120	NT	15	4.7	200	0.22	9.7	46
HA-31	DUP-1	6/4/2003	0.7	2.5	3.5	0.24	78	NT	16	4.7	240	0.11	9.9	45
HA-31	HA-31-2.0	6/4/2003	2.0	2.6	2.5	0.21	80	NT	7.4	6.9	510	0.017 U	13	46
HA-31	DUP-2	6/4/2003	2.0	1.7	2.1	0.14	30	NT	6.4	7.1	540	0.018 U	12	40
HA-32	HA-32-0.5	6/4/2003	0.5	3.3	2.6	0.36	130	NT	17	6.7	170	0.089	12	57
HA-32	HA-32-2.0	6/4/2003	2.0	2.1	6.8	0.34	32	NT	9.3	7.2	570	0.017 U	15	59
HA-33	HA-33-1.0	6/4/2003	1.0	2.4	4.9	0.42	45	NT	15	6.5	1700	0.016 U	15	57
HA-33	HA-33-3.5	6/4/2003	3.5	2.1	2.8	0.29	31	NT	18	8	680	0.023	14	41
HA-34	HA-34-0.5	6/4/2003	0.5	1.7	2.2	0.39	20	0.25 U	16	5	740	0.016 U	15	52
HA-34	HA-34-2.0	6/4/2003	2.0	2.1	0.63 U	0.25	50	NT	7.5	7.7	400	0.016 U	11	52
HA-35	HA-35-0.6	6/4/2003	0.6	30	13 U	0.49	3300	NT	21	19	530	0.017 U	16	81
HA-35	HA-35-5.0	6/4/2003	5.0	1.7	3.2	0.49	24	NT	18	4.6	740	0.017 U	19	53
HA-35 HA-36	HA-35-5.0 HA-36-0.5	6/4/2003	0.5	26	7.6 U	0.39	2700	NT	21	13	320	0.017 0	21	69
HA-36	DUP-5	6/4/2003	0.5	38	15 U	0.26	4000	NT	21	19	250	0.25	21	68
HA-36	HA-36-2.0	6/4/2003	2.0	2	0.7 U	0.27	44	NT	19	5.2	150	0.018 U	18	52
HA-36	DUP-6	6/4/2003	2.0	2.3	0.7 U	0.23	70	NT	19	5.5	150	0.018 U	17	52
HA-37	HA-37-0.5	6/4/2003	0.5	3.4	2.3	0.26	170	NT	17	6.4	870	0.017 U	15	53
HA-37	HA-37-1.5	6/4/2003	1.5	2.2	4.8	0.28	19	NT	19	5.8	910	0.018 U	16	58
HA-38	HA-38-0.5	6/4/2003	0.5	2.1	5.7	0.28	22	NT	15	6.7	1400	0.017 U	15	58
HA-38	HA-38-1.5	6/4/2003	1.5	2.3	7.6	0.31	20	NT	13	5.9	1600	0.016 U	14	51
HA-39	HA-39-0.5	6/6/2003	0.5	1.9	1.2 U	0.12 U	53	NT	9.7	4.6	170	0.22	9.8	53
HA-39	HA-39-3.5	6/6/2003	3.5	3	1.3 U	0.13 U	150	NT	11	5.2	520	3	14	45
HA-40	HA-40-1.0	6/4/2003	1.0	18	3.3 U	0.2	1600	4.2	15	20	230	2	11	68
HA-40	DUP-3	6/4/2003	1.0	8.1	3.2 U	0.2	700	0.26 U	11	9.9	210	1.3	9.7	57
HA-40	HA-40-3.5	6/4/2003	3.5	1.5	2.1	0.11	22	0.20 0 NT	15	5.7	540	0.057	11	46
HA-40	DUP-4	6/4/2003	3.5	1.7	1.2	0.13	33	NT	15	5.8	490	0.037	11	40
HA-40 HA-41	HA-41-1.0	6/6/2003	3.5	1.7	8	0.13 U	30	NT	13	5.6	170	0.042	11	49 55
	HA-41-1.0 HA-41-2.5			2.6	2.5		30 61	NT	5.7				17	
HA-41		6/6/2003	2.5			0.14 U				8.6	870	0.027		59
HA-42	HA-42-0.5	6/6/2003	0.5	130	29 U	2.9 U	13000	NT	46	76	5200	6.3	56	280
HA-42	HA-42-2.5	6/6/2003	2.5	1.2 U	2.1	0.12 U	20	NT	5.8	6.4	410	0.018	7.5	36
HA-43	HA-43-1.0	6/6/2003	1.0	3.3	3.7	0.13 U	180	0.26 U	13	7.6	2200	0.11	18	70
HA-43	HA-43-2.5	6/6/2003	2.5	1.4 U	1.7	0.14 U	29	NT	13	7.1	340	0.031	11	42
HA-44	HA-44-0.5	6/6/2003	0.5	2.3	1.3 U	0.13 U	80	NT	15	7.2	130	0.48	11	52
HA-44	HA-44-2.5	6/6/2003	2.5	1.2 U	2.3	0.12 U	19	NT	4.2	5.4	240	0.016 U	9.1	36
HA-45	HA-45-1.0	6/5/2003	1.0	1.6	1.1	0.064 U	60	0.25 U	8.5	5.3	160	0.26	8.8	44
HA-45	HA-45-2.5	6/5/2003	2.5	1.7	1.8	0.14	21	NT	11	5.9	790	0.082 U	11	41
HA-46	HA-46-0.5	6/6/2003	0.5	2.6	11	0.13 U	44	NT	16	5.7	530	0.024	13	69
HA-46	HA-46-1.5	6/6/2003	1.5	1.4	1.3	0.12 U	23	NT	8.2	5.8	1400	0.016 U	11	39
HA-47	HA-47-0.5	6/5/2003	0.5	2.5	6.1	0.24	44	NT	18	7.4	1300	0.018 U	16	58
HA-47	HA-47-1.5	6/5/2003	1.5	1.8	7.4	0.14	21	NT	17	4.9	3500	0.017 U	16	57
HA-48	HA-48-0.5	6/5/2003	0.5	2.2	2.8	0.081	41	NT	16	5.1	570	0.017 U	14	49
HA-48	HA-48-1.0	6/5/2003	1.0	1.8	4.6	0.078	27	NT	14	6.3	730	0.017 U	14	55
HA-49	HA-49-0.5	6/5/2003	0.5	2.7	2.1	0.13	71	NT	24	8.5	430	0.02	17	54
HA-49	HA-49-1.0	6/5/2003	1.0	1.5	1.9	0.1	15	NT	16	5.2	220	0.023	13	49
HA-49 HA-50	HA-49-1.0 HA-50-0.5	6/5/2003	0.5	5.8	0.75 U	0.12	500	NT	10	7.7	210	1.2	21	62
HA-50 HA-50	HA-50-0.5 HA-50-2.0	6/5/2003	2.0	0.68 U	1.7	0.087	15	NT	10	2.3	99	0.018 U	11	30
HA-50 HA-51	HA-50-2.0 HA-51-0.5	6/5/2003	0.5	2.9	6.7	0.087	82	NT	10	5.8	2500	0.018 U 0.017 U	16	59
						0.18		NT	12		2500	0.017 U		
HA-51	DUP-7	6/5/2003	0.5	2.3	7.9		35			5.5			16	58
HA-51	HA-51-2.0	6/5/2003	2.0	2	4.6	0.17	20	NT	11	6.3	4600	0.018 U	15	59
HA-53	HA-53-1.0	6/6/2003	1.0	1.5	4.5	0.14 U	29	NT	13	16	1600	0.032	17	62
HA-53	HA-53-2.5	6/6/2003	2.5	1.6	3.7	0.13 U	27	NT	9	5.9	1400	0.016 U	15	49
HA-54	HA-54-1.5	6/6/2003	1.5	1.4	3.2	0.13 U	25	NT	16	6.6	640	0.02	18	54
HA-54	HA-54-3.0	6/6/2003	3.0	1.7	2.9	0.13 U	81	NT	9.1	5.8	460	0.04	9.6	54
HA-55	HA-55-0.5	6/11/2003	0.5	2.6	5.2	0.56	150	1.7	14	18	720	0.11	14	61
HA-55	HA-55-2.5	6/11/2003	2.5	1.7 U	3.2	0.48	32	NT	27	5.5	320	0.047	16	41
HA-56	HA-56-0.5	6/11/2003	0.5	1.5 U	3.3	0.39	26	NT	9.3	8.3	160	0.12	11	43
HA-56	DUP-16	6/11/2003	0.5	1.9	2.4	0.15 U	26	NT	8.4	6.5	190	0.075	9.6	40
HA-56	HA-56-2.5	6/11/2003	2.5	1.8 U	2	0.39	35	NT	12	5.9	130	0.056	12	43
HA-57	HA-57-0.5	6/11/2003	0.5	2.4	3.8	0.14 U	24	NT	11	10	330	0.12	11	58
HA-57	HA-57-2.5	6/11/2003	2.5	2.3 U	2.3 U	0.23 U	25	NT	22	3.3	77	0.065	15	38
HA-58	HA-58-1.0	6/11/2003	1.0	2.30	4.7	0.23 U	29	4.8	18	14	380	0.003	14	54
11/1-00	10.00-1.0	5/11/2003	1.0	4.7	7./	3.17 0	23	7.0	10	17	500	0.031		57

TABLE 3B **RISK SCREENING - METALS SOIL ANALYTICAL RESULTS**

Wetland Exposure Unit

Former Frontier Leather Tannery Property

			Depth	, Antimony	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Manganese	Mercury	Nickel	Zinc
Location	Sample ID	Sample Date	(ft bgs)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	User / Trespasse	er RBC '			10.0	1,500	> Max	6.5	61,000	400	36,000	460	30,000	
Construction	Worker RBC ²				15	350	530,000	49	14,000	800	8,200	110	7,000	
Excavation V	Vorker RBC ²				420	9.700	> Max	1.400	390,000	800	230,000	2,900	190.000	
Background	Value 3			0.56	8.8	0.63	76		34	79	1,800	0.23	47	180
HA-58	HA-58-2.0	6/11/2003	2.0	3.1 U	3.1 U	0.31 U	17	NT	19	2.7	58	0.041 U	12	28
HA-59	HA-59-0.5	6/11/2003	0.5	2	4.1	0.17 U	26	NT	14	9.9	310	0.35	12	55
HA-59	HA-59-2.5	6/11/2003	2.5	3.8 U	6.5	0.38 U	13	NT	19	2.3 U	78	0.05 U	12	27
HA-60	HA-60-0.5	6/11/2003	0.5	2	2.4	0.13 U	28	NT	11	13	200	0.16	9.2	54
HA-60	HA-60-2.5	6/11/2003	2.5	3.3 U	4	0.33 U	28	NT	28	5.3	200	0.043 U	17	42
HA-61	HA-61-0.5	6/11/2003	0.5	1.9	2.1	0.14 U	30	NT	10	8.6	200	0.21	8.8	40
HA-61	HA-61-3.5	6/11/2003	3.5	3.6 U	3.6 U	0.36 U	9.3	NT	14	2.1 U	64	0.046 U	8.6	18
HA-64	HA-64-0.5	6/11/2003	0.5	3	2.7	0.14 U	18	0.28 U	13	17	480	0.05	7.8	98
HA-64	HA-64-1.0	6/11/2003	1.0	3.4	2.9	0.12 U	18	NT	3.4	4.7	180	0.017	5.9	53
HA-65	HA-65(0-0.5)	12/19/2003	0 - 0.5	1.2	NT	0.36	24	NT	10	NT	280	NT	NT	44
HA-66	HA-66(0-0.5)	12/19/2003	0 - 0.5	6.6	NT	0.28	890	NT	10	NT	280	NT	NT	40
HA-67	HA-67(0-0.5)	12/19/2003	0 - 0.5	1.2	NT	0.31	24	NT	10	NT	240	NT	NT	35
HA-68	HA-68(0-0.5)	12/19/2003	0 - 0.5	4.1	NT	0.26	260	NT	11	NT	390	NT	NT	34
HA-69	HA-69(0-0.5)	12/19/2003	0 - 0.5	3.5	NT	0.4	23	NT	14	NT	740	NT	NT	53
HA-70	HA-70(0-0.5)	12/19/2003	0 - 0.5	1.3	NT	0.28	21	NT	12	NT	350	NT	NT	42
HA-71	HA-71(0-0.5)	12/19/2003	0 - 0.5	1.6	NT	0.18	65	NT	8.2	NT	760	NT	NT	37
HA-72	HA-72(0-0.5)	12/19/2003	0 - 0.5	3.4	NT	0.32	160	NT	8.9	NT	820	NT	NT	67
HA-73	HA-73(0-0.5)	12/19/2003	0 - 0.5	2.4	NT	0.16	250	NT	8.4	NT	830	NT	NT	44
HA-74	HA-74(0-0.5)	12/19/2003	0 - 0.5	6.7	NT	0.54	480	NT	11	NT	3100	NT	NT	100
HA-75	HA-75(0-0.5)	12/19/2003	0 - 0.5	2.2	NT	0.14	68	NT	11	NT	970	NT	NT	49
MW-2	MW-2-11.0	6/5/2003	11.0	1.6	0.66 U	0.19	16	NT	17	4.6	200	0.086 U	15	47
MW-3	MW-3-20	6/17/2003	20	1.4	1.7	0.2	15	NT	8.8	3.8	120	0.017 U	7.7	36
MW-4	MW-4-16	6/18/2003	16	1.6	2.9	0.28	10	NT	15	2.8	200	0.017 U	16	41
MW-4	MW-4B-19	6/17/2003	10	1.5 U	3.4	0.23	13	NT	12	3.1	87	0.019 U	15	46
MW-5	MW-5-25	6/17/2003	25	4.2	2.9	1.8	28	NT	12	2.9	680	0.013 U	7.3	86
Rock Creek		3/11/2003	-20	7.6	2.0					2.0	000	0.010 0		
SS-2	ISS-2	6/12/2003	0 - 0.5	3.1 U	3.1 U	0.45	29	3.7	18	13	440	0.075	11	81
DUP-17	DUP-17	6/12/2003	0 - 0.5	3.4 U	3.4 U	0.45	39	NT	19	15	490	0.075	14	94
SS-3	SS-3	6/12/2003	0 - 0.5	2.5 U	3.4 0	0.37	22	2.4 U	13	9.8	560	0.065	9.5	63
SS-4	SS-4	6/12/2003	0 - 0.5	2.5 0	2.8	0.42	55	2.4 U	13	8.5	540	0.003	12	62
SS-5	SS-5	6/11/2003	0 - 0.5	2.5	2.8	0.42 0.23 U	37	2.2 U 2.4 U	12	11	1.900	0.073	10	74
SS-6	SS-6	6/11/2003	0 - 0.5	14	11	13	420	2.4 U 2.9 U	25	18	1,900	0.063	22	47
SS-7	SS-7	12/19/2003	0 - 0.5	1.0 U	NT	0.11	23	2.9 U	5.3	NT	67	0.003 NT	NT	15
SS-9	SS-9	12/19/2003	0 - 0.5	1.0 U	NT	1.0 U	5.8	NT	6.1	NT	65	NT	NT	9.5
00-9	00-9	12/13/2003	0-0.5	1.00		1.00	5.0	INT	0.1		05			9.0

Notes: Data reported to method reporting limit BOLD = detection U = not detected at or above the stated level J = estimated result

mg/kg = milligrams per kilogram NT = not tested

DUP = Field Duplicate DEQ = Oregon Department of Environmental Quality

EPA = United Stated Environmental Protection Agency RBC = Risk-Based Concentration

--- = Not Published shaded Concentration exceeds 1 or more RBCs

ft = feet bgs = below ground surface

> Max = The RBC is greater than 1,000,000 mg/kg, therefore, this analyte is not deemed to pose risk for the indicated exposure pathway.

Analytical results from one of the following: EPA Methods 200.8, 6010B, 6020, 7471, 7196A, or 7199. ¹ Site-Specific RBC for Recreational User/Trespasser (Appendix F of this Supplemental RI Report).

² DEQ RBCs for direct contact (soil ingestion-dermal contact-inhalation), November 2015. ³ Development of Oregon Background Metals Concentrations in Soil, DEQ Technical Report, Table 4 - Portland Basin, DEQ 2013.

TABLE 3C RISK SCREENING - TOTAL METALS GROUNDWATER ANALYTICAL RESULTS

Groundwater Exposure Unit

Former Frontier Leather Tannery Property

Location ID	Sample Date	Sample ID	Screened Interval (ft bgs)	∫6 ¬∫antimony³	Arsenic	admium 7	Chromium /D	Cobber ug/L	Lead ng/L	Manganese T/6n	Mercury Dg/	Nickel Ng/L	ر ng/L
Excavation W				270	6,300	130,000	> S	5,400,000	> S	3,200,000	> S	> S	2,300,000
Background V	/alue ²			< 1	2	< 1	1	9	13		< 0.1	6	38
DP-02	11/10/2015	DP-2-GW	10 - 15	2.00 U	9.56	0.411	53.9	30.3	10.3	735	0.0800 U	28.0	68.1
DP-06	11/10/2015	DP-6-GW	7 - 12	2.00 U	7.73	0.300	32.1	10.0	2.73	1,690	0.0800 U	6.39	23.3
DP-13	11/11/2015	DP-13-GW	15 - 20	2.00 U	1.40 J	0.211 J	9.36 J	10.2 J	4.70 J	521 J	0.0800 U	10.1 J	25.4
DP-13	11/11/2015	DP-13-W-DUP	15 - 20	1.00 U	3.09 J	0.867 J	31.1 J	61.3 J	9.23 J	3,780 J	0.0800 U	55.5 J	146
DP-17	11/10/2015	DP-17-GW	10 - 15	10.0 UJ	24.1 J	2.74	931	448	108	4,350	0.800 U	211 J	511
MW-1	6/23/2003		5 - 15	NT	NT	NT	3.6	NT	NT	3,000	NT	NT	NT
MW-1	12/19/2003		5 - 15	NT	NT	NT	3.2	NT	NT	3,200	NT	NT	NT
MW-1	3/10/2004		5 - 15	NT	NT	NT	3.4	NT	NT	3,200	NT	NT	NT
MW-3	6/23/2003		13.5 - 23.5	NT	NT	NT	3.9	NT	NT	940	NT	NT	NT
MW-3	12/19/2003		13.5 - 23.5	NT	NT	NT	3.4	NT	NT	460	NT	NT	NT
MW-3	3/10/2004		13.5 - 23.5	NT	NT	NT	4.6	NT	NT	840	NT	NT	NT
MW-5	6/23/2003		14.5 - 29.5	NT	NT	NT	10.0 U	NT	NT	3,000	NT	NT	NT
MW-5	12/19/2003		14.5 - 29.5	NT	NT	NT	1.00 U	NT	NT	4,800	NT	NT	NT
MW-5	3/10/2004		14.5 - 29.5	NT	NT	NT	1.00 U	NT	NT	5,100	NT	NT	NT
MW-7	6/23/2003		4 - 14	NT	NT	NT	8.4	NT	NT	120	NT	NT	NT
MW-7	12/19/2003		4 - 14	NT	NT	NT	1.4	NT	NT	20	NT	NT	NT
MW-7	3/10/2004		4 - 14	NT	NT	NT	6.0	NT	NT	5	NT	NT	NT

Notes:

Data reported to method reporting limit BOLD = detection

U = not detected at or above the stated level

J = estimated result

ug/L = micrograms per liter NT = not tested

DUP = Field Duplicate

DEQ = Oregon Department of Environmental Quality EPA = United Stated Environmental Protection Agency RBC = Risk-Based Concentration -- = Not Published

shaded Concentration exceeds 1 or more RBCs

ft = feet

 $\mbox{bgs} = \mbox{below ground surface} > S = \mbox{This RBC}$ exceeds the solubility limit. No potential risk is anticipated for these metals because their concentrations are below their respective solubilities (as provide on the "ChemData" tab of the DEQ RBC excel workbook, November 2015).

Analytical results from one of the following: EPA Methods 6010B, 6020, 7470A.

¹ DEQ REGS for groundwater in an exacavation, November 2015.
 ² Background values from DEQ's Human Health Risk Assessment Guidance, Table 1 - Oregon Default Background Concentrations for Inorganic Chemicals (Freshwater), DEQ 2010.
 ³ EPA Residential Tapwater Regional Screening Levels - dermal route only (child) as a conservative surrogate, November 2015.

TABLE 3D RISK SCREENING - DISSOLVED METALS GROUNDWATER ANALYTICAL RESULTS Groundwater Exposure Unit

Former Frontier Leather Tannery Property

	-													
			Screened Interval	Antimony ³	Arsenic	Cadmium	Chromium	Hexavalent Chromium	Copper	Lead	Manganese	Mercury	Nickel	Zinc³
	Original Data	0							0					
	Sample Date	Sample ID	(ft bgs)	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Excavation W				270	6,300	130,000	> S	9,400	5,400,000	> S	3,200,000	> S	> S	2,300,000
Background V				< 1	2	< 1	1		9	13		< 0.1	6	38
DP-02	11/10/2015	DP-2-GW	10 - 15	1.00 U	1.00 U	0.200 U	29.4	NT	2.90	0.200 U	106	0.0800 U	12.2	4.00 U
DP-06	11/10/2015	DP-6-GW	7 - 12	1.00 U	7.54	0.200 U	7.13	NT	2.00 U	0.200 U	918	0.0800 U	3.51	4.00 U
DP-13	11/11/2015	DP-13-GW	15 - 20	1.00 U	1.00 U	0.200 U	3.64	NT	2.00 UJ	0.200 UJ	10.3	0.0800 U	1.00 U	4.00 U
DP-13	11/11/2015	DP-13-W-DUP	15 - 20	1.00 U	1.00 U	0.200 U	3.97	NT	17.2 J	0.400 J	11.2	0.0800 U	1.00 U	4.00 U
DP-17	11/10/2015	DP-17-GW	10 - 15	1.00 U	1.00 U	0.200 U	11.5	NT	2.00 U	0.200 U	530	0.0800 U	21.1	4.00 U
HA-11	6/9/2003	HA-11	NA	10 U	11	4.6	13	6	8.2	6.00 U	480	0.13 U	17	93
HA-17	6/10/2003	HA-17	NA	10 U	10 U	10 U	3.2	5.00 U	3.00 U	6.00 U	1,800	0.13 U	98	44
MW-1	6/23/2003	MW-1	5 - 15	10 U	10 U	10 U	3.6	5.00 U	5.6	6.00 U	3,000	0.13 U	14	32
MW-1	12/19/2003	MW-1	5 - 15	10 U	NT	1.00 U	3.2	NT	3.00 U	NT	3,200	NT	NT	20 U
MW-1	3/10/2004	MW-1	5 - 15	16	NT	1.00 U	3.4	NT	3.00 U	NT	3,200	NT	NT	66
MW-2	6/23/2003	MW-2	5 - 15	10 U	10 U	10 U	2.6	5.00 U	3.3	6.00 U	48	0.13 U	5.00 U	20 U
MW-2	6/23/2003	DUP-18	5 - 15	10 U	10 U	10 U	2.6	5.00 U	3.7	6.00 U	25	0.13 U	5.00 U	20 U
MW-2	12/19/2003	MW-2	5 - 15	10 U	NT	1.00 U	2.1	NT	3.00 U	NT	8.8	NT	NT	20 U
MW-2	3/10/2004	MW-2	5 - 15	11	NT	1.00 U	2.3	NT	3.00 U	NT	11	NT	NT	20 U
MW-2	12/28/2005	MW-2	5 - 15	NT	NT	NT	3.3	NT	NT	NT	2.9	NT	NT	NT
MW-2	12/6/2006	MW-2	5 - 15	NT	NT	NT	3.48	NT	NT	NT	2.00 U	NT	NT	NT
MW-2	12/11/2007	MW-2	5 - 15	NT	NT	NT	3.1	NT	NT	NT	2.00 U	NT	NT	NT
MW-3	6/23/2003	MW-3	13.5 - 23.5	10 U	10 U	10 U	3.9	5.00 U	6.6	6.00 U	940	0.13 U	5.3	20 U
MW-3	12/19/2003	MW-3	13.5 - 23.5	10 U	NT	1.00 U	3.4	NT	8.2	NT	460	NT	NT	20 U
MW-3	3/10/2004	MW-3	13.5 - 23.5	10 U	NT	1.00 U	4.6	NT	3.00 U	NT	840	NT	NT	20 U
MW-3	12/28/2005	MW-3	13.5 - 23.5	NT	NT	NT	4.56	NT	NT	NT	724	NT	NT	NT
MW-3	12/6/2006	MW-3	13.5 - 23.5	NT	NT	NT	5.47	NT	NT	NT	516	NT	NT	NT
MW-3	12/11/2007	MW-3	13.5 - 23.5	NT	NT	NT	5.22	NT	NT	NT	675	NT	NT	NT
MW-4	6/23/2003	MW-4	10 - 20	10 U	11	10 U	4	5.00 U	4.3	6.00 U	7,000	0.13 U	44	20 U
MW-4	12/19/2003	MW-4	10 - 20	10 U	NT	1.00 U	3.9	NT	3.00 U	NT	4,800	NT	NT	20 U
MW-4	3/10/2004	MW-4	10 - 20	10 U	NT	1.00 U	3.1	NT	3.00 U	NT	3,500	NT	NT	20 U
MW-5	6/23/2003	MW-5	14.5 - 29.5	10 U	10 U	10 U	1.00 U	5.00 U	8.7	6.00 U	3,000	0.13 U	5.00 U	20 U
MW-5	12/19/2003	MW-5	14.5 - 29.5	10 U	NT	1.00 U	1.00 U	NT	3.00 U	NT	4,800	NT	NT	20 U
MW-5	3/10/2004	MW-5	14.5 - 29.5	10 U	NT	1.00 U	1.00 U	NT	3.00 U	NT	5,100	NT	NT	20 U
MW-5	12/28/2005	MW-5	14.5 - 29.5	NT	NT	NT	1.00 U	NT	NT	NT	2,040	NT	NT	NT
MW-5	12/6/2006	MW-5	14.5 - 29.5	NT	NT	NT	1.00 U	NT	NT	NT	1,020	NT	NT	NT
MW-5	12/11/2007	MW-5	14.5 - 29.5	NT	NT	NT	1.00 U	NT	NT	NT	101	NT	NT	NT
MW-6	6/23/2003	MW-6	5 - 15	10 U	10 U	10 U	1.00 U	5.00 U	4	6.00 U	280	0.13 U	5.00 U	20 U
MW-6	12/19/2003	MW-6	5 - 15	10 U	NT	1.00 U	2.4	NT	3.00 U	NT	65	NT	NT	20 U
MW-6	3/10/2004	MW-6	5 - 15	10 U	NT	1.00 U	2.8	NT	3.00 U	NT	9.6	NT	NT	20 U
MW-7	6/23/2003	MW-7	4 - 14	10 U	10 U	10 U	8.4	5.00 U	3.9	6.00 U	120.0	0.13 U	5.00 U	20 U
MW-7	12/19/2003	MW-7	4 - 14	19	NT	1.00 U	1.4	NT	3.00 U	NT	20.0	NT	NT	20 U
MW-7	3/10/2004	MW-7	4 - 14	10 U	NT	1.00 U	6	NT	3.00 U	NT	4.9	NT	NT	20 U
MW-7A	12/28/2005	MW-7A	4 - 14	NT	NT	NT	6.91	NT	NT	NT	2.3	NT	NT	NT
MW-7A	12/28/2005	MW-7B (dupe)	4 - 14	NT	NT	NT	6.1	NT	NT	NT	2.00 U	NT	NT	NT
MW-7A	12/6/2006	MW-7A	4 - 14	NT	NT	NT	9.1	NT	NT	NT	2.00 U	NT	NT	NT
MW-7A	12/6/2006	MW-7B (dupe)	4 - 14	NT	NT	NT	8.7	NT	NT	NT	2.00 U	NT	NT	NT
MW-7A	12/11/2007	MW-7A	4 - 14	NT	NT	NT	3.28	NT	NT	NT	2.00 U	NT	NT	NT
MW-7A	12/11/2007	MW-7B (dupe)	4 - 14	NT	NT	NT	3.23	NT	NT	NT	2.00 U	NT	NT	NT

Notes:

Data reported to method reporting limit **BOLD** = detection

U = not detected at or above the stated levelJ = estimated result

 μ g/L = micrograms per liter NT = not tested

DUP = Field Duplicate

DEQ = Oregon Department of Environmental Quality

RBC = Risk-Based Concentration

- = Not Published

shaded Concentration exceeds 1 or more RBCs

ft = feet bgs = below ground surface

> S = This RBC exceeds the solubility limit. No potential risk is anticipated for these metals because their concentrations are below their respective solubilities (as provide on the "ChemData" tab of the DEQ RBC excel workbook, November 2015).

Analytical results from one of the following: EPA Methods 6010B, 6020, 7470A. ¹ DEQ RBCs for groundwater in an excavation, November 2015.

² Background values from DEQ's Human Health Risk Assessment Guidance, Table 1 - Oregon Default Background Concentrations for Inorganic Chemicals (Freshwater), DEQ 2010. ³ EPA Residential Tapwater Regional Screening Levels - dermal route only (child), November 2015.

TABLE 4 SUMMARY STATISTICS AND EXPOSURE POINT CONCENTRATIONS FOR COPCS F

Former Frontier	Leather	Tannery Property
-----------------	---------	------------------

				Minimum	Mean	Maximum	Maximum					
	Number of	Number of	Frequency	Concentration	Concentration	Concentration	Concentration	Minimum RL	Maximum RL			Exposure Point
Analyte	Samples	Detections	of Detection	(mg/kg)	(mg/kg)	(mg/kg)	Sample Location	(mg/kg)	(mg/kg)	90% UCL ^A	UCL Calculation Method	Concentration ^B
Upland Exposure Unit (0-	5 feet)											
Arsenic	62	56	90%	1.3	4.33	24	TP-5-5	0.6	42	5.262	90% KM Chebyshev	5.262
Copper	62	62	100%	12.7	923.7	56,000	DP-15-4-5	NA	NA	3,632	90% Chebyshev (Mean,Sd)	3,632
Lead	62	62	100%	2.7	55.2	1,420	DP-15-4-5	NA	NA	132.6	90% Chebyshev (Mean,Sd)	132.6
Hexavalent Chromium	8	7	88%	0.21	1.58	6.43	DP-17-0-1	0.23	0.23	2.5	90% KM (t)	2.5
Upland Exposure Unit (0-	15 feet)											
Arsenic	77	69	90%	0.89	4.1	24	TP-5-5	0.6	42	4.27	90% KM (BCA)	4.27
Copper	77	77	100%	12.7	747.7	56,000	DP-15-4-5	NA	NA	2,929	90% Chebyshev (Mean,Sd)	2,929
Lead	77	77	100%	2.7	46.17	1420	DP-15-4-5	NA	NA	108.7	90% Chebyshev (Mean,Sd)	108.7
Hexavalent Chromium	12	9	75%	0.21	1.29	6.43	DP-17-0-1	0.23	0.28	3.35	95% KM Chebyshev	3.35
Wetland Exposure Unit												
Arsenic	128	96	75%	0.82	3.57	11	HA-46-0.5; SS-6	0.63	62	3.45	90% KM (BCA)	3.45

Notes:

^A The 90% UCLs are as calculated by ProUCL (version 5; output files provided in Appendix G). If ProUCL recommended two UCLs, then the higher of the two values was conservatively selected for use in the risk evaluation. ^B The 90% UCL is the exposure point concentration, except for the excavation worker where the maximum detected concentration is used at the exposure point concentration to reflect the focused exposure that is possible for this receptor.

mg/kg - milligrams per kilogram

NA = not applicable

RL = reporting limit

UCL = upper confidence limit

TABLE 5A CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT Surface Soil (0-5 feet)

Recreational User / Trespasser

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1											
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient					
Metals											
Arsenic	С	5.26E+00	1.00E+01	NA	5E-07	NA					
Copper	nc	3.63E+03	NA	6.10E+04	NA	6.0E-02					
Lead	NA	1.33E+02	NA	4.00E+02	NA	3.3E-01					
Hexavalent chromium	с	2.50E+00	6.50E+00	NA	4E-07	NA					
Total	• • •		•	-	9E-07	3.9E-01					

Notes:

c - carcinogen

EPC - exposure point concentration

mg/kg - milligrams per kilogram

NA - not applicable

nc - non-carcinogen

RBC_{SS} - direct contact (site-specific RBCs for this receptor are provided in Appendix F)

RME - reasonable maximum exposure

TABLE 5B CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT Surface Soil (0-5 feet)

Occupational Worker

	Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1											
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient						
Metals												
Arsenic	С	5.26E+00	1.90E+00	NA	3E-06	NA						
Copper	nc	3.63E+03	NA	4.70E+04	NA	7.7E-02						
Lead	NA	1.33E+02	NA	8.00E+02	NA	1.7E-01						
Hexavalent chromium	с	2.50E+00	6.30E+00	NA	4E-07	NA						
Total	-				3E-06	2.4E-01						

Notes:

c - carcinogen EPC - exposure point concentration mg/kg - milligrams per kilogram NA - not applicable nc - non-carcinogen RBC_{SS} - direct contact RME - reasonable maximum exposure

TABLE 5C CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT Surface Soil (0-5 feet)

Construction Worker

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1											
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient					
Metals											
Arsenic	С	5.26E+00	1.50E+01	NA	4E-07	NA					
Copper	nc	3.63E+03	NA	1.40E+04	NA	2.6E-01					
Lead	NA	1.33E+02	NA	8.00E+02	NA	1.7E-01					
Hexavalent chromium	С	2.50E+00	4.90E+01	NA	5E-08	NA					
Total	•		•	-	4E-07	4.3E-01					

Notes:

c - carcinogen EPC - exposure point concentration mg/kg - milligrams per kilogram NA - not applicable nc - non-carcinogen RBC_{SS} - direct contact RME - reasonable maximum exposure

TABLE 5D CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT Surface Soil (0-5 feet)

Excavation Worker

	Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1										
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient					
Metals											
Arsenic	С	2.40E+01	4.20E+02	NA	6E-08	NA					
Copper	nc	5.60E+04	NA	3.90E+05	NA	1.4E-01					
Lead	NA	1.42E+03	NA	8.00E+02	NA	1.8E+00					
Hexavalent chromium	с	6.43E+00	1.40E+03	NA	5E-09	NA					
Total			•	-	6E-08	1.9E+00					

Notes:

c - carcinogen

EPC - exposure point concentration

mg/kg - milligrams per kilogram

NA - not applicable

nc - non-carcinogen

 $\mathsf{RBC}_{\mathsf{SS}}$ - direct contact

RME - the maximum concentration is conservatively assumed to be the reasonable maximum exposure for the excavation worker because their exposure is focused in a small area

TABLE 5E SUMMARY OF RME RISKS - UPLAND EXPOSURE UNIT

Surface Soil (0-5 feet)

Source / Pathway	Excess Lifetime Cancer Risk	Hazard Index
Recreational User / Trespasser		
Surface Soil / Direct Contact	9E-07	3.9E-01
Occupational Worker		
Surface Soil / Direct Contact	3E-06	2.4E-01
Construction Worker		
Surface Soil / Direct Contact	4E-07	4.3E-01
Excavation Worker		
Surface Soil / Direct Contact	6E-08	1.9E+00
DEQ Acceptable Risk Levels	1E-05	1.0E+00

Notes:

RME - reasonable maximum exposure

TABLE 6A CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT

Subsurface Soil (0-15 feet)

Recreational User / Trespasser

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1										
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient				
Metals										
Arsenic	С	4.27E+00	1.00E+01	NA	4E-07	NA				
Copper	nc	2.93E+03	NA	6.10E+04	NA	4.8E-02				
Lead	NA	1.09E+02	NA	4.00E+02	NA	2.7E-01				
Hexavalent chromium	с	3.35E+00	6.50E+00	NA	5E-07	NA				
Total	-		•	-	9E-07	3.2E-01				

Notes:

c - carcinogen

EPC - exposure point concentration

mg/kg - milligrams per kilogram

NA - not applicable

nc - non-carcinogen

RBC_{SS} - direct contact (site-specific RBCs for this receptor are provided in Appendix F)

RME - reasonable maximum exposure

TABLE 6B CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT

Subsurface Soil (0-15 feet) Construction Worker

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1						
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient
Metals						
Arsenic	С	4.27E+00	1.50E+01	NA	3E-07	NA
Copper	nc	2.93E+03	NA	1.40E+04	NA	2.1E-01
Lead	NA	1.09E+02	NA	8.00E+02	NA	1.4E-01
Hexavalent chromium	с	3.35E+00	4.90E+01	NA	7E-08	NA
Total				-	4E-07	3.5E-01

Notes:

c - carcinogen EPC - exposure point concentration mg/kg - milligrams per kilogram NA - not applicable nc - non-carcinogen RBC_{SS} - direct contact RME - reasonable maximum exposure

TABLE 6C CALCULATION OF RME RISKS - UPLAND EXPOSURE UNIT Subsurface Soil (0-15 feet)

Excavation Worker

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1							
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient	
Metals							
Arsenic	С	2.40E+01	4.20E+02	NA	6E-08	NA	
Copper	nc	5.60E+04	NA	3.90E+05	NA	1.4E-01	
Lead	NA	1.42E+03	NA	8.00E+02	NA	1.8E+00	
Hexavalent chromium	с	6.43E+00	1.40E+03	NA	5E-09	NA	
Total					6E-08	1.9E+00	

Notes:

c - carcinogen

EPC - exposure point concentration

mg/kg - milligrams per kilogram

NA - not applicable

nc - non-carcinogen

 $\mathsf{RBC}_{\mathsf{SS}}$ - direct contact

RME - the maximum concentration is conservatively assumed to be the reasonable maximum exposure for the excavation worker because their exposure is focused in a small area

TABLE 6D SUMMARY OF RME RISKS - UPLAND EXPOSURE UNIT

Subsurface Soil (0-15 feet)

Source / Pathway	Excess Lifetime Cancer Risk	Hazard Index				
Recreational User / Trespasser						
Subsurface Soil / Direct Contact	9E-07	3.2E-01				
Construction Worker						
Subsurface Soil / Direct Contact	4E-07	3.5E-01				
Excacavation Worker						
Subsurface Soil / Direct Contact	6E-08	1.9E+00				
DEQ Acceptable Risk Levels	1E-05	1.0E+00				

Notes:

RME - reasonable maximum exposure

TABLE 7 CALCULATION & SUMMARY OF RME RISKS - WETLAND EXPOSURE UNIT

Excess Lifetime Cancer Risk = RME EPC / RME RBC _{SS} * 10 ⁻⁶ Hazard Quotient = RME EPC / RME RBC _{SS} * 1							
Constituent	Carcinogen?	RME EPC (mg/kg)	Carcinogenic RME RBC _{SS} (mg/kg)	Noncarcinogenic RME RBC _{SS} (mg/kg)	Excess Lifetime Cancer Risk	Hazard Quotient	
Recreational User / Tr	respasser						
Arsenic	с	1.10E+01	1.00E+01	NA	1E-06	NA	
Construction Worker							
Arsenic	с	1.10E+01	1.50E+01	NA	7E-07	NA	
Excavation Worker			•	•			
Arsenic	с	1.10E+01	4.20E+02	NA	3E-08	NA	
DEQ Acceptable Risk Levels					1E-05	1.0E+00	

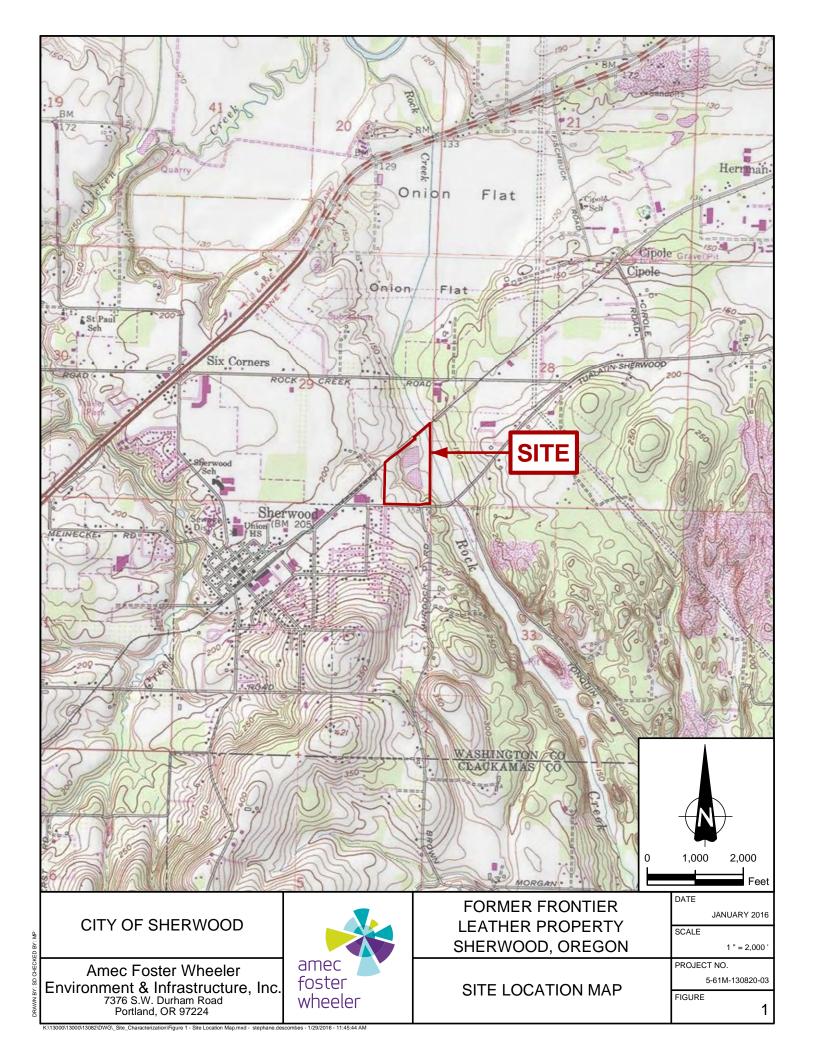
Notes:

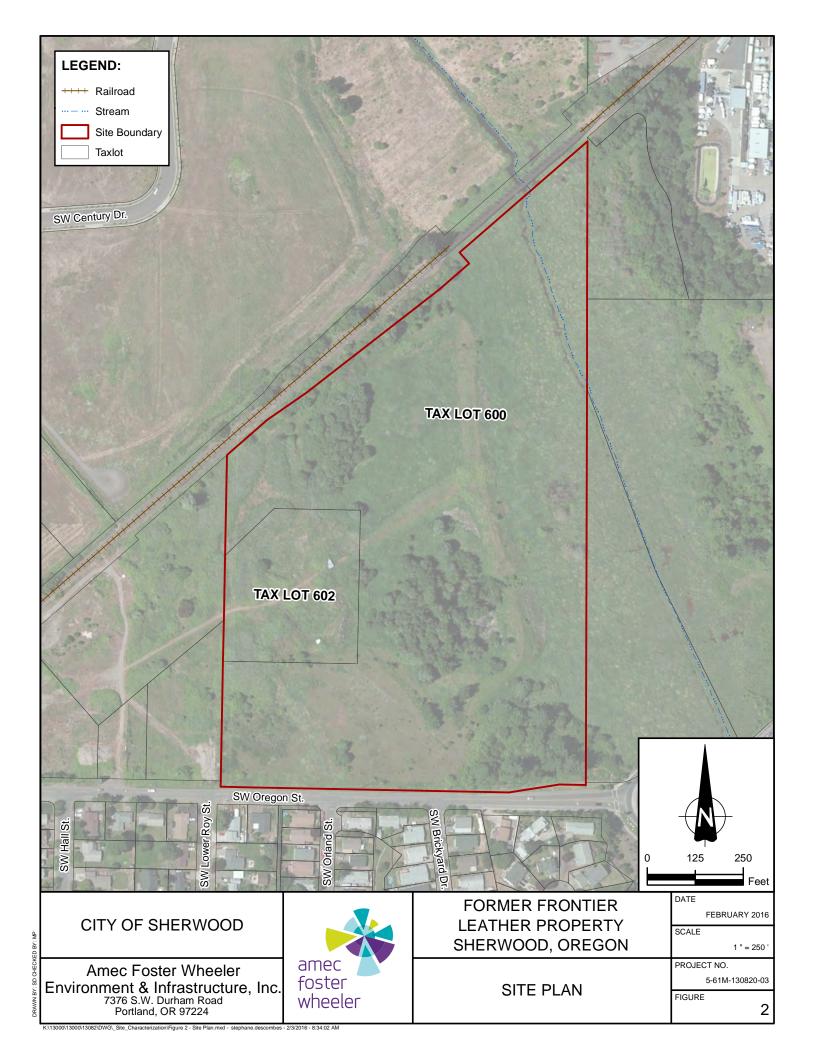
c - carcinogen

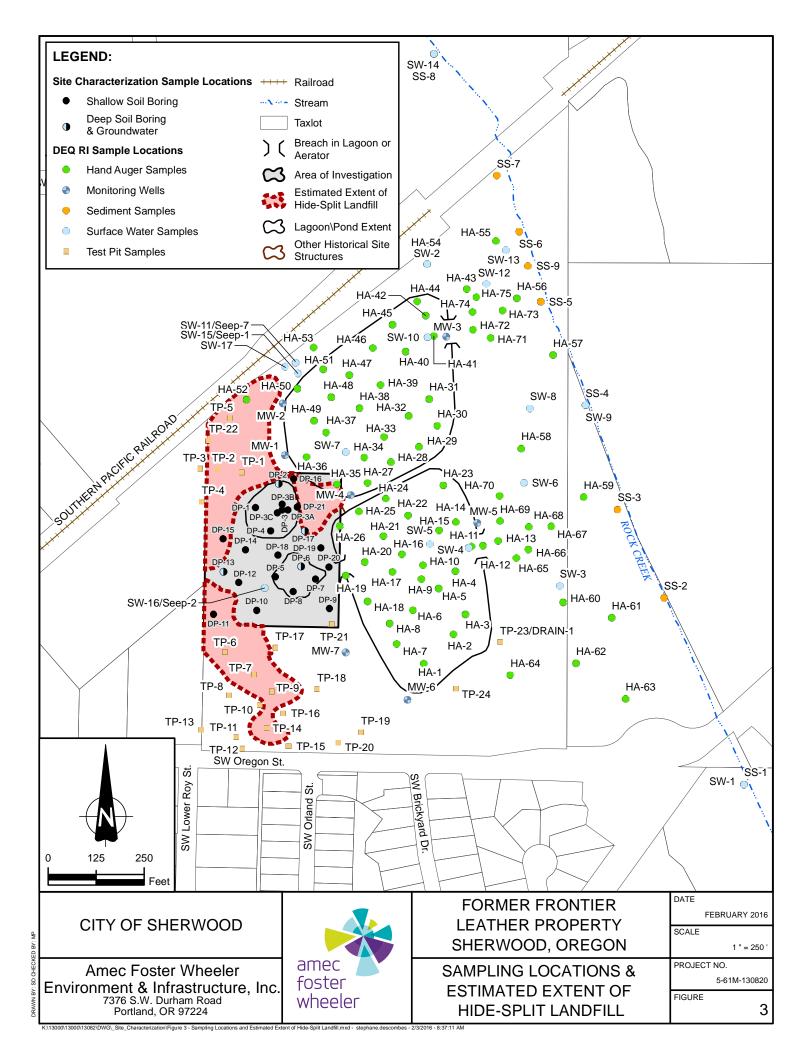
EPC - exposure point concentration

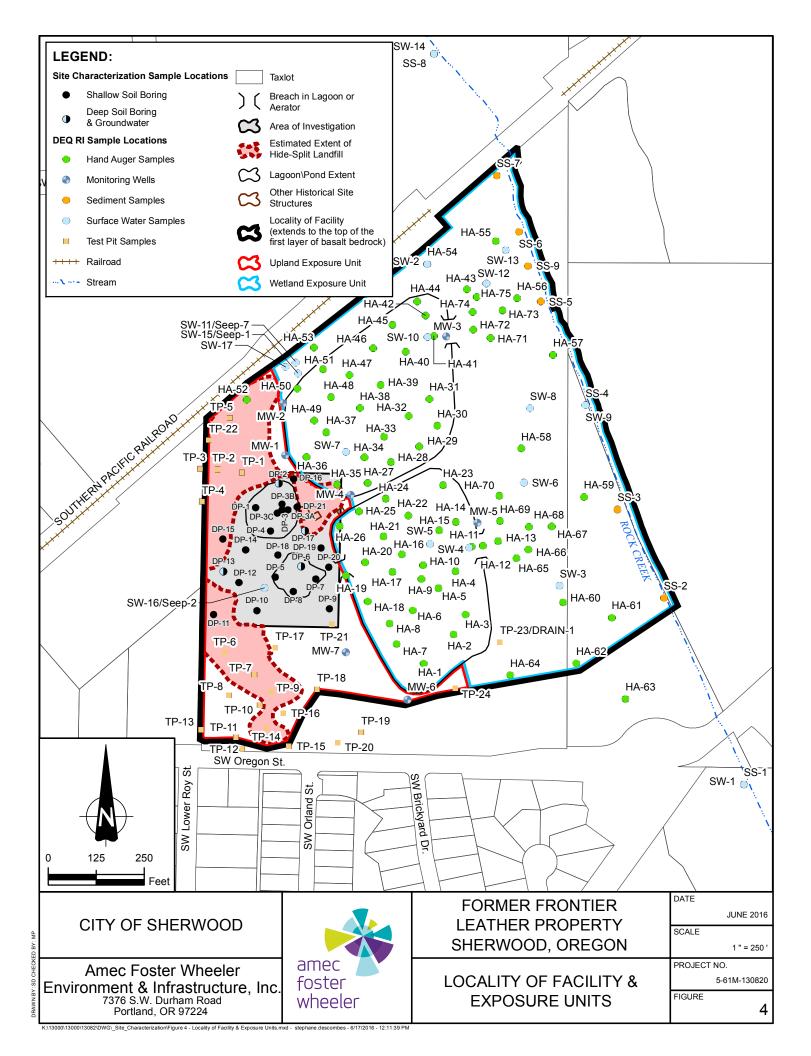
mg/kg - milligrams per kilogram

NA - not applicable


nc - non-carcinogen


RBC_{SS} - direct contact (site-specific RBCs for the recreational user / trespasser receptor are provided in Appendix F)


RME - reasonable maximum exposure



FIGURES

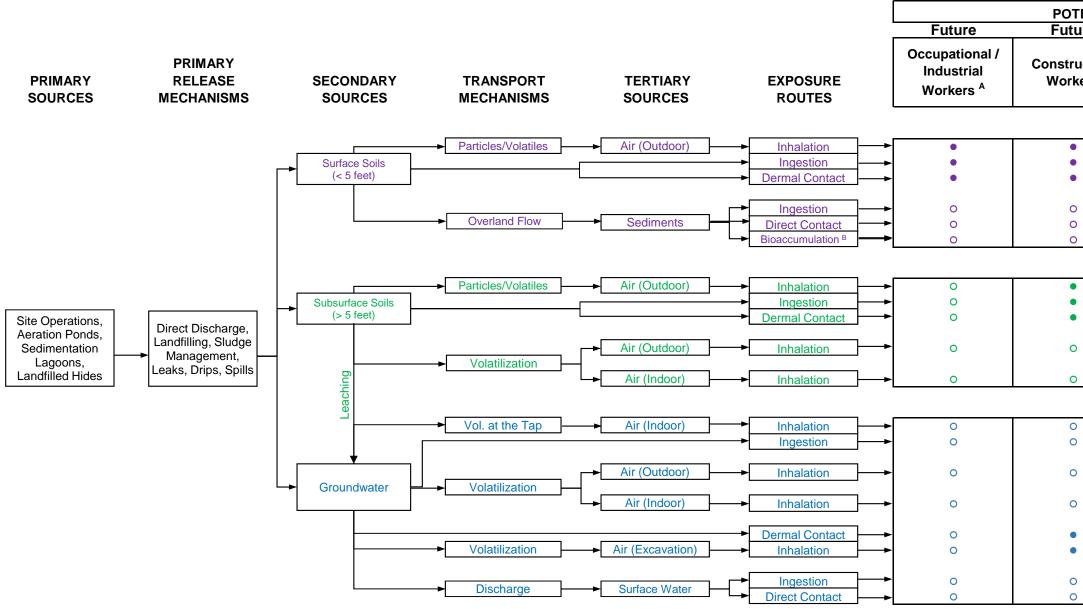


FIGURE 5 CONCEPTUAL SITE MODEL FOR HUMAN RECEPTORS

Former Frontier Leather Tannery Property

Notes: • This route is a primary source of exposure.

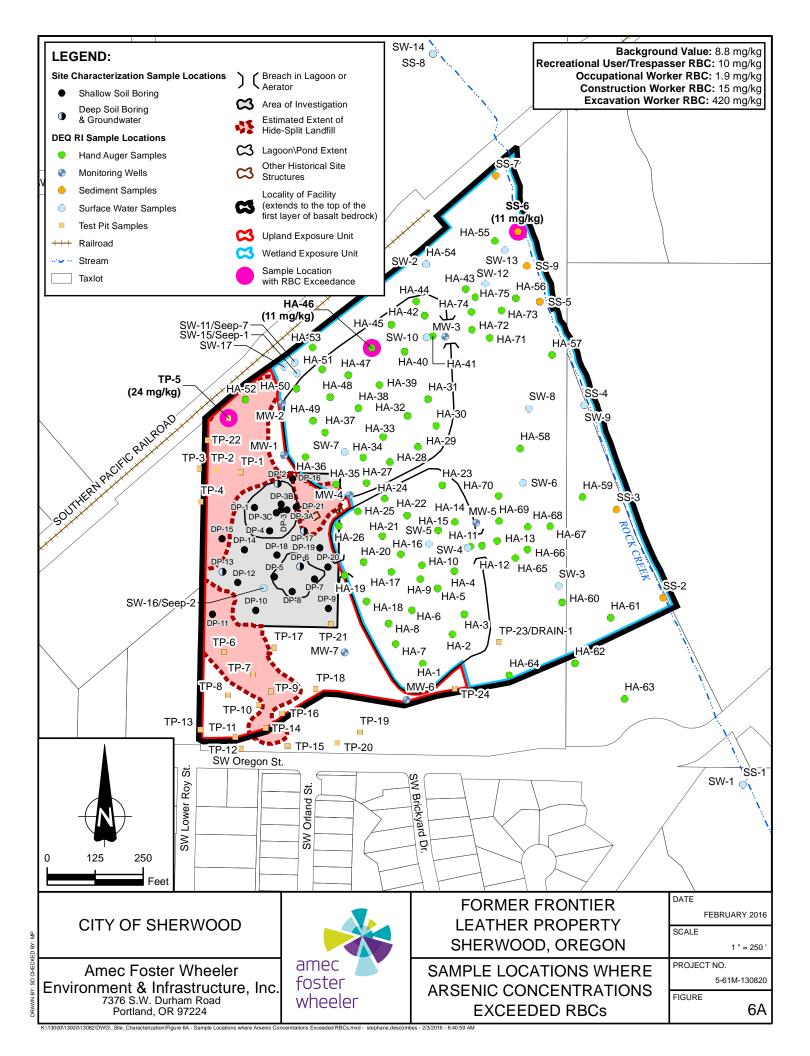
O There is no exposure by this route.

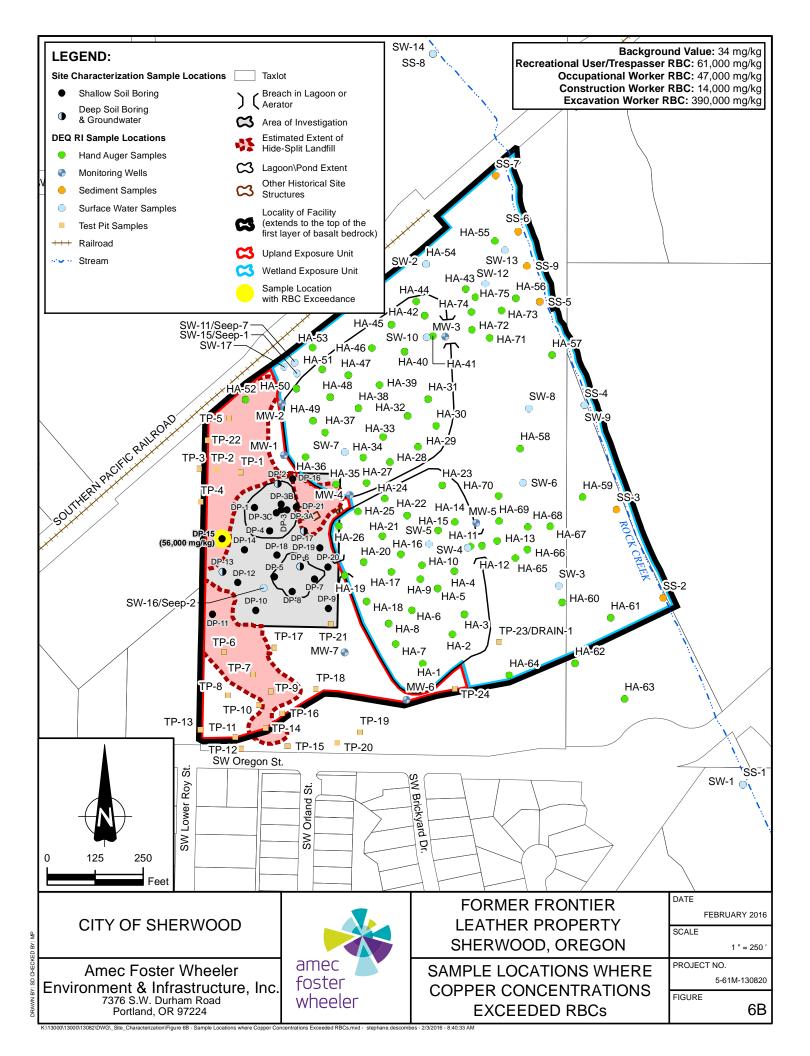
^A Occupational/industrial workers are anticipated to use only the upland portion of the site.

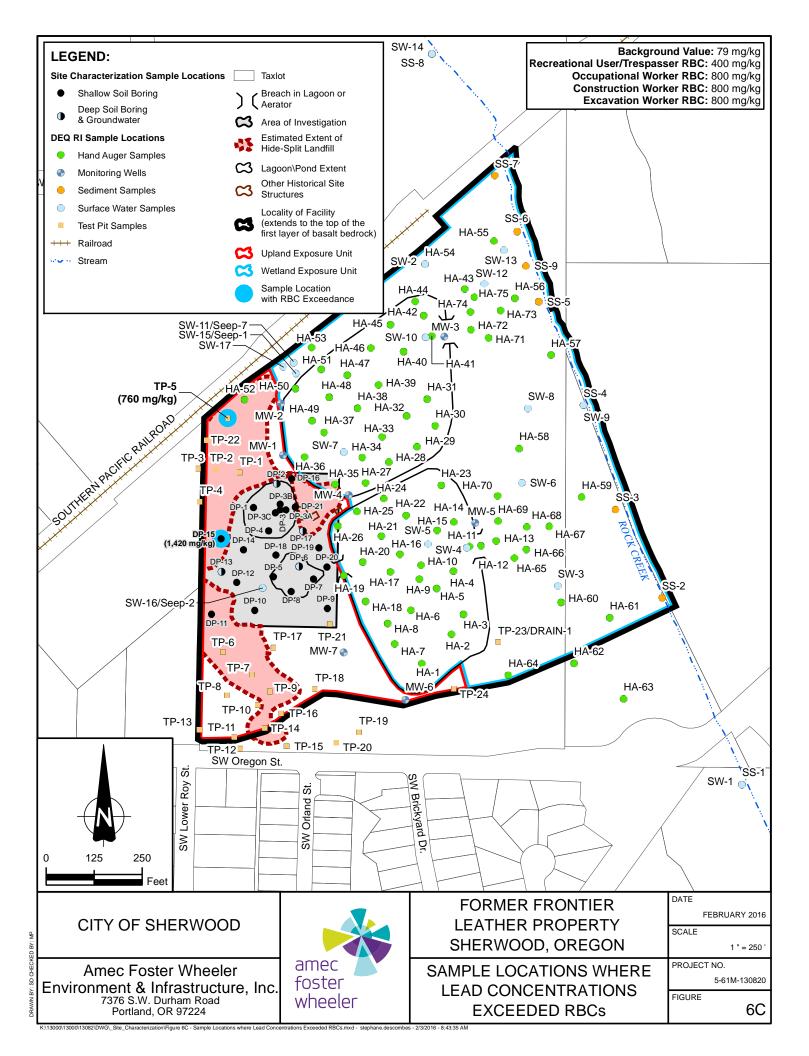
^B Assumes receptors at the Site do not consume fish from Rock Creek.

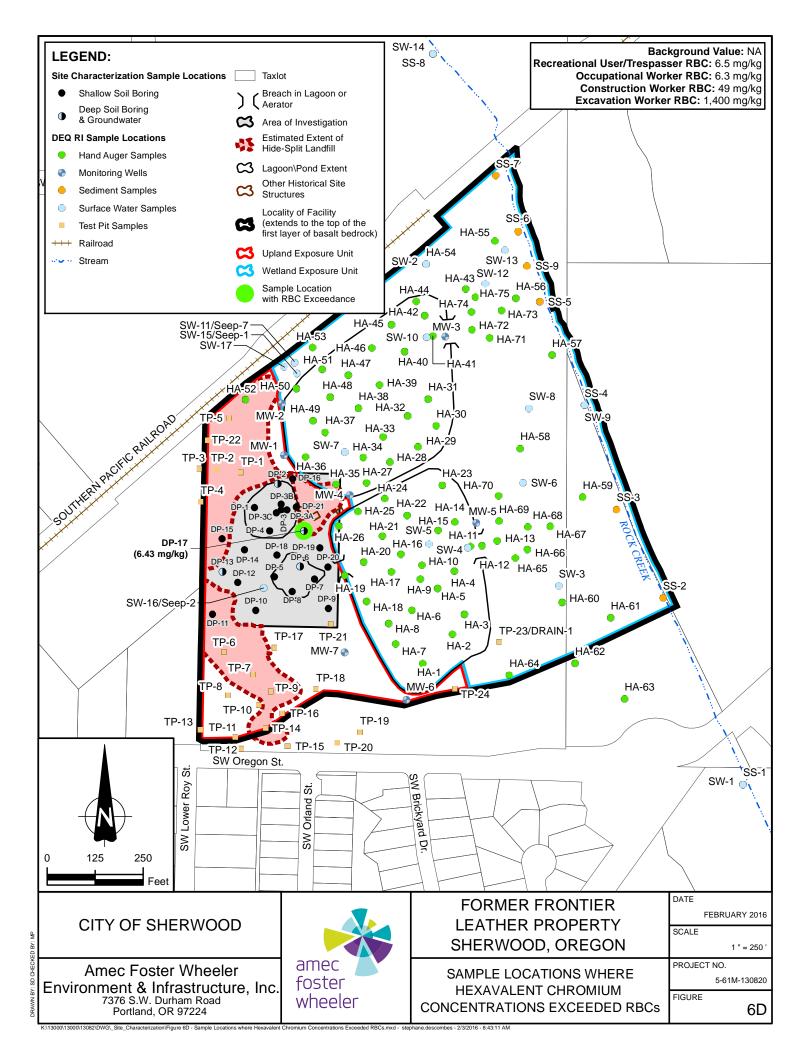
Additional evaluation of ecological receptors is not planned because the results of the ecological risk assessment (ERA) prepared in 2004 during the remedial investigation (GeoEngineers, 2004) are still valid and because no ecological habitat is anticipated for the upland portion of the Site following redevelopment.

The results of the 2004 ERA are summarized in Section 5.5 provides the rationale that support the 2004 conclusions as still valid.


OTENTIAL RECEPTORS											
uture	Future	Current / Future									
struction orkers	Excavation Workers	Trespasser / Recreational User									
_											
•	•	•									
•	•	•									
0	0	•									
0	0	•									
0	0	0									
		-									
•	•	0									
•	•	0 0									
0	0	0									
0	0	0									
0	0	0									
0	0	0									
0	0	0									
0	0	0									
•	•	0									


0


0


0

0

APPENDIX A

Geophysical Investigation Report

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

22323 East Wild Fern Lane, Brightwood, Oregon 97011 • PH (503) 622-0154 • FAX (503) 622-0526 WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

SUMMARY REPORT

SUBSURFACE MAPPING SURVEY TO DETECT LANDFILL DEBRIS

FORMER FRONTIER LEATHER PROPERTY SW LOWER ROY AND OREGON STREET SHERWOOD, OREGON

CLIENT Amec Foster Wheeler 7376 SW Durham Road Portland, Oregon 97224

DATE OF SURVEY

November 2-4, 2015

GeoPotential Project Number: 9446

CONTENTS

Summary	3
Introduction	3
Survey Objectives	3
Survey Site	
Survey Equipment	3
Procedure	4
Results	. 4
Limitations	

FIGURES

Figure 1. Radar Profile Examples	6
Figure 2. Interpretation Map	7

APPENDIX

Appendix A – G	PR Surveys	

SUMMARY

A geophysical survey was conducted upon an unimproved property located near the intersection of SW Lower Roy and Oregon Street, Sherwood, Oregon for the purpose of identifying potential landfill areas which may contain leather hide splits.

A GPR Survey was performed for the landfill search.

Areas containing hide splits were identified and categorized during the survey; a GPS map was created.

A Borehole Clearance Survey (BHCS) was performed on twenty proposed boreholes.

INTRODUCTION

Anthony Bartruff and Jose Martinez of GeoPotential conducted the Subsurface Mapping Survey (SMS); Graeme Taylor represented AMEC FOSTER WHEELER onsite. Fieldwork was carried out on November 2-4, 2015. The report was completed and e-mailed to AMEC FOSTER WHEELER on November 12, 2015.

Subsurface mapping surveys are geophysical surveys utilizing geophysical methods and data to detect and locate natural and manmade subsurface features. Ground Penetrating Radar (GPR) Surveys are used to map both natural and manmade subsurface features such as USTs, utilities; backfilled pits, etc. (see Appendix A). Pipe and cable locators are used to map the locations of buried utilities and piping.

GPR surveys are used to map the locations, depths, sizes and shapes of objects.

SURVEY OBJECTIVES

The objectives of this subsurface mapping survey are:

- 1. Search for and map all landfill areas containing hide splits.
- 2. Map the extents of former holding ponds onsite.
- 3. Clear 20 proposed boreholes.

SURVEY SITE

The survey location is depicted on Figure 1 and 2. The SMS was performed on portions of a former leather tannery located near Lower Roy and Oregon Street, Sherwood, Oregon. The survey Site consists of approximately three acres generally sloping down to the East-Northeast. Bisecting two former holding pounds located within the middle of the Site is a gravel road running East-West. The site was relatively clear of vegetation and appeared to have been cleared recently. Surface debris related to the former facility, including concrete, metal pipes, and general debris is spread though out the site.

SURVEY EQUIPMENT

The following geophysical instruments were used to conduct the survey:

- Mala RAMAC Ground Penetrating Radar System with a 250 MHz antenna (GPR Survey).
- Schonstedt GA52 Magnetic Gradiometer.
- Aqua-Tronics A6 Pipe & Cable locator.
- Heath Sure-Lock Pipe & Cable locator.
- Trimble A132 Global Positioning System (GPS Survey)

This equipment and the procedures used to meet the survey objectives of this project have been proven effective in detecting buried landfill material.

Geophysical techniques are excellent at detecting changes in the subsurface caused by natural and manmade objects; however, they are poor at actually identifying subsurface features. Complementary methods may be used to assist in the interpretation; however, the only sure way of identifying a buried feature is by excavation.

PROCEDURE

GPR Survey

The GPR Survey consisted of acquiring a number of GPR Profiles across the Site to search for landfill debris to a depth of 8-10 feet.

Pipe & Cable Survey

Magnetic and electromagnetic scans were conducted to search for utilities which could be impacted by planned drilling operations.

RESULTS

Results were marked on the Site and are shown on Figures 1 and 2.

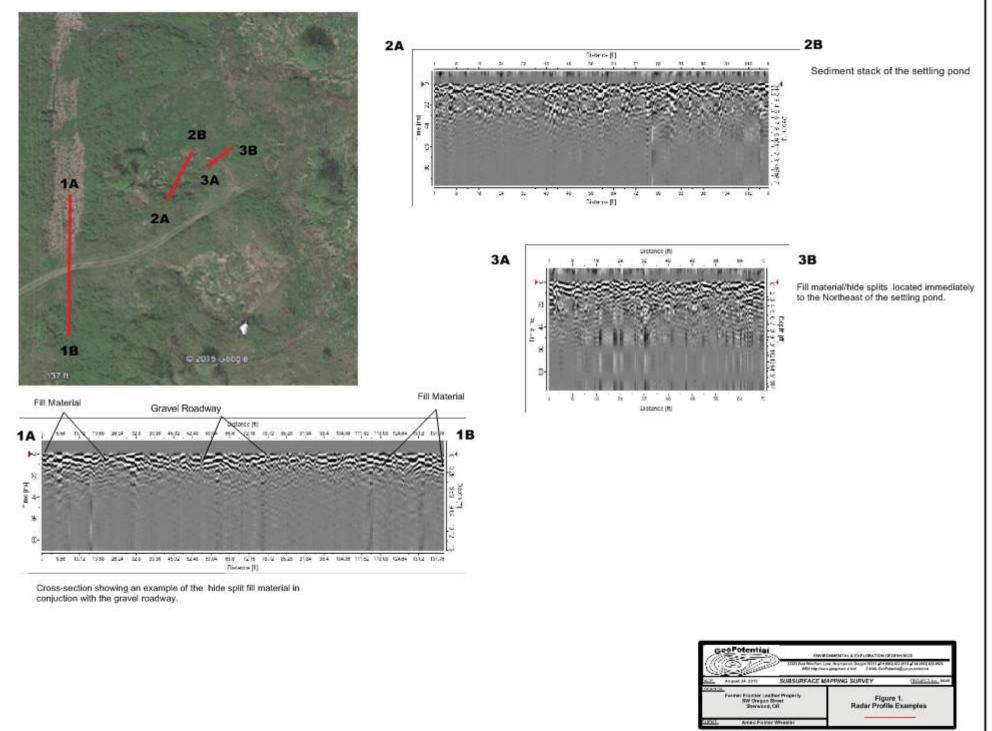
In general, the site appeared to have two types of hide split fill:

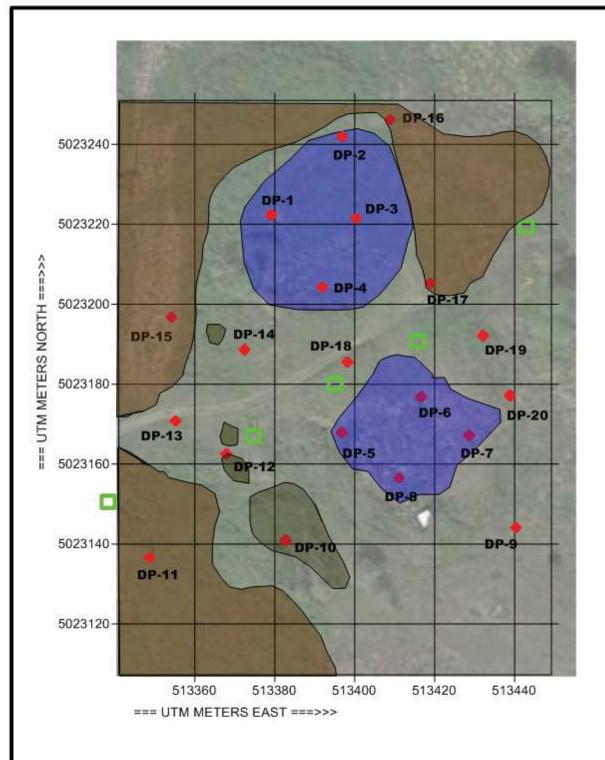
- 1. Hide splits below the surface: typically buried by approximately 2 feet of soil fill. The hide splits outcrop in a topographic terrace located on the western half of the site and are depicted within Figure 2.
- 2. Hide splits at ground surface: these appear to be hide splits originally deposited on the surface or displaced post-deposition. They are located primarily and sporadically above the two holding ponds as shown within Figure 2.

Both holding ponds were mapped and profiled; the North pond appears to have disturbed sediment to a depth of at least 6 feet. The South pond appears to have sediments to a depth of four feet.

20 proposed boreholes were cleared of utilities which may affect drilling operations.

LIMITATIONS


Limitations of magnetometer and GPR surveys can be seen in the Appendices.


Geophysical surveys consist of interpreting geophysical responses from subsurface features. Since a variety of subsurface features can produce identical geophysical responses, it is necessary to confirm the geophysical interpretation with intrusive investigations such as excavating or drilling. In addition, many subsurface features may produce no geophysical response.

Rolph Soule

Ralph Soule GeoPotential

Anthony Bartruff GeoPotential

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

22323 East Wild Fern Lane, Brightwood, Oregon 97011 • PH (503) 622-0154 • FAX (503) 622-0526 WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

GROUND PENETRATING RADAR SURVEYS

Ground Penetrating Radar (GPR) can be a valuable tool to accurately locate both metallic and non-metallic UST's and utilities, buried drums and hazardous material at some sites. It may detect objects below reinforced concrete floors and slabs. GPR may delineate trenches and excavations and, under some conditions, it may be used to locate contaminant plumes. It has been used as an archaeological tool to look for buried artifacts. It may accurately profile fresh water lake bottoms either from a boat or from a frozen lake surface. GPR may be used to locate voids below roads and runways. GPR has numerous engineering applications. It can be used in non-destructive testing of engineering material, for example, locating rebar in concrete structures and determining the thickness of concrete and other structural material.

GPR uses short impulses of high frequency radio waves directed into the ground to acquire information about the subsurface. The energy radiated into the ground is reflected back to the antenna by features having different electrical properties to that of the surrounding material. The greater the contrast, the stronger the reflection. Typical reflectors include water table, bedrock, bedding, fractures, voids, contaminant plumes and man-made objects such as UST's and metal and plastic utilities. Materials having little electrical contrast like clay and concrete pipes may not produce strong reflections and may not be seen. Data are digitally recorded or downloaded to a laptop computer for filtering and processing.

The frequency of the radar signal used for a survey is a trade off. Low frequencies (250 MHz - 50 MHz) give better penetration but low resolution so that pipes and utilities may not be seen. Pipes and utilities may be seen using higher frequencies (500 MHz) but the depth of penetration may be limited to only a few feet especially in the wet, clayey soils found in many areas of the NW USA. The GPR frequency is dependent upon the antenna. Once an antenna is selected, nothing the operator can do can increase the depth of penetration.

Radar data is ambiguous. Many buried objects produce echoes that may be similar to the echo expected from the target object. Boulders and debris produce reflections that are similar to pipes and tanks. Subtle changes in the electrical properties along a traverse caused by changes in soil type, mineralogy, grain size, and moisture content all produce "noise" that can make interpretation difficult. Interpreting radargrams is an art as much as a science.

Under some conditions, although a UST itself may not be clearly visible in a GPR record, the excavation or trench in which the UST is buried is evident. Usually GPR data is used to compliment data from other "tools". For example, a trench-like reflection but no clear UST reflection, combined with a "tank" shaped magnetic anomaly suggests the presence of a UST. Although the UST itself could not be seen using GPR, the radar showed a trench-like reflection. The magnetic data showed a large ferrous object. We would report a possible UST at that location.

GPR is often used in conjunction with magnetometer surveys. Magnetometer Surveys are very fast and large areas can be covered cost effectively. Magnetic anomalies are marked in the field, and then may be further investigated using radar.

GPR, like other geophysical tools, is excellent at detecting changes across a site, but it is poor at actually identifying the cause of the change. The only definite way to identify buried objects is through excavation.

ADVANTAGES - General

- When GPR data is properly interpreted subsurface objects can usually be confidently identified. This often requires the GPR data be combined with other geophysical data, surface features and historical information.
- GPR provides continuous records along traverses which, depending on the goal of the survey, may be interpreted in the field.
- At flat, open sites, for reconnaissance purposes, the antenna can be towed behind a vehicle at several mph.
- Many GPR antennas are shielded and are unaffected by surface and overhead objects and power lines.
- GPR can be used in conjunction with magnetic or EM surveys to accurately locate buried objects.

ADVANTAGES – Site specific

- With a low frequency antenna, in clean, dry, sandy soil, reflections from targets as deep as 100 feet are possible. Geologic features such as bedrock and cross bedding may be seen at some sites.
- The resolution of data is very high particularly for high frequency antennas.
- Shallow, man-made objects generally can be detected.
- Fiberglass UST's and plastic pipes can be detected using GPR.

LIMITATIONS - General

- To acquire the highest quality data, proper coupling between the antenna and the ground surface is necessary. Poor data may be obtained at sites covered with debris, an uneven surface, tall grass and brush. Objects located at curbs are difficult to see.
- Acquiring GPR data is slow. The antenna must be over the target. The signal from the antenna is cone-shaped. Reflections from objects to the side of the antenna may be seen, but their actual location relative to the antenna is not obvious.
- Penetration of the GPR signal is "site specific" and its depth of penetration at a particular site cannot be predicted ahead of time. Near surface conductive material, such as salty or contaminated ground water and wet, clay-rich soil, may attenuate the radar signal, limiting the effective depth of the survey to several feet. Reinforced concrete also can attenuate the signal. Rebar may produce reflections that look like pipes.

• GPR may not be cost-effective for some projects. For a detailed survey mapping underground storage tanks and utilities, it may be necessary to collect data in orthogonal directions at 5-foot line spacing.

LIMITATIONS – Interpretation

- Interpretation can be difficult. Radar data are ambiguous. Subsurface objects can be detected but, in general, they cannot be identified. USTs and utilities have a characteristic reflection, however, large rocks and boulders have a similar reflection.
- The reflection visible in a GPR record is very complex and may be caused by small changes in the electrical properties of the soil. The target in mind may not produce the reflection. Due to "noise", the target may be missed. USTs and deep utilities may be missed if they are under debris and/or other pipes.
- Other methods may be necessary to aid in the interpretation of the data (use a magnetometer to detect a large metallic mass, then GPR to determine if the object is tank-like, or a utility locator to determine if there are feed lines and fill pipes leading to the object).
- Adequate contrast between the ground and the target is required to obtain reflections. UST's may be missed if they are badly corroded. Utilities made of "earth" materials like clay and concrete may not be detected since their electrical properties are similar to the surrounding soil.
- To determine the depth to an object without "ground truth", assumptions must be made regarding soil properties. Even with ground truth at several locations on the same site, changes in material across a site (therefore changes in signal velocity) can cause errors in depth measurements at other locations.

APPENDIX B

Boring Logs & Field Forms

APPENDIX B-1

Boring Logs

	⊖ ODEPTH (ft bgs) 	GRAPHIC LOG	USCS SYMBOL		CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			SW	Brown, moist, fine to coarse SAI	ND, trace silt.							P-01 0-1
	_											
	_			Wet at 3 feet bgs.								
	_			Light brown to gray, wet, clayey	SILT trace fine sand						D	P-01 3.5-4.5
	- 5 -		IVIL									
	End of boring at 5 feet bgs.											
	_											
Ī												
	_											
	_											
ł	-15-											
	-											
	-											
	_											
	-20											
	-20-											
	_											
	_											
	_											
6	-25-											
2/18/1	-											
D.GDT	-											
TLANE	-											
IC POF	_											
J AME	BORING METHOD: Direct Push ELEVATION REFERENCE: NA LOCATION: North Aeration Po								Pond			
.03.GP	BOREHOLE DIAMETER: REMARKS:											
130820	Brill Rig: NA GROUND SURFACE ELEVATION: NA											
61				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/10/2015 - 11/10/	2015						
	\equiv					_013						
USH BOI	Forr She	ner F rwoo	-ronti od, Or	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road	re, In	с.			2000	*	LOG OF BORING DP-01
Former Frontier Leather Property Amec Foster Wheeler Sherwood, Oregon Environment & Infrastructure, Inc. 5-61M-130820 USA 97224 Tel (503) 639-3400 Tel (503) 639-3400						amec foste wheel	C .	PAGE 1 OF 1				

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	-0		ML	Gray with orange mottling, mois	t, sandy SILT.							DP-02 0-1
	- 5 -		SP	Medium dense, moist, poorly gra mica. Increased orange mottling at 5 f				∇				DP-02 3.5-4.5
	_ _ _10_		SM	Gray with trace orange mottling, Brown at 9 feet bgs. Wet at 9.5 feet bgs. Very wet at 10 feet bgs.								DP-02 8-9
				Increased sand from 10 to 11 fe	et bgs.							
	-1 5 - _			End of boring at 15 feet bgs.								
	_ 											
	_ _ _25_											
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16												
C POR	_											
J AME	BORING METHOD: Direct Push ELEVATION REFERENCE: NA LOCATION: North Aeration Pond									on Pond		
).03.GF	BOREHOLE DIAMETER: REMARKS:											
130820	DRILL RIG: NA GROUND SURFACE ELEVATION: NA											
				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/10/2015 - 11/10/2	2015						
7376 SW Durham Road amec DP-02 Formation USA 97224 foster									LOG OF BORING DP-02			
Ë	5 01			-	Tel (503) 639-3400					PAGE 1 OF 1		

	OUEFIN (m bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			SM	Gray with orange mottling, silty f Thin (2-inch) black layer with bu								DP-03 0-1
_	5-			Small areas of intermittent black edges, decreasing with depth thi bgs. Medium dense, gray, moist, silty degraded petroleum hydrocarbo sheen.	staining with well-defined rough approximately 6.5 feet fine to medium SAND,		56.7 32.8	∇				DP-03 3.5-4.5
	_		ML	Intermittent gradational orange s organic-like odor, no sheen.	taining throughout gray SILT,		32					
-1	 			Wet at 10 feet bgs. Black staining observed with org from 10 to 12.5 feet bgs.	anic-like odor but no sheen		16.3					DP-03 9-10
	Dense, gray at 12.5 feet bgs. ML Brown, SILT with red iron oxidation, no odor.										\square	DP-03 GW
	5						8.2					DP-03 14.5-15
MEC PORTLAND.GDT 2/18/16				End of boring at 15 feet bgs.						- North As	ratio	n Bond
GPJ												
5-61M-130820.03	BOREHOLE DIAMETER: REMARKS: DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water, Inc. Contractor: Pacific Soil & Water, Inc. LOGGED BY: G. Taylor & G. Ferreira DRILLING DATES: 11/10/2015 - 11/11/2015											
CT PUSH E	hei	rwoo	od, Or	er Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224	re, In	C.			amec		LOG OF BORING DP-03
	USA 97224 Toster 5-61M-130820 Tel (503) 639-3400 wheeler								PAGE 1 OF 1			

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		SCRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
		1. 1	SM	Brown with orange mottling, c Gray, sandy SILT, slight orga								
AMEC PORTLAND.GDT 2/18/16	- 5 - - - - - - - - - - - -			End of boring at 5 feet bgs.	EVATION REFERENCE: NA			LOC	ATION	: North Ae	ration P	ond
5-61M-130820.03.GPJ												
CT PUSH E	Former Frontier Leather Property Amec Foster Wheeler Sherwood, Oregon Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon 5-61M-130820 USA 97224								er	LOG OF BORING DP-03A PAGE 1 OF 1		

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			SM	Brown, fine sandy SILT with rus Coarse sand with depth, minima								
	- 5 - - - -10- - - 15- - - - 15- - - - - - - - - - -			End of boring at 5 feet bgs.								
8/16	-20- -25-											
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	_ _ _30_							1.00	ATION	• North As	ration P	ond
	BORING METHOD: Direct Push ELEVATION REFERENCE: NA LOCATION: North Aeration Pond BOREHOLE DIAMETER: REMARKS: DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water, Inc. DRILLING DATES: 11/11/2015 - 11/11/2015											
DIRECT PUSH BORING	Former Frontier Leather Property Sherwood, Oregon 5-61M-130820 Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400								er er	LOG OF BORING DP-03B PAGE 1 OF 1		

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			ML	Clayey SILT. End of boring at 3.5 feet bgs due bottom.	e to refusal on pipe or gravel							
	- 5 - - - -											
-	-10- - - -											
	-15 - _ _ _											
-	- 20- 											
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	- 25 - _ _											
EC PO	_30											
SPJ AN	BORING METHOD: Direct Push ELEVATION REFERENCE: NA LOCATION: North Aeration F									ration P	ond	
20.03.0	BOREHOLE DIAMETER: REMARKS: Solution GROUND SURFACE ELEVATION: NA											
CONTRACTOR: Pacific Soil & Water, Inc.												
G 5-611					LING DATES: 11/11/2015 - 11/11/2	2015						
Former Frontier Leather PropertyAmec Foster Wheeler Environment & Infrastru 7376 SW Durham Road Portland, Oregon5-61M-130820USA 97224 Tel (503) 639-3400							с.			amec foster wheel	er	LOG OF BORING DP-03C PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		ESCRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			SM	Light brown to gray, moist, so organics (rootlets).	andy SILT, fine to medium sand,			\square				DP-04 0-1
	- 5 -			Trace subangular gravel and	coarse sand at 3 feet bgs.							DP-04 3.5-4.5
	- 5 -			End of boring at 5 feet bgs.								
AMEC PORTLAND.GDT 2/18/16	10- 10- 15- 15- 15- 											
GPJ AN									on Pond			
0.03.GI	BOREHOLE DIAMETER: REMARKS: Poor recovery, pushed twice.									ice.		
13082(DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water, Inc.											
5-61					RILLING DATES: 11/10/2015 - 11/10/	2015						
CT PUSH BORING	Former Frontier Leather Property Sherwood, Oregon Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400 Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400 PAGE 1 OF 1											

	о ОБЕРТН (ft bgs) Ј	GRAPHIC LOG	USCS SYMBOL		SCRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
Ī	-0-	X	GC	Brown, clayey GRAVEL.								P-05 0-1.5
		<u>578</u>	SM	Medium dense, gray, moist, si	ty fine to coarse SAND.							
	_		ML	Gray, moist, SILT with fine sar	d.						D	P-05 3.5-4.5
	- 5 -			End of boring at 5 feet bgs.								
	10 											
	_											
	_ -25-											
AMEC PORTLAND.GDT 2/18/16	-											
	-30-	NG M	ETHO	D: Direct Push EL	EVATION REFERENCE: NA	1	1	LOC		I: South Ae	eration	Pond
3.GPJ								REM	ARKS	:		
320.03	BOREHOLE DIAMETER: CONTROL DIAM								-			
1-130	DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water, Inc. LOGGED BY: G. Taylor & G. Ferreira DRILLING DATES: 11/11/2015 - 11/11/2015											
					LLING DATES: 11/11/2015 - 11/11/	2015						
Former Frontier Leather Property Sherwood, Oregon 5-61M-130820 Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400								LOG OF BORING DP-05				
E	5-61M-130820 Tel (503) 639-3400 wheeler								PAGE 1 OF 1			

	2-06 0-1 2-06 5-6 2-06 GW
	2-06 GW
	P-06 12-13
LOCATION: South Aeration F	Pond
REMARKS: Shallow refusal (2 feet bos) in	first attempt: stepout boring
	. mot attempt, steppat bornig.
amec	LOG OF BORING DP-06 PAGE 1 OF 1
R	OCATION: South Aeration F REMARKS: Shallow refusal (2 feet bgs) ir

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	-0-		SM	Medium dense, brown, dry to m	oist, silty fine to medium SAND.							DP-07 0-1
	-		_ML	Gray, dry to moist, sandy SILT,	fine sand.							DP-07 3.5-4.5
	_											
F	- 5 -			End of boring at 5 feet bgs.								
	-10-											
	_											
	_											
	_											
	_											
-	15											
	_											
	_											
	_											
	_											
ŀ	-20-											
	_											
	-25-											
18/16	25											
DT 2/	_											
AND.G	_											
ORTL	_											
AMEC PORTLAND.GDT 2/18/16	_30							LOC		: South Ae	erati	on Pond
GPJ A				D: Direct Push ELE	VATION REFERENCE: NA				ARKS			
320.03.					UND SURFACE ELEVATION: NA					•		
30				Pacific Soil & Water, Inc.								
	LOGO	GED E	9Y: G.	Taylor & G. Ferreira DRIL	LING DATES: 11/10/2015 - 11/10/	2015						
CT PUSH E	Former Frontier Leather Property Sherwood, Oregon Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon USA 97224							LOG OF BORING DP-07				
DIRE	5-61M-130820 USA 97224 Tel (503) 639-3400 wheeler						PAGE 1 OF 1					

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
			ML	Brown, moist, SILT with trace sa	and and clay, organics (rootlets).							DP-08 0-1
	_											
	_											
	_											DP-08 3.5-4.5
┢	5-			End of boring at 5 feet bgs.								
	_											
╞	10-											
	-											
	-											
	15-											
	_											
	-											
	-											
F	20											
	_											
	_											
	25-											
2/18/1	_											
ND.GDT												
AMEC PORTLAND.GDT 2/18/16												
MEC PC	30							1.00		ار ماندر ا		on Bond
GPJ A				D: Direct Push ELE IETER:	VATION REFERENCE: NA					I: South Ae	r atio	un rullu
820.03.					UND SURFACE ELEVATION: NA					•		
30				Pacific Soil & Water, Inc.								
DIRECT PUSH BORING	Forn Shei	ner l rwoo	Front od, Oi	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	re, In	c.			amec		LOG OF BORING DP-08
DIREC	5-61M-130820 USA 97224 Tel (503) 639-3400							PAGE 1 OF 1				

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	0		ML	Brown, dry, SILT, trace fine san	d, organics (rootlets).							DP-09 0-1
	_		SP	Brown to gray, dry, medium SA	ND							
												DP-09 3.5-4.5
F	5-	<u></u>		End of boring at 5 feet bgs.								
	-											
	-											
	-											
	-											
⊢	10-											
	-											
	-											
	-											
	_											
⊢	15-											
	_											
	_											
	20											
Γ	20-											
	-											
	25-											
2/18/	-											
GDT	-											
LAND	4											
PORT	4											
MEC	30											
A Lq					VATION REFERENCE: NA							
0.03.G				IETER:				REM	ARKS	:		
13082		RIG			UND SURFACE ELEVATION: NA							
61	CONTRACTOR: Pacific Soil & Water, Inc.											
	.UGG	iED B	51: G.	Taylor & G. Ferreira DRIL	LING DATES: 11/11/2015 - 11/11/	2015						
	Sher	woo	od, Or	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224				LOG OF BORING DP-09			
	5-61M-130820 USA 97224 Tel (503) 639-3400						whee	ler	PAGE 1 OF 1			

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	0-		ML	Brown, SILT, trace fine sand, tra	ace gravel, fibers (hide splits?).							5-10 0-1
-	_ _ 			Increased sand, orange mottling	I, friable at 4 feet bgs.							
	_			End of boring at 5 feet bgs.								
	_											
-	10-											
	_											
	-15-											
	_											
	_											
-	20-											
	_											
DT 2/18/16	_											
AMEC PORTLAND.GDT 2/18/16	_											
MEC P(30											
				D: Direct Push ELE\ METER:	ATION REFERENCE: NA			RFM	ARKS			
820.03		L RIG			UND SURFACE ELEVATION: NA					-		
5-61M-130820.03.GPJ	CONT	FRAC	TOR: I	Pacific Soil & Water, Inc.								
DIRECT PUSH BORING	Forr She	ner l rwoo	Front od, Oi	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	structure, Inc.			LOG OF BORING DP-10			
DIREC	5-61	M-1:	30820)	USA 97224 Tel (503) 639-3400						ler	PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	SCRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
ľ	-0-		ML	Dark brown, moist, SILT with cla	ay, trace coarse sand.							DP-11 0-1
	_			Organics (wood debris) at 1.5 fe	eet bgs.							
	-		_ML	Light brown to gray, dry, sandy	SILT, fine sand.							DP-11 3.5-4.5
	- 5			End of boring at 5 feet bgs.								
ľ	-10-											
	-											
	-											
	-											
	-											
·	-15-											
	-											
	4											
	_											
	4											
	-20-											
	4											
	-25-											
3/16	-23											
T 2/18												
D.GD	1											
TLAN	4											
AMEC PORTLAND.GDT 2/18/16	4											
	–30–⊥ BORII	NG M	ETHO	D: Direct Push ELE	VATION REFERENCE: NA	1	1		I		<u> </u>	
3.GPJ	BORE	HOL	E DIAN	IETER:				REM	ARKS	:		
320.03	DRILL				OUND SURFACE ELEVATION: NA							
5-61M-130820.03.				Pacific Soil & Water, Inc.								
CT PUSH E	Shei	woo	Front od, Oi	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224	nment & Infrastructure, Inc. W Durham Road Id, Oregon 7224				amec foste whee	r T	LOG OF BORING DP-11
DIR	5-01	141. 1	50020	•	Tel (503) 639-3400					₩166	içi i	PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
ľ	-0-		ML	Brown, dry, sandy SILT, very fin	e sand.							DP-12 0-1
	_			Moist at 3.5 feet bgs. Increasing sand content, trace c	lay from 4 to 5 feet bgs.							DP-12 3.5-4.5
	- 5 -			End of boring at 5 feet bgs.								
	_											
	_											
	-10-											
	_											
	_											
	_											
	-15-											
	_											
	_											
	_											
ŀ	-20-											
	_											
	-25-											
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	_											
GDT 2	_											
TLANE	-											
EC POR	20											
J AME	-30- BORI	NG M	ETHO	D: Direct Push ELEV	ATION REFERENCE: NA							
0.03.GF				IETER:				REM	ARKS	:		
-130820					UND SURFACE ELEVATION: NA							
				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/11/2015 - 11/11/2	2015						
Former Frontier Leather Property Amec Foster Wheeler											_	
DIRECT PUSH BORING	Former Frontier Leather Property Sherwood, Oregon				Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	astructure, Inc.			amec		LOG OF BORING DP-12	
DIREC	5-61	M-13	30820		USA 97224 Tel (503) 639-3400					foste wheel	ler	PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES		SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	υţ	M	GM	Loose, brown to gray, silty GRA	VEL, trace sand.							DP-13 0-1
		911.)	SM	Brown, silty fine SAND.								
	5-		ML	Brown, dry to moist, SILT, trace	fine sand.							DP-13 3.5-4.5
				Black, fine gravel at 5.5 feet bgs								DP-13 8-9
-	10		SP CL	Medium dense, medium SAND. Soft, brown, moist, CLAY, trace								
			SP	Loose, medium SAND.								
			CL SP	Soft, brown, moist, CLAY, trace Loose, medium SAND.	sand							
-	15-											
			-sc	Brown to gray, wet, clayey fine to	o medium SAND			∇			⊿	DP-13 GW
-:	20-* 			End of boring at 20 feet bgs.								
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	2 5 											
PORT	-											
MEC	30							LOC		: In roadw	av	
A LAE					ATION REFERENCE: NA						Jy	
50.03.(IETER:				REM	ARKS	:		
-13082					UND SURFACE ELEVATION: NA							
				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/11/2015 - 11/11/2	2015						
Former Frontier Leather Property Amec Foster Wheeler Sherwood, Oregon Environment & Infrastructure, Inc. 7376 SW Durham Road Portland, Oregon 5-61M-130820 USA 97224							LOG OF BORING DP-13 PAGE 1 OF 1					

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	- 0		ML	Light brown with orange mottling	g, dry, SILT with trace fine sand.							DP-14 0-1 DP-14 3.5-4.5
	- 5 -			Trace clay.								
				End of boring at 5 feet bgs.								
	_											
	_											
	_											
	-10-											
	_											
	_											
	_											
	_											
	15											
	_											
	-20											
	_											
	_											
	_											
<u> </u>	25-											
2/18/1	-											
D.GDT	-											
TLANI	-											
IC POF	_											
J AME	-30 BORI	NG M	ETHO	D: Direct Push ELE	ATION REFERENCE: NA		•				•	
.03.GF	BORE	EHOL	E DIAN	IETER:				REM	ARKS	:		
130820		L RIG			UND SURFACE ELEVATION: NA							
611				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/11/2015 - 11/11/	2015						
						-010						
DIRECT PUSH BORING	Former Frontier Leather Property Sherwood, Oregon				Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	frastructure, Inc. Road			amec		LOG OF BORING DP-14	
DIREC	5-61	M-13	30820)	USA 97224 Tel (503) 639-3400	24					r ler	PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING				ESTING AND ORATORY DATA
	0		ML	Brown, moist, SILT, trace clay, o debris).	organics (roots and wood							DP-	15 0-'	
	_													
	+			Olive-gray with white mottles, ve	ry dry sandy SII T. notably light							DP-	15 4-	5
╞	5-			weight, friable.										
	-			End of boring at 5 feet bgs.										
	-													
	-													
	40													
	-10-													
	_													
	_													
	-													
ŀ	15													
	-													
	-													
	20													
	20													
	_													
	-													
	-													
16	25													
2/18/	-													
ID.GD1														
RTLAN														
AMEC PORTLAND.GDT 2/18/16	-30													
2	BORI				ATION REFERENCE: NA						ide S	split l	_andfi	ll Footprint
20.03.0		EHOL L RIG		IETER:	UND SURFACE ELEVATION: NA				ARKS stance	: at 3 feet b	gs.			
30				Pacific Soil & Water, Inc.	C. S COM ACE ELEVATION. NA									
					LING DATES: 11/11/2015 - 11/11/	2015								
DIRECT PUSH BORING	Forn Shei	ner l rwoo	Front od, Oi	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	re, In	C.			amec			LO	G OF BORING DP-15
DIRE	5-61	M-1:	30820		USA 97224 Tel (503) 639-3400					wheel				PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	-0-		ML	Light brown, dry, fine sandy SIL	Τ.							DP-16 0-1
	_		SM	Medium dense, dark brown and SAND, trace clay.	gray with orange mottling, silty							DP-16 3.5-4.5
	- 5 -	.11		End of boring at 5 feet bgs.								
	10- 15- 15- 15- 											
	_ -20-											
	20											
	_											
	_											
	_											
	-25-											
2/18/16	_											
5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	_											
MECF												
GPJ A	BORING METHOD: Direct Push ELEVATION REFERENCE: NA BOREHOLE DIAMETER:							DEM				
20.03.	BOREHOLE DIAMETER: DRILL RIG: NA GROUND SURFACE ELEVATION: NA							REM	ARKS	•		
A-1308	CONTRACTOR: Pacific Soil & Water, Inc.											
CT PUSH I	She	rwoo	Fronti od, Or 30820	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400	re, In	c.			amec foste whee	0	LOG OF BORING DP-16 PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	- -		SM	Medium dense, medium brown v SAND, trace mica.	with trace orange mottling, silty							DP-17 0-1 DP-17 3.5-4.5
	- 5			Soft, medium brown with increas clayey SILT with trace fines and clay.	trace mica to SILT with gray			\square				DP-17 8-9
	-10- 		ML SW	Medium dense, red mottling, we Lens of gray at 12 feet bgs. Entirely gray at 13.5 feet bgs.	II-graded, medium SAND.						<u>⊼</u> 1	DP-17 GW
	-15- - - -	``````````````````````````````````````		Silty loam, trace organics (black End of boring at 15 feet bgs.	wood debris and rootlets).							
	20- - -											
AMEC PORTLAND.GDT 2/18/16	25- - -											
MEC POF	30											
				D: Direct Push ELEV	ATION REFERENCE: NA			REM	ARKS	:		
305	DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water, Inc.											
	LOGGED BY: G. Taylor & G. Ferreira DRILLING DATES: 11/10/2015											
CT PUSH E	Shei	woo		ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400	re, In	c.			amec foste whee	r ler	LOG OF BORING DP-17 PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
-			SM	Dense, light brown with orange SAND.	mottling, silty fine to medium							18 0-1 18 3.5-4.5
	- 5 - - - -10- - - - 15-			End of boring at 5 feet bgs.								
ND.GDT 2/18/16	 											
MEC PORTLA	-30-											
5-61M-130820.03.GPJ	BORE DRILI CONT	EHOLI L RIG: [RAC ⁻	e diam Na Tor: F	IETER: GRO Pacific Soil & Water, Inc.	VATION REFERENCE: NA UND SURFACE ELEVATION: NA LING DATES: 11/10/2015 - 11/10/			REM	ARKS	:		
CT PUSH BORING	Forr She	ner f rwoc	ronti	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224 Tel (503) 639-3400	ıre, In	с.			amec foste whee	-	LOG OF BORING DP-18 PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG		USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	-0-			ML	Brown with orange mottling, dry	sandy SILT.							DP-19 0-1
	_				Gray color dominant with brown	at 2 feet bgs.							DP-19 3.5-4.5
ŀ	- 5 -				End of boring at 5 feet bgs.		_123						
2/18/16	10 												
ND.GD1													
PORTLA	_												
AMEC	-30- BORI	NG	ME	THO	D: Direct Push ELEV	ATION REFERENCE: NA							
3.GPJ	BOREHOLE DIAMETER:								REM	ARKS	:		
30820.0	DRIL	L RI	IG:	NA	GRO	UND SURFACE ELEVATION: NA							
5-61M-1					Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/10/2015 - 11/10/	2015						
RING (_						_013						
DIRECT PUSH BORING 5-61M-130820.03.GPJ AMEC PORTLAND.GDT 2/18/16	Forr She	ner rwo	r F 00	ronti d, Or	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	re, In	C.			amec foste		LOG OF BORING DP-19
DIREC	5-61	M -'	13	0820		USA 97224 Tel (503) 639-3400					whee	ler	PAGE 1 OF 1

	OUEPIH (It bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING			TESTING AND LABORATORY DATA
	0_		SM	Medium dense, brown with oran SAND.	ge mottling, silty fine to medium							DP	-20 0-1
	_												
	_											סח	20.2.5.4.5
	5-			Increased sand at 4 feet bgs.								DP	-20 3.5-4.5
	-			End of boring at 5 feet bgs.									
	-												
	-												
	10-												
	_												
	-												
	15												
	_												
	-												
-:	20-												
	-												
	25-												
- 2/18/1	-												
AMEC PORTLAND.GDT 2/18/16													
PORTLA	_												
AMECF		NG M	ETHO	D: Direct Push ELEV	ATION REFERENCE: NA			LOC		: Directly	in fr	ont o	f South Aeration Pond
B B				IETER:				REM	ARKS	:			
30		RIG			UND SURFACE ELEVATION: NA								
				Pacific Soil & Water, Inc. Taylor & G. Ferreira DRIL	LING DATES: 11/10/2015 - 11/10/	2015							
				ier Leather Property	Amec Foster Wheeler			1					
DIRECT PUSH BORING	he	woo	od, Or	regon	Environment & Infrastructu 7376 SW Durham Road Portland, Oregon	re, In	C.			amec			LOG OF BORING DP-20
DIRECT	-61	M-13	30820	•	USA 97224 Tel (503) 639-3400					foste whee	r -		PAGE 1 OF 1

	ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DES	CRIPTION	SAMPLE	VOLATILE READING (ppm)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		TESTING AND LABORATORY DATA
	-0-		ML	Medium dense, brown with trace SILT.	e orange mottles, very fine sandy		7					DP-21 0-1
-	_ _ - 5			Hard (more dense) with clay noo (wood, gravel) at 3 feet bgs. Trace clay content.	dules and occasional debris		8.2					DP-21 3.5-4.5
-	-10-		SP	Gray mottling. Dense, red, dry, fine to coarse S Dense, gray with orange mottling SAND. Moist to wet, increased clay con 10 to 11 feet bgs.	g, poorly graded, medium		11.9					DP-21 8-9
_	_ _ _ -15_		ML	Gray, moist to wet, sandy SILT,	faint organic odor.		7.4					DP-21 14.5-15
				End of boring at 15 feet bgs.								
	- 20 											
2/18/16	-25											
AMEC PORTLAND.GDT 2/18/16	-30											
	BORING METHOD: Direct Push ELEVATION REFERENCE: NA BOREHOLE DIAMETER:							PEM	ARKS			
820.03.	DRILL RIG: NA GROUND SURFACE ELEVATION: NA									•		
5-61M-130820.03.GPJ	CONTRACTOR: Pacific Soil & Water, Inc.											
	LOGGED BY: G. Taylor & G. Ferreira DRILLING DATES: 11/11/2015 - 11/											
CT PUSH E	Shei	woo	od, Oı	ier Leather Property regon	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road Portland, Oregon USA 97224	re, In	c.			amec		LOG OF BORING DP-21
DIRE	5-61	M-1:	30820)	Tel (503) 639-3400					whee	ler	PAGE 1 OF 1

APPENDIX B-2

Field Forms

Amec Foster Wheeler Environment & Infras	tructure, Inc.	Project Name	Frontier Leaf	hm
GROUNDWATER		Droject #	· · · ·	
SAMPLING FIELD FORM		Boring ID:	P-0602 01	
Field Personnel: Graeme Taylor & Gabi F		Date : //· //)	-15	
Weather Conditions: Orw Cast			Approx. Air Temp	(F):
	INITIAL WELL	And the second		nom
PID (ppm) Background: In-well Casing:		Calibration Standa	rd: isobutylene-100-p	pm
NY VY		ter Measuring Tec		
Date/Time of Measurement: 1/10/15 / 113 c Depth Well Bottom (TOC - ft.): 15	Detection Me	thod of Free Prod	uct: 🛩	
Depth to Water Level (TOC - ft.):	Conversions	Factors (casing d	ia. = gallons/linear ft.) Cir	cle One
Depth to Free Product (TOC - ft.):	0.75" = 0	.02 1" = (0.04 2" = 0.17	3" = 0.37 12" = 5.88
Calculated Column Height (ft.): 10	4" = 0.66			12 - 5,60
Casing Diameter (in.): 2/4	Three Well P	urge Volumes (ga ollecting Free Proc	liions) - 3 X	
Quantity of Free Product Collected (gal.):		Observation of DN	APL: -	
Obsevation of sheen of LINAPL.			and a second	
	Sparropolitica and spanning spanning and spanning s	wardow wood by the day by meaning the second s		
Purge Pumping Rate (approx-1/m): - 200 m	L/Min_/	Approx. Pump/Inta	ke Depin. <u>(5</u>	
Well Yield: High / Moderate / Low	/ Poristalic Pum	<u>וס</u> / DV Pump / De	dicated / Other =	
	/ Peristalic Pun	ט / DV Pump / De	dicated / Other =	
Sampling Method (circle one): Disposable Bailer		Water Dispos	sal:	
Instrument Type & Number: YS		nstrument Calibra	tion Date & Time:	
	PLING INFORM	ATION / DATA		
Date Sampled: 11/10/2015	Time Sa	mpled: /23		
QA/QC Sample (circle one): DUP L	ab MS/MSD	Equip Blank		erlaboratory Split
Sample Bottles Preservative	Destination	QA/QC	Analytical Para	
ID (total) (size) type	Laboratory	Sample	(in order of p	
3 40 mL G HCI			VOCs 826	
1 250 mL P HNO ₃			Total metals	
1 250 mL P HNO ₃			Dissolved met	
1 250 mL P None			Chloride 3	
			the state of the s	
All samples were immediately placed into a cooler a	nd packed with i	ce or "Blue Ice", u	niess otherwise hoteu.	
SAM	PLING INFORM	IATION / DATA		
Field Observations/Notes of Sampling Event:				
10 010				
temp 12.57°C				
et be				
L LOD DAISLON				······
With a second se				
DO 0.54 Mg/L				
turb 7/4 NTU				
			<u> </u>	
	RTIFICATION	STATEMENT		
			s page is accurate.	
By signing below, the listed AMEC sampler states the				
Sampler (Print):	Sampler Signatu	ire:	Date Si	gnea:

PAGE 1 OF 1 Revised: July 21, 2015 van ki

. Sel:

; †

111.876 - 121

Ame				onment & Infra	structure, Inc.	Project Nar Project #:	ne: Former Frontier Lenther 56111 130820
				IELD FORM	Л	Boring ID:	DP-17
Field Perso	nnel:	6. 10	aller.	GADI.F.		Date: //	-10-2015
Weather C	onditions						Approx. Air Temp (F): 1150 F
					INITIAL WELL	DATA	
PID (ppm)	Backgrou	und:		In-well Casing:	PID C	alibration Stan	dard: isebutylene 100 ppm #/4
	1	VA				alibration Date	
Date/Time	CALEBRING OF M	Appendix and the second second		0/10/5/ 13	Depth to Wate Detection Methods		echnique: Sander
Depth Well Depth to W							dia. = gallons/linear ft.) Circle One
		uct (TOC -			0.75" = 0.0		= 0.04 2" = 0.17 3" = 0.37
Calculated	Column	Height (ft.)): 7.		4" = 0.66	and the second	= 1.47 8" = 2.61 12" = 5.8
asing Dia	meter (ir	1.): 3/4		al): 1 19	Three Well Pu		
bsevation	of shee	n or LNAP	ected (gal.): NH NH	Method of Coll	oservation of D	
beerdater	or one o		_		DATA & WELL PU		Pal
	ning Rat	e (approx.			cont/min Ar		Charles and the second s
Vell Yield:		h / Modera					
urge Meth			D	isposable Baile	er / Reristalic Pump		
		circle one):	: D	isposable Baile	er / Peristalic Pump		
econtamir			-	Y	SI In	Water Dispo	osal: ation Date & Time:
andment	iype or I	amber.	-				alion Date & Time.
				SAN		And a state of the state of the	
ate Samp	led: A/	10/ 201	5		Time Sam	oled: 103	5
A/QC Sar			_		Lab MS/MSD	Equip Blank	
Sample		Bottles	_	Preservative	Destination	QA/QC	Analytical Parameters
ID 00 17	(total) 3	(size) 40 mL	type G	HCI	Laboratory HPEX	Sample	(in order of priority) VOCs 8260B
09-17.6N	1	250 mL	P	HNO ₃	TIPER		Total metals 6020
	1	250 mL	P	HNO ₃			Dissolved metals 6020
	1	250 mL	P	None	1		Chloride 300.0
	· · · · · · ·	1	.e	-			•
-	100						
Il samples	were im	mediately	placed				unless otherwise noted: CES/ NO
				and the second se	IPLING INFORMA	The Martin Concerns	
ield Obse	rvations			ling Event:	furanetry	coller	bed on WILLIONS
Ter	MD	00	-	12,97	3 13,22	13	15
Con	rd	M	lim	1199	1207	12	15
Dr	2	MA	1/2	.48	54		3 /
ob	I	1	10	1. 74	175	/ -	7.6
	0		1/	-705	70 1		4.9
01	12.11	$\frac{r_1}{r_1}$	1-1	Ana	~ 70,1		
10	r Bidd	by N	10	phy	28.2	11	.4
		1	_				
							and the second se
							1
			No-	5-0			4
				C	ERTIFICATION ST	ATEMENT	
							10-01
	alere 1	a links of A	10-				
/ signing b	pelow, th	e listed AN	MEC sa	impler states tr	nat the information (provided on thi	s page is accurate.

	Foster			onment & Infra	structure, Inc.	Project Name Project #:	Frontier Leather
				DWATER	n .	Boring ID: D	$P = \Delta I_{\alpha}$
		and a state of the				Date : / - 10	
				10-2 CALL	Perigra	Date. [] - [U	Approx. Air Temp (F):
leather Co	onditions	: cdd.po	rith	cloudy	INITIAL WELL	DATA	
ID (ppm)	Deckerer	indi	122	In-well Casing:		Calibration Standa	rd: isobutylene 100 ppm
1					PID	Calibration Date:	
ate/Time o				115 1	Depth to Wat	ter Measuring Tec thod of Free Prod	uct:
epth Well epth to Wa				-	Conversions	Factors (casing di	a. = gallons/linear ft.) Circle One
epth to Fre				4	0.75" = 0	.02 1" = (0.04 2" = 0.17 3" = 0.37
alculated (4" = 0.66	6" = 1	1.47 8" = 2.61 12" = 5.88
asing Diar			14		Three Well P	urge Volumes (ga	llons) = 3 x =
uantity of	Free Pro	oduct Colle	ected	(gal.):	Method of Co	ollecting Free Prod	luct:
bsevation	of shee	n or LNAP	L:	-	and the second sec	Observation of DN	
1	A 152		E'	INITIAL WELL		URGING INFORM	
	oing Rat	e (approx.	L/m)			Approx. Pump/Inta	ke Depth:
Vell Yield:		h / Modera	ate / L	.ow	or / Doristalia Dum	np / DV Pump / De	dicated / Other =
urge Meth				Disposable Ball	er / Peristalic Pull	ip / DV Pump / De ip / DV Pump / De	dicated / Other =
ampling M				Disposable Ball	er / renstand run	Water Dispos	aleated / e their
econtamin				V	SI I	instrument Calibra	tion Date & Time:
strument	ype & I	Number:					
<u> </u>	4. 11. 1			SA	MPLING INFORM		
ate Sampl	ed: -	10-15				mpled: 1600	
A/QC San	nple (cire	cle one):		DUP	Lab MS/MSD	Equip Blank	Trip Blank Interlaboratory Split
Sample	100	Bottles		Preservative	Destination	QA/QC	Analytical Parameters
ID	(total)	(size)	type		Laboratory	Sample	(in order of priority)
P-6.4N	3	40 mL	G	HCI			VOCs 8260B
1 0.41	1	250 mL	Р	HNO ₃			Total metals 6020
	1	250 mL	P	HNO ₃	-		Dissolved metals 6020
	1	250 mL	P	None			Chloride 300.0
		200 1112		Homo	e.		
				-			
	1				1. A.		
Sec. 1							along otherwise noted: VES/NO
I samples	were in	nmediately	place				nless otherwise noted: YES / NO
1.1.1.1	1 d'	in the			MPLING INFORM	ATION / DATA	
ield Obse	rvations	s/Notes of	f Sam	pling Event:			4
			_	and the second second		*	
temp		.51		Sec. 1			
cond	2	395					
DO	. 0	10					
H		31	4				
		58.4	-				
SOV							5 A.
DRY	4	19	_				
ort		-					
ort							
curb Curb		-			1		
JRY Surb					ERTIFICATION	STATEMENT	
5.1.	below, ti	ne listed A	MEC				page is accurate.

¢

いたのおいい

日の御殿で、田田田和学

and the second

C. T. S.

Ame	c Foeter	r Wheeler	Env	ironment & Infra	astructure. Inc.	Project Nar	ne: Former Fron Bier Level
				NDWATER		Project #:	561M 130820
:				FIELD FOR	Ň	Boring ID:	DP-13
Field Perso	onnel:	4,5	àlo	<		Date : /	VIV16
Weather C							Approx. Air Temp (F): 50
					INITIAL WEI	L DATA	
PID (ppm)	Backgrou	.ind: 🛩	-	In-well Casing		O Calibration Stan	
						D Calibration Date	
Date/Time Depth Well		· · · · · · · · · · · · · · · · · · ·		11/2015 1		ater Measuring Te Method of Free Pro	
Depth to W			<u>, </u>	12.5			dia. = gallons/linear ft.) Circle One
Depth to Fr				. نيو	0.75" =	0.02 1" =	= 0.04 2" = 0.17 3" = 0.37
Calculated):	7.5	4" = 0.6		= 1.47 8" = 2.61 12" = 5.8
Casing Dia			<u> </u>	\$ /4"		Purge Volumes (g Collecting Free Pre	
Quantity of Obsevation	of shee	n or LNAF	PL:	r (gai.).	Interiod of C	Observation of D	NAPL: -
Chestale				INITIAL WELL	DATA & WELL	PURGING INFOR	
Purge Pum	ning Pot		1 /m		MUMIN	Approx. Pump/In	
Well Yield:	Ping Nac Hig	ih / Model	ate /				
Purge Meth	nod (circl	e one):		Disposable Bail			edicated / Other =
Sampling N			:	Disposable Bail	er / Peristalic Pu		Dedicated / Other =
Decontamir					SI	Water Dispo	ation Date & Time: /////10/5C/1/
Instrument	Type & I	Number.			MPLING INFORI		anon Date & Time. IV III WISC T.
		<u></u>		SAI			-
Date Samp		1/15_				ampled: 1Z/O	
QA/QC Sar				DUP	Lab MS/MSD	Equip Blank	
Sample ID	· · · · · · · · · · · · · · · · · · ·	Bottles	huno	Preservative	Destination Laboratory	QA/QC Sample	Analytical Parameters (in order of priority)
08-13	(total) 3	(size) 40 mL	type G	HCI	APRO	APEX	VOCs 8260B
Ur-12	1	250 mL	P	HNO ₃	11120	I I EA	Total metals 6020
		250 mL	P	HNO ₃			Dissolved metals 6020
	1	250 mL	· P	None			Chloride 300.0
	· ·	200 1112	·				
	<u> </u>		 			•••	
	<u> </u>						
All samples	were im	mediately	plac	ed into a cooler a	and packed with	ice or "Blue Ice", t	unless otherwise noted: YES / NO
				SAN	MPLING INFORM	VATION / DATA	
Field Obse	rvations	/Notes of	f San	pling Event:			· · · · · · · · · · · · · · · · · · ·
Temp		13,5	30	6		· · · ·	
Cond		2	58	Holem	· ·		
00		N.	<u>uu</u>				······································
		<u>~~~~//</u> .7.	17	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	F)	·	-	
OBP	~		. 1)	<u> </u>			
Turbia	iby	Z	19				· · · · · · · · · · · · · · · · · · ·
	1					. fu	· · · · · · · · · · · · · · · · · · ·
•							
					ERTIFICATION	STATEMENT	
							· · ·
By signing b	pelow, th	e listed Al	MEC	sampler states the	hat the information	on provided on this	s page is accurate.
Sampler (Pr	rint):	Lising .	A	1/100	Sampler Signatu	ire: Groupe	Tailor Date Signed: 1/1/1
compion (i i	<u></u>	Pro VI	-020			W71041	
			S.	$V = \sqrt{V}$			PAG

ž

Ame	c Foste	r Wheeler	Env	ironment & Infra	astructure, Inc.	Project Nar	ne: Former f	frontove heather
		GR	OUI	NDWATER		Project #:	56113002	
		SAMPL	.INC	FIELD FOR	1	Boring ID:	0P-3	
Field Perso	onnel:		la	Tuilor	-	Date: //	(1/2015	
Weather Co			10					ir Temp (F): 50
11000.10.		· /	<u>-111</u>	180-1	INITIAL WE	LL DATA		
PID (ppm)	Backgrou	und:		In-well Casing		Calibration Stan	dard: isobutvlen	e 100 ppm
гър (ррш)	Dackgrou			in-weir Gasing		Calibration Date		
Date/Time	of Meas	urement:	11/	11/2015 1		ater Measuring Te		
Depth Well	Bottom	(TOC - ft.)	:	100 15		Method of Free Pro		
Depth to W				2,6			dia. = gallons/linear	ft.) Circle One 0.17 3" = 0.37
Depth to Fr				······	0.75" =		= 0.04 2" = 0 = 1.47 8" = 2	
Calculated Casing Dia				1 2 .4 3/4		Purge Volumes (g		=
Quantity of						Collecting Free Pre		
Obsevation				~		Observation of D		······································
						PURGING INFOR	the second s	
Purge Pum):2	yo MV/Min	_Approx. Pump/In	take Depth: <u>15</u>	
Well Yield: Purge Meth		h / Moder	ate /	L'OW Disposable Bail	ar / Paristalic Pu	DV Pump / D	edicated / Other =	
Sampling M				Disposable Bail	er (Peristalic-Pu	mp/DV Pump/D	edicated / Other =	
Decontamir			•	Disposable Dall		Water Disp		· · · · · · · · · · · · · · · · · · ·
Instrument				Y	SI		ation Date & Time:	
				SA	PLING INFOR	MATION / DATA		
	<u> </u>	Thile	3. 3. 7 1				· · ·	
Date Samp		1/11/20	"5					Interlahensters Colit
QA/QC Sar				DUP	Lab MS/MSD	Equip Blank		Interlaboratory Split al Parameters
Sample		Bottles	Fi	Preservative	Destination	QA/QC Sample		ler of priority)
ID	(total)		type	HCI	Laboratory	Sample		Cs 8260B
DP-3	.3		_ <u>G_</u>					metals 6020
		-250 mL	- <u>P-</u>	HNO3			· · · · · · · · · · · · · · · · · · ·	ad metals 6020-
	4_	-260-mL	- <u>p</u> -	HNO ₃				pride 300:0
	1	-250 mL	P	None				
	2		P	Hel	-			
•	<u> </u>							
							<u> </u>	
		mediately	200	od into a coolor (and packed with	ice or "Blue Ice" u	unless otherwise no	ted: YES / NO
All samples	were in	mediately	piac	and and the operation of the second state of t	Course a strandor state of the mass independent and the market	AREANID STATISTICS AND STATISTICS AND STATISTICS AND	diffess outer mae ne	
						MATION / DATA		
Field Obse	rvations	Notes of	San	npling Event:				· · · · · · · · · · · · · · · · · · ·
Temp	2	× 35	00					
non	4	551 1	U5/	en :				
00	0	38	10.1	(j				
			ry					
		188						
ORP	~	17.2	M	/				
Tixbi	ditas.	731	1	JTU				
						ť.		
								······································
						<u> </u>		<u></u>
					~			
				G	ERTIFICATION	STATEMENT		
By signing b	nolow th	e lictod A	MEC	sampler states t	hat the informati	on provided on thi	s page is accurate.	1 1
ay aigning t	5510W, th		n_0			I Sika		Alalie
Sampler (Pi	rint): 🦼	hraem	2	ay/or	Sampler Signat	ure: Contall	R. MAND	ate Signed: 1/1/15
				1			<u> </u>	
								PAGE 1
								Revised July 21

Į

APPENDIX C

Waste Disposal Records

APPENDIX C-1

Disposal Facility Receipts

NON-HAZARDOUS WASTE MANIFEST

WASTE MANIFEST	1. Generator's US EPA ID No.		Manifest Document No.	250-739/13	2. Page 1 of
3. Generator's Name and Mailing Address				796270302	
	W Oregou St.				
Sheer	wood OR				
Generator's Phone (China) 274-3200			A 01-1- 7	1.1.1.1.	
. Transporter 1 Company Name	6. US EPA ID Number	1 5 0	A. State Transpo B. Transporter 1	201010	605
. Transporter 2 Company Name	8. US EPA ID Number		C. State Transporter		
			D. Transporter 2		
9. Designated Facility Name and Site Address	10. US EPA ID Number		E. State Facility	s ID	
11618 N. LOMBARD ST	1ADDARDIED I				
PORTLAND OR 97203	DRQ000011	6 4 3	F. Facility's Pho	603 224-3	206
11. WASTE DESCRIPTION		-	tainers	19	14
H. WACHE DESCRIPTION		No.	Туре	13. Total Quantity	14. Unit Wt./Ve
Non Regulated Material, L	iguids, NiDis, (IDW Water)	1	AM	75	
	1		120.1	F 2	6
Non-Regulated Material, Sol	id, N.O.S., (IDW Soil)	1	find	3.00	1
~		1	dest in	35	G
		+			
Additional Descriptions for Materials Listed Above	¢.,		H. Handling Cod	es for Wastes Listed Above	-
der frag - 1			8.	G	
been a b	ci.				
TKMSAN					
DIRM-SW			P.	10	
IKM-SW			Q.	Ø	
	tion		D.	0	
5. Special Handling Instructions and Additional Informa	tion		ß	0	
	tion		Q	0	
	tion		D.	0	
	tion		D	0	
5. Special Handling Instructions and Additional Informa		id and are in a		0	
5. Special Handling Instructions and Additional Informa	tion hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waste	id and are in a regulations.		0	
5. Special Handling Instructions and Additional Informa 9. GENERATOR'S CERTIFICATION: I hereby certify t In proper condition for transport. The materials desor		rd and are in a regulations.			Date
5. Special Handling Instructions and Additional Informa 9. GENERATOR'S CERTIFICATION: I hereby certify t In proper condition for transport. The materials desor		d and are in a regulations.		Month	
5. Special Handling Instructions and Additional Informa 6. GENERATOR'S CERTIFICATION: I hereby certify the In proper condition for transport. The materials descr rinted/Typed Name	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waste Signature	d and are in a regulations.			Day Y
5. Special Handling Instructions and Additional Informa 8. GENERATOR'S CERTIFICATION: I hereby certify ti In proper condition for transport. The materials desor rinted/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mate	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waste Signature	d and are in a regulations.		Month	Day Y
5. Special Handling Instructions and Additional Informa 8. GENERATOR'S CERTIFICATION: I hereby certify ti In proper condition for transport. The materials desor rinted/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mate	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waste Signature	d and are in a regulations.			Day Y
5. Special Handling Instructions and Additional Informa 6. GENERATOR'S CERTIFICATION: I hereby certify the In proper condition for transport. The materials description for transport. The materials descript of Materials descript of Materials descript of Materials descripted Name	hat the contents of this shipment are fully and accurately describe ribed on this manifest are not subject to federal hazardous waste Signature rials	d and are in a regulations.		Month	Day Y
 Special Handling Instructions and Additional Information GENERATOR'S CERTIFICATION: I hereby certify the inproper condition for transport. The materials description for transport. The materials description for transport of Receipt of Materinted/Typed Name Transporter 1 Acknowledgement of Receipt of Materinted/Typed Name Transporter 2 Acknowledgement of Receipt of Materinted. 	hat the contents of this shipment are fully and accurately describe ribed on this manifest are not subject to federal hazardous waste Signature rials	rd and are in a regulations.		Month	Day Y Date Day Y Date
 Special Handling Instructions and Additional Information GENERATOR'S CERTIFICATION: I hereby certify the inproper condition for transport. The materials description for transport. The materials description for transport of Receipt of Materinted/Typed Name Transporter 1 Acknowledgement of Receipt of Materinted/Typed Name Transporter 2 Acknowledgement of Receipt of Materinted. 	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waster Signature rials	d and are in a regulations.		Month	Day Y Date Day Y Date
 Special Handling Instructions and Additional Informa GENERATOR'S CERTIFICATION: I hereby certify ti In proper condition for transport. The materials description for transport. The materials description for transport of Receipt of Materinted/Typed Name Transporter 1 Acknowledgement of Receipt of Materinted/Typed Name Transporter 2 Acknowledgement of Receipt of Materinted/Typed Name 	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waster Signature rials	d and are in a regulations.		Month	Day Y Date Day Y Date
 Special Handling Instructions and Additional Informa GENERATOR'S CERTIFICATION: I hereby certify ti In proper condition for transport. The materials description for transport. The materials description for transport of Receipt of Materinted/Typed Name Transporter 1 Acknowledgement of Receipt of Materinted/Typed Name Transporter 2 Acknowledgement of Receipt of Materinted/Typed Name 	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waster Signature rials	rd and are in a regulations.		Month	Day Y Date Day Y Date
5. Special Handling Instructions and Additional Informa 6. GENERATOR'S CERTIFICATION: I hereby certify the In proper condition for transport. The materiale descri- rinted/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Materian 8. Transporter 2 Acknowledgement of Receipt of Materian 8. Transporter 2 Acknowledgement of Receipt of Materian 9. Discrepancy Indication Space	hat the contents of this shipment are fully and accurately describe ribed on this manifest are not subject to federal hazardous waster Signature rials Signature Signature Signature	20		Month	Day Y Date Day Y Date
5. Special Handling Instructions and Additional Informa 6. GENERATOR'S CERTIFICATION: I hereby certify the In proper condition for transport. The materiale description rinted/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Mater rinted/Typed Name 8. Transporter 2 Acknowledgement of Receipt of Mater rinted/Typed Name 9. Discrepancy Indication Space	hat the contents of this shipment are fully and accurately describe libed on this manifest are not subject to federal hazardous waster Signature rials	20		Month	Day Y Date Day Y Date Day Y
5. Special Handling Instructions and Additional Informa 6. GENERATOR'S CERTIFICATION: I hereby certify the In proper condition for transport. The materiale descri- Printed/Typed Name 7. Transporter 1 Acknowledgement of Receipt of Material 8. Transporter 2 Acknowledgement of Receipt of Material 8. Transporter 2 Acknowledgement of Receipt of Material 9. Discrepancy Indication Space	hat the contents of this shipment are fully and accurately describe ribed on this manifest are not subject to federal hazardous waster Signature rials Signature Signature Signature	20		Month	Day Y Date Day Y Date Day Y Date Day Y Date

APPENDIX C-2

Laboratory Reports

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, January 13, 2016

Michelle Peterson AMEC Foster Wheeler 7376 SW Durham Road Portland, OR 97224

RE: Former Frontier Leather / 561M13082

Enclosed are the results of analyses for work order <u>A5K0450</u>, which was received by the laboratory on 11/12/2015 at 4:37:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: Former Frontier Leat	ther
7376 SW Durham Road	Project Number: 561M13082	Reported:
Portland, OR 97224	Project Manager: Michelle Peterson	01/13/16 16:26

SAMPLE INFORMATION							
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received			
DP-Composite	A5K0450-61	Soil	11/10/15 14:25	11/12/15 16:37			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: H	Former Frontier Leather	
7376 SW Durham Road	Project Number: 5	561M13082	Reported:
Portland, OR 97224	Project Manager: M	Michelle Peterson	01/13/16 16:26

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020 (ICPMS)								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
DP-Composite (A5K0450-61)			Matrix: Soil					
Batch: 5120493								
Chromium	ND		0.100	mg/L	5	12/16/15 13:34	1311/6020A	
Lead	ND		0.0500	"	"	"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: Former Frontier Leather	
7376 SW Durham Road	Project Number: 561M13082	Reported:
Portland, OR 97224	Project Manager: Michelle Peterson	01/13/16 16:26

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020 (ICPMS)												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5120493 - EPA 13 [,]	11/3015						Soi	1				
Blank (5120493-BLK1)				Pre	pared: 12	/16/15 10:18	Analyzed:	12/16/15 1	3:16			
1311/6020A												
Chromium	ND		0.100	mg/L	5							TCLP
Lead	ND		0.0500	"	"							TCLP
LCS (5120493-BS1)	Prepared: 12/16/15 10:18 Analyzed: 12/16/15 13:19											
1311/6020A												
Chromium	2.65		0.100	mg/L	5	2.50		106	80-120%			TCLP
Lead	2.65		0.0500	"	"	"		106				TCLP

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project:	Former Frontier Leather	
7376 SW Durham Road	Project Number:	561M13082	Reported:
Portland, OR 97224	Project Manager:	Michelle Peterson	01/13/16 16:26

SAMPLE PREPARATION INFORMATION

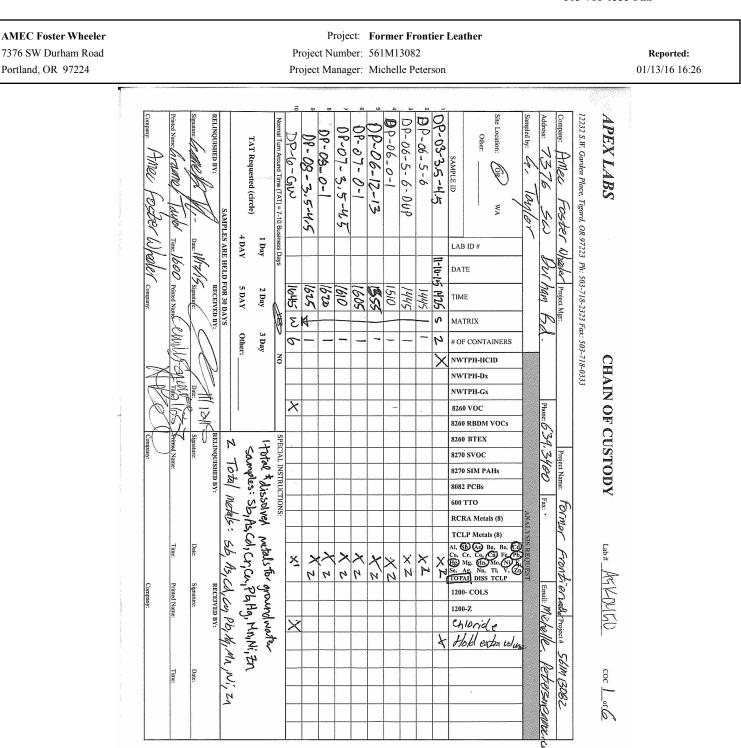
TCLP Metals by EPA 6020 (ICPMS)										
Prep: EPA 1311/30	15				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 5120493										
A5K0450-61	Soil	1311/6020A	11/10/15 14:25	12/16/15 10:18	5mL/50mL	5mL/50mL	1.00			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

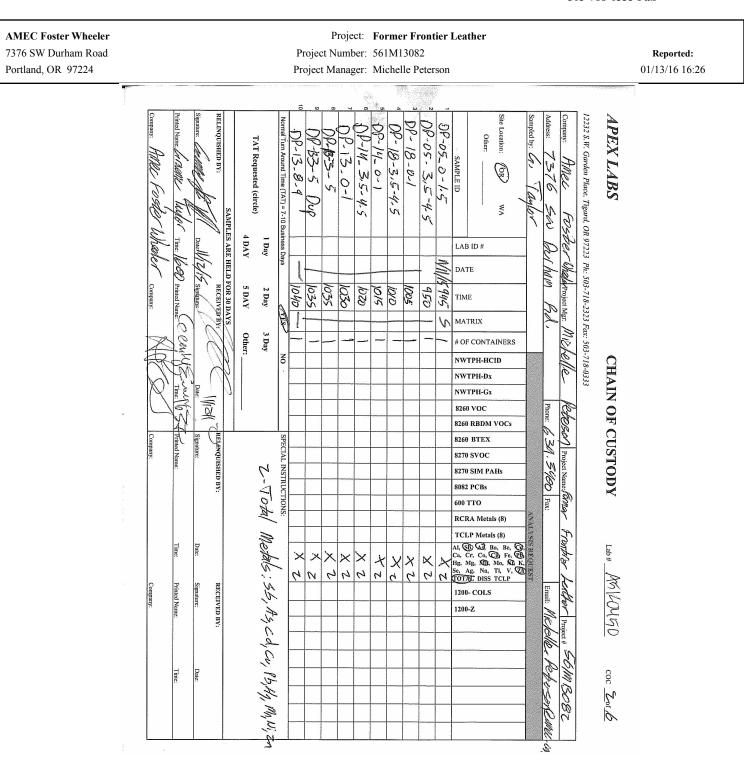
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax


7376 SW	Foster Wheeler Durham Road	Project Number:		Reported:				
Portialia,	land, OR 97224 Project Manager: Michelle Peterson 01/13/16 16:2							
		Notes and De	finitions					
Qualifiers	<u>:</u>							
TCLP	This batch QC sample was prepared wit	h TCLP or SPLP fluid from prepa	ration batch 5120493.					
Notes an	nd Conventions:							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above t	he reporting limit						
NR	Not Reported							
dry	Sample results reported on a dry weight	basis. Results listed as 'wet' or w	ithout 'dry'designation are not dry weight of	corrected.				
RPD	Relative Percent Difference							
MDL	If MDL is not listed, data has been evalu		•					
WMSC	Water Miscible Solvent Correction has b	been applied to Results and MRLs	for volatiles soil samples per EPA 8000C.					
Batch QC	analyses were performed with the appro order to meet or exceed method and regr results are available upon request. In ca	priate Batch QC (including Samp alatory requirements. Any excepti ses where there is insufficient san	C derived from client samples included in le Duplicates, Matrix Spikes and/or Matrix ons to this will be qualified in this report. nple provided for Sample Duplicates and/o uracy and precision of the extraction and a	s Spike Duplicates) in Complete Batch QC r Matrix Spikes, a				
Blank Policy	chemistry and HCID analyses which are	assessed only to the MRL. Samp	⁴ the method reporting limit (MRL), except le results flagged with a B or B-02 qualifie inorganic analyses or less than five times t	er are potentially				
	For accurate comparison of volatile resu and soil sample results should be divide		water sample results should be divided by account for the sample prep factor.	the dilution factor,				
	Results qualified as reported below the I qualifications are not applied to J qualifi		bias if associated with a B or B-02 qualifi L.	ed blank. B and B-02				
	QC results are not applicable. For examplicable, spikes, etc.	ole, % Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank Spil	kes and Matrix				
***			licate results when the %RPD is not availa analyte, while the other is Non Detect (ND					

Apex Laboratories

Philip Nevenberg

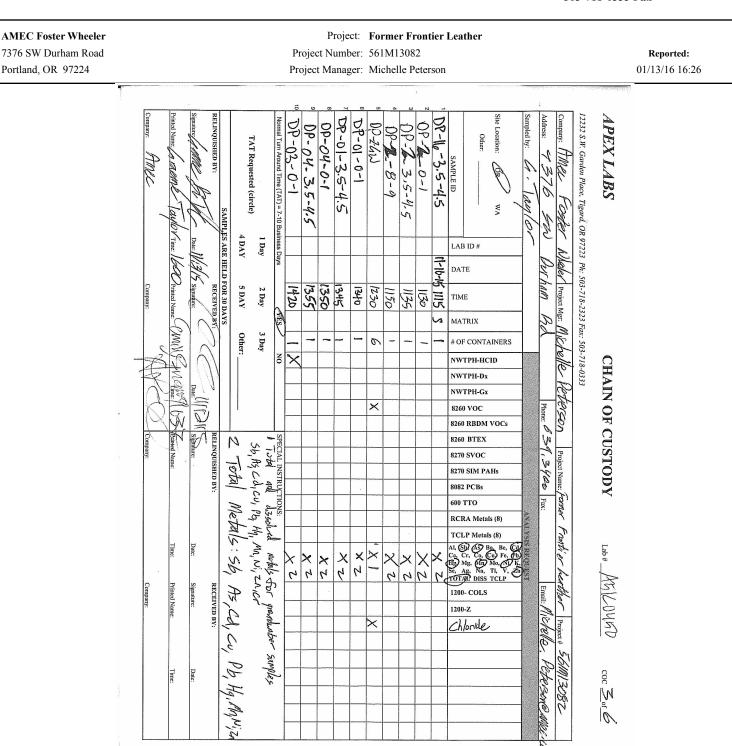
Philip Nerenberg, Lab Director


12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax



Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

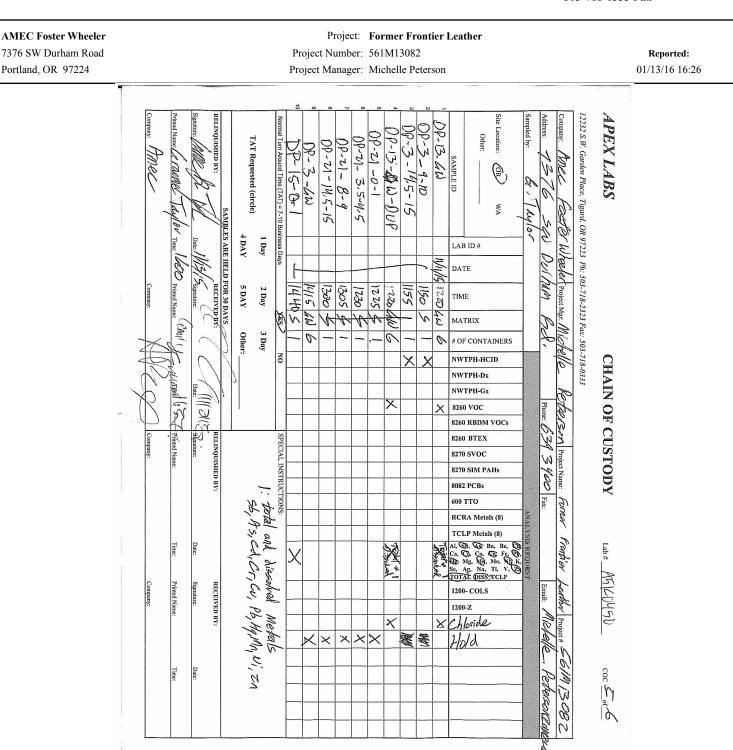
Philip Nevenberg

Philip Nerenberg, Lab Director

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

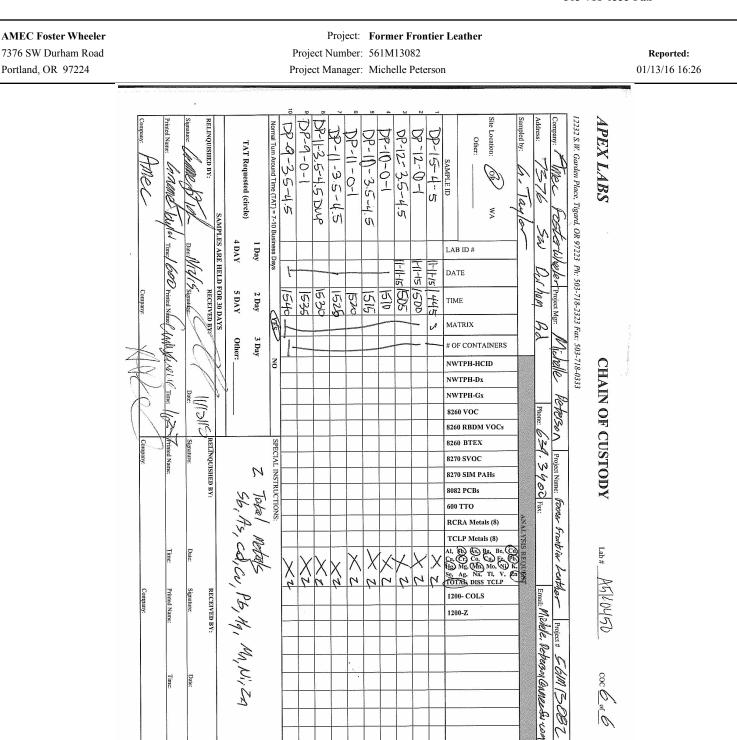

AMEC Foster Wheeler Project: Former Frontier Leather 7376 SW Durham Road Project Number: 561M13082 **Reported:** Portland, OR 97224 01/13/16 16:26 Project Manager: Michelle Peterson APEX LABS **VELINQUISHED BY** 2232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 09-19-3,5-4-5 P-19-0-1 08-20p-20-3.5-4.5 0P-17 - 4W 04-16-0ocation Other: TAT Requested (circle) Turn Around Time (TAT) = 7-10 Business Days 8-41. 4 3kn2 AMPLE ID 1-0' (R) Ϋ́ι Σ Ň WA J. 4 DAY 1 Day LAB ID # ARI ap 11-10-159 11-10-15935 DATE NA MA 5 DAY 2 Day 201 055 1030 B 0 8 40 50 TIME NE ŝ V 5 So! S MATRIX Other: 3 Day 0 1 # OF CONTAINERS 1 NC NWTPH-HCID CHAIN OF CUSTODY NWTPH-Dx S. NWTPH-Gx × Cr3sn X 8260 VOC 8260 RBDM VOCs Signature: 8260 BTEX 1 Total and discolved 2 Total Metals: 56, As, Cu, Pb, Hy, MM, NI, ZA rinted Nan ELINQUISHED BY 5b, As, cd, cr, cu, tb, 8270 SVOC roject Name: N 8270 SIM PAHs 80 8082 PCBs Famer 600 TTO RCRA Metals (8) Cr. TCLP Meta. (Al. (5) (3) Ba, Be, Ca, Cr. Ca Ma, Fi, Ma, Ti, Na, Ti, 3 <u>TC</u> Frantistor metals Hq, Date Lab # Imc X 7 Co, Ch I Na, Ti, DISS TCL $\overset{\scriptstyle \gamma}{\times}$ XX Х Mn, Ni, Zn N R 3× for Groundwalter 9 4 ARK OM FO Signature: Printed Name RECEIVED BY: 1200- COLS 1200-Z Х Chloride Samples 280£111/ Lan COC the Ducs la 4 of 6

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax



Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

APPENDIX D

Data Quality Review & Laboratory Reports

APPENDIX D-1

Data Quality Review Report

DATA QUALITY REVIEW REPORT

Former Frontier Leather Property 1210 SW Oregon Street Sherwood, Oregon Cooperative Agreement BF-00J93201

Prepared for:

City of Sherwood

22580 SW Pine Street Sherwood, OR 97140

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.

7376 SW Durham Road Portland, Oregon 97224 (503) 639-3400

January 2016

Project No. 561M120820.03.****

TABLE OF CONTENTS

Page

ACRO	NYMS .		
1.0	INTRO	DUCTION	. 1
2.0	DATA	VALIDATION METHODOLOGY	. 1
3.0	EXPLA 3.1 3.2 3.3 3.4 3.5	NATION OF DATA QUALITY INDICATORS Laboratory Control Sample Recoveries Matrix Spike Recoveries Surrogate Spike Recoveries Blank Concentrations Laboratory and Field Duplicates	2 2 3 3
4.0	DEFIN	ITIONS OF QUALIFIERS THAT MAY BE ADDED DURING DATA VALIDATION	14
5.0	QUALI	FICATION REASON CODES	. 4
6.0	CHAIN	OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION	. 4
7.0	SPECI 7.1 7.2 7.3	FIC DATA VALIDATION FINDINGS Total Chromium by EPA Method 200.8 7.1.1 Holding Times 7.1.2 Laboratory Blanks 7.1.3 Laboratory Duplicates 7.1.4 Laboratory Control Sample Accuracy 7.1.5 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision 7.1.6 Data Reporting and Analytical Procedures Chloride by EPA Method 300.0	
	7.4	 7.3.1 Holding Times 7.3.2 Laboratory Blanks	7 7 7 9 9 9 9 9

Amec Foster Wheeler Environment & Infrastructure, Inc.

	7.5	7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8	Data Reporting and Analytical Procedures	10 10 10 10 10 10 10 11 11 11 11 11 11 1
8.0	FIFI D		CATES	
9.0	SOMM	ARY AI	ND CONCLUSIONS	13
REFE	RENCE	S		14
LIMITA	TIONS			15

TABLES

- Table 1List of Field Smaples Submitted to Apex Laboratory and Brooks Applied Labs
- Table 2Field Duplicate Detections
- Table 3Qualifiers Added During Data Quality Review

Amec Foster Wheeler Environment & Infrastructure, Inc.

ACRONYMS

%	percent
µg/L	micrograms per liter
Amec Foster Wheeler	Amec Foster Wheeler Environment & Infrastructure, Inc.
Арех	Apex Laboratories
BAL	Brooks Applied Labs
CLP	Contract Laboratory Program
СОС	chain of custody
DEQ	Department of Environmental Quality
EPA	United States Environmental Protection Agency
ID	identification
LCS	laboratory control sample
mg/kg	milligrams per kilogram
MS	matrix spike
MSD	matrix spike duplicate
NWTPH-HCID	Northwest Total Petroleum Hydrocarbon - Hydrocarbon Identification
QC	quality control
RL	reporting limit
RPD	relative percent difference
VOC	volatile organic compound

DATA QUALITY REVIEW REPORT Former Frontier Leather Property Sherwood, Oregon

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler) collected 46 primary soil samples, 3 field duplicates and 1 composite; 4 primary groundwater samples and 1 field duplicate; and 1 aqueous trip blank on November 10 and November 11, 2015. Amec Foster Wheeler submitted the samples to Apex Laboratories (Apex) in Tigard, Oregon, where they were assigned to work order A5K0450. Apex analyzed the samples for chloride by United States Environmental Protection Agency (EPA) method 300.0, total and dissolved metals by EPA method 6020, volatile organic compounds (VOCs) by EPA method 8260B, and/or hydrocarbons by Department of Environmental Quality (DEQ) method Northwest Total Petroleum Hydrocarbon - Hydrocarbon Identification (NWTPH-HCID). Select soil samples were also submitted to Brooks Applied Labs (BAL) in Bothell, Washington where they were assigned to work order 1546054 and were analyzed for total chromium by EPA method 200.8 and hexavalent chromium by EPA method 7199. A list of these samples by field sample identification (ID), matrix, collection date, Apex sample ID, and BAL sample ID is presented in Table 1.

2.0 DATA VALIDATION METHODOLOGY

Amec Foster Wheeler performed a Stage 2A review of the data provided by Apex and BAL. The Stage 2A review includes review of the quality control (QC) results in the laboratory's analytical report, but does not include review or validation of the analytical instrument performance or raw analytical data. This data quality review has been performed in general accordance with:

- EPA, 2004. SW-846 Test Methods for Evaluating Solid Wastes, Update IIIB.
- EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-014-002.
- EPA, 2014. EPA CLP National Functional Guidelines for Inorganic Superfund Data Review, EPA-540-R-013-001.

The CLP guidelines were written specifically for the CLP, and have been modified for the purposes of this data review where they differ from method-specific QC requirements.

The laboratory's certified analytical report and supporting documentation were reviewed to assess the following:

- Data package deliverable completeness;
- Chain of custody (COC) compliance;
- Holding time compliance;
- Presence or absence of laboratory contamination as demonstrated by laboratory blanks;
- Accuracy and bias as demonstrated by recovery laboratory control sample (LCS) and matrix spike (MS) samples;
- Analytical precision as relative percent difference (RPD) of analyte concentration between laboratory duplicates, MSs and MS duplicates (MSDs), and field duplicates; and
- Insofar as possible, the degree of conformance to method requirements and good laboratory practices.

In general, it is important to recognize that no analytical data are guaranteed to be correct, even if all QC audits are passed. Strict QC serves to increase confidence in data, but any reported value may potentially contain error.

3.0 EXPLANATION OF DATA QUALITY INDICATORS

Summary explanations of the specific data quality indicators reviewed during data validation are presented below.

3.1 LABORATORY CONTROL SAMPLE RECOVERIES

LCSs are aliquots of analyte free matrices that are spiked with the analytes of interest for an analytical method, or a representative subset of those analytes. The spiked matrix is then processed through the same analytical procedures as the samples they accompany. LCS recovery is an indication of a laboratory's ability to successfully perform an analytical method in an interference free matrix.

3.2 MATRIX SPIKE RECOVERIES

MSs and MSDs are prepared by adding known amounts of the analytes of interest for an analytical method, or a representative subset of those analytes, to an aliquot of sample. The spiked sample is

then processed through the same extraction, concentration, cleanup, and analytical procedures as the unspiked samples in an analytical batch.

MS recovery and precision are an indication of a laboratory's ability to successfully recover an analyte in the matrix of a specific sample or closely related sample matrices. It is important not to apply MS results for any specific sample to other samples without understanding how the sample matrices are related.

3.3 SURROGATE SPIKE RECOVERIES

Surrogate spikes are used to evaluate accuracy, method performance, and extraction efficiency in each individual sample. Surrogate compounds are compounds not normally found in environmental samples, but which are similar to target analytes in chemical composition and behavior in the analytical process.

3.4 BLANK CONCENTRATIONS

Blank samples are aliquots of analyte free matrix that are used as negative controls to verify that the sample collection, storage, preparation, and analysis system does not produce false positive results.

Laboratory blanks are processed by the laboratory using exactly the same procedures as the field samples. Target analytes should not be found in laboratory blanks.

Trip blanks are aliquots of analyte-free water that are placed in sample containers at the analytical laboratory and are then sent into the field with the sample containers that are used to collect field samples. Trip blanks are not opened in the field, but accompany the field samples back to the laboratory, where they are analyzed as samples. Trip blanks are used to monitor for contamination that result from sample shipping and storage.

When target analytes are detected in blanks, analyte concentrations in associated samples less than five times the concentration detected in the blank (ten times the concentration for common laboratory contaminants) will be U qualified as being not detected.

3.5 LABORATORY AND FIELD DUPLICATES

Laboratory and field duplicate analysis verifies acceptable method precision by the laboratory at the time of preparation and analysis and/or sampling precision at the time of collection.

Amec Foster Wheeler Environment & Infrastructure, Inc.

4.0 DEFINITIONS OF QUALIFIERS THAT MAY BE ADDED DURING DATA VALIDATION

- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample result is rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

5.0 QUALIFICATION REASON CODES

- FD High RPD between parent sample and field duplicate results. Possible sampling or analytical imprecision.
- HD High RPD between laboratory duplicate results. Potential analytical imprecision.
- HM High MS/MSD recovery. Potential high analytical bias.
- LD Low post-digestion spike recovery. Potential low analytical bias.
- LM Low MS/MSD recovery. Potential low analytical bias.
- LL Low LCS recovery. Potential low analytical bias.

6.0 CHAIN OF CUSTODY AND SAMPLE RECEIPT CONDITION DOCUMENTATION

The samples were received at the laboratories intact and under proper COC, properly preserved, and at temperatures not exceeding 6.0 degrees Celsius.

7.0 SPECIFIC DATA VALIDATION FINDINGS

Results from these samples may be considered usable with the limitations and exceptions described in Sections 7.1 through 8.0.

7.1 TOTAL CHROMIUM BY EPA METHOD 200.8

Total chromium results generated by BAL may be considered usable with the limitations described in section 7.1.1 through 7.1.6.

7.1.1 Holding Times

Samples were extracted for total chromium within the EPA-recommended maximum holding time of 180 days from sample collection.

7.1.2 Laboratory Blanks

Target analytes were not detected in the laboratory blanks associated with these samples.

7.1.3 Laboratory Duplicates

Duplicate analysis was performed on samples DP-01-0-1, DP-07-0-1, DP-10-0-1, DP-14-3.5-4.5, and DP-20-3.5-4.5. RPDs between laboratory duplicate results were less than 20 percent (%), or the difference between primary and duplicate results were less than the reporting limit (RL), indicating acceptable sampling and analytical precision. Exceptions are noted below:

- The RPD between duplicate analyses of sample DP-01-0-1 was high at 178%. Amec Foster Wheeler J qualified the detected chromium result from this sample because of potential analytical imprecision. (J-HD)
- The RPD between duplicate analyses of sample DP-07-0-1 was high at 60%. Amec Foster Wheeler J qualified the detected chromium result from this sample because of potential analytical imprecision. (J-HD)

7.1.4 Laboratory Control Sample Accuracy

LCS recoveries were within QAPP-specified 90 to 110% limits.

7.1.5 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

MS and MSDs were performed on samples DP-01-0-1, DP-07-0-1, DP-10-0-1, DP-14-3.5-4.5, and DP-20-3.5-4.5. MS/MSD recoveries were within QAPP-specified 85 to 115% limits and RPDs were below 20%, with the following exceptions:

- Recovery was low at 73% in the MSD performed on sample DP-07-0-1 and the RPD was high at 41%. Amec Foster Wheeler J qualified the chromium result from this sample because of potential low analytical bias and potential analytical imprecision. (J-LM, HD)
- The concentration of chromium in the native unspiked sample DP-01-0-1, 456.2 milligrams per kilogram (mg/kg) was greater than four times the spike concentration, 57.02 mg/kg. It is not possible to evaluate analytical performance using the MS/MSD results for this sample.

7.1.6 Data Reporting and Analytical Procedures

There were no data anomalies associated with the reporting of this data.

7.2 CHLORIDE BY EPA METHOD 300.0

Chloride results generated by Apex may be considered usable without qualification.

7.2.1 Holding Times

Samples were analyzed for chloride within the EPA-recommended maximum holding time of 28 days from sample collection.

7.2.2 Laboratory Blanks

Target analytes were not detected in the laboratory blanks associated with these samples.

7.2.3 Laboratory Duplicates

Apex performed duplicate analysis of sample DP-13-GW. RPDs between laboratory duplicate results were less than 30%, or the difference between primary and duplicate results were less than the RL, indicating acceptable sampling and analytical precision.

7.2.4 Laboratory Control Sample Accuracy

LCS recoveries were within QAPP-specified 80 to 120% limits.

7.2.5 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

Apex performed an MS on sample DP-13-GW, but did not report results of an MSD. MS recoveries were within QAPP-specified 75 to 125% limits. Precision was evaluated by evaluating laboratory duplicate results.

7.2.6 Data Reporting and Analytical Procedures

Apex did not report detected results below the RL. There were no data anomalies associated with the reporting of this data.

Amec Foster Wheeler Environment & Infrastructure, Inc.

7.3 TOTAL AND DISSOLVED METALS BY EPA METHOD 6020

Metals results generated by Apex may be considered usable with the limitations described in section 7.3.1 through 7.3.7.

7.3.1 Holding Times

Samples were analyzed for metals within the EPA-recommended maximum holding time of 180 days from sample collection.

7.3.2 Laboratory Blanks

Target analytes were not detected in the laboratory blanks associated with these samples.

7.3.3 Laboratory Duplicates

Duplicate analysis was performed on samples DP-03-3.5-4.5, DP-13-3-5-DUP, DP-16-0-1, and DP-17-GW for total metals; and samples DP-13-GW and DP-17-GW for dissolved metals. RPDs between laboratory duplicate results were less than 30%, or the difference between primary and duplicate results were less than the RL, indicating acceptable sampling and analytical precision. Exceptions are noted below.

- The RPD between total manganese results was high at 42% in the duplicate analysis of sample DP-13-3-5-DUP. Amec Foster Wheeler J qualified the detected manganese result from this sample because of potential analytical imprecision. (J-HD)
- The RPD between total arsenic results was high at 27% in the duplicate analysis of sample DP-17-GW. Amec Foster Wheeler J qualified the detected arsenic result from this sample because of potential analytical imprecision. (J-HD)

7.3.4 Laboratory Control Sample Accuracy

LCS and recoveries were within QAPP-specified 80 to 120% limits.

7.3.5 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

Apex performed MSs on samples DP-03-3.5-4.5, DP-13-0-1, DP-13-3-5-DUP, DP-16-01, DP-17-GW, and DP-20-0-1 for total metals; and samples DP-13-GW and DP-17-GW for dissolved metals. Apex did not report MSD results for these samples and analytical precision was determined by evaluated laboratory duplicate results whenever possible. MS recoveries were within QAPP-specified 75 to 125% limits, with the exceptions noted below:

- Total antimony results were low at 71% in the MS performed on sample DP-16-0-1. Amec Foster Wheeler UJ qualified the nondetected antimony result from this sample because of potential low analytical bias (UJ-LM)
- Total antimony (not recovered above the RL), chromium (234%), copper (153%), manganese (452%), nickel (126%), and zinc (195%) recoveries were outside QAPP-specified limits in the MS performed on sample DP-17-GW. Although total antimony was not recovered in the MS performed on this sample, it was recovered within methodspecified limits in the post spike. Data limitations are summarized below.
 - Amec Foster Wheeler UJ qualified the nondetected antimony result from sample DP-17-GW because of potential low analytical bias. (UJ-LM)
 - Amec Foster Wheeler J qualified the detected nickel result from this sample because of potential high analytical bias. (J-HM)
 - The concentrations of chromium (931 micrograms per liter [µg/L]), copper (448 µg/L), manganese (4,350 µg/L), and zinc (511 µg/L) detected in the native unspiked sample were more than four times greater than the spike concentration, 55.6 µg/L, and it is not possible to evaluate analytical performance using the MS results for these analytes in this sample.
- Total manganese recovery was below QC limits at -62% in the MS performed on sample DP-03-3.5-4.5. The concentration of manganese detected in the native unspiked sample (1,530 mg/kg) was more than four times greater than the spike concentration (66.7 mg/kg). It is not possible to evaluate analytical performance using the MS result for this analyte in this sample.
- Total manganese recovery was below QC limits at -72% in the MS performed on sample DP-13-0-1. The concentration of manganese detected in the native unspiked sample (724 mg/kg) was more than four times greater than the spike concentration (62.8 mg/kg). It is not possible to evaluate analytical performance using the MS result for this analyte in this sample.
- Total manganese recovery was below QC limits at -293% in the MS performed on sample DP-13-3-5-DUP. The concentration of manganese detected in the native unspiked sample (950 mg/kg) was more than four times greater than the spike concentration (61.8 mg/kg). It is not possible to evaluate analytical performance using the MS result for this analyte in this sample.

7.3.6 Post Digestion Spike

Apex performed post digestion spikes on samples DP-16-0-1 and DP-17-GW for total antimony. Recoveries were within method-specified 80 to 120% limits, with the following exception:

 Antimony recovery was low at 60% in the post digestion spike performed on sample DP-16-0-1. Amec Foster Wheeler UJ qualified the nondetected total antimony result from this sample because of potential low analytical bias. (UJ-LD)

7.3.7 Data Reporting and Analytical Procedures

Apex did not report detected results below the RL. There were no data anomalies associated with the reporting of this data.

7.4 HEXAVALENT CHROMIUM BY EPA METHOD 200.8

Hexavalent chromium results generated by BAL may be considered usable without qualification.

7.4.1 Holding Times

Samples were extracted for hexavalent chromium within the EPA-recommended maximum holding time of 30 days from sample collection, and were analyzed within 7 days of extraction.

7.4.2 Laboratory Blanks

Hexavalent chromium was detected in the laboratory blanks associated with these samples at concentrations below the RL, ranging from 0.007 mg/kg to 0.012 mg/kg. Sample concentrations were greater than five times the concentration in the associated laboratory blank, and data usability is not adversely affected.

7.4.3 Laboratory Duplicates

Duplicate analysis was performed on sample DP-13-3-5. RPDs between laboratory duplicate results were less than 20%, or the difference between primary and duplicate results were less than the RL, indicating acceptable sampling and analytical precision.

7.4.4 Laboratory Control Sample Accuracy

LCS recoveries were within QAPP-specified 90 to 110% limits.

7.4.5 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

MS and MSDs were performed on sample DP-13-3-5. MS/MSD recoveries were within QAPP-specified 85 to 115% limits and RPDs were below 20%.

7.4.6 Data Reporting and Analytical Procedures

There were no data anomalies associated with the reporting of this data.

7.5 VOLATILE ORGANIC COMPOUNDS BY EPA METHOD 8260B

VOC results generated by Apex may be considered usable with the limitations described in section 7.5.1 through 7.5.8.

7.5.1 Holding Times

Samples were analyzed for VOCs within the method-specified maximum holding time of 14 days for preserved samples.

7.5.2 Laboratory Blanks

VOCs were not detected in the laboratory blanks associated with the analysis of these samples.

7.5.3 Trip Blanks

VOCs were not detected in the trip blank associated with the analysis of these samples.

7.5.4 Laboratory Duplicates

Duplicate analysis was performed on sample DP-6-GW. RPDs between laboratory duplicate results were less than 50% for organic analyses, or the difference between primary and duplicate results were less than the RL, indicating acceptable sampling and analytical precision.

7.5.5 Laboratory Control Sample Accuracy

LCS recoveries were within QAPP-specified 70 to 130% limits, with the following exceptions:

- Acetone (63%), 2-butanone (57%), carbon tetrachloride (172%), and 2-hexanone (68%) recoveries were outside QAPP-specified limits in the LCS associated with the analysis of samples DP-2-GW, DP-6-GW, DP-17-GW, and the trip blank. Data limitations are summarized below.
 - Amec Foster Wheeler UJ qualified the nondetected acetone, 2-butanone, and 2hexanone results from samples DP-2-GW, DP-6-GW, and DP-17-GW because of potential low analytical bias. (UJ-LL)
 - Amec Foster Wheeler does not qualify trip blank results.
 - Carbon tetrachloride was not detected in any of the samples associated with the LCS, and data usability is not adversely affected by the potential high analytical bias.

7.5.6 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

MS/MSDs for VOCs were not performed on samples submitted with work order A5K0450.

7.5.7 Surrogate Recoveries

Surrogate recoveries associated with the VOC analysis of these samples were within QAPP-specified 60 to 140% limits.

7.5.8 Data Reporting and Analytical Procedures

Apex did not report detected results below the RL. There were no anomalous results associated with the VOC analysis of these samples.

7.6 HYDROCARBONS BY NWTPH-HCID

Hydrocarbon results generated by Apex may be considered fully usable without qualification.

7.6.1 Holding Times

Samples were analyzed for hydrocarbons within the method-specified maximum holding time of 14 days for preserved samples.

7.6.2 Laboratory Blanks

Hydrocarbons were not detected in the laboratory blanks associated with the analysis of these samples.

7.6.3 Trip Blanks

Hydrocarbons were not detected in the trip blank associated with the analysis of these samples.

7.6.4 Laboratory Duplicates

Apex did not perform duplicate hydrocarbon analysis on any of the samples from work order A5K0450.

7.6.5 Laboratory Control Sample Accuracy

Apex did not include LCS information related to hydrocarbon analyses in work order A5K0450.

7.6.6 Matrix Spike/Matrix Spike Duplicate Accuracy and Precision

MS/MSDs for hydrocarbons are not required by the text method and were not performed on samples submitted with work order A5K0450.

7.6.7 Surrogate Recoveries

Surrogate recoveries associated with the gasoline analysis of these samples were within QAPP-specified 60 to 140% limits.

7.6.8 Data Reporting and Analytical Procedures

Apex did not report detected results below the RL. There were no anomalous results associated with the hydrocarbon analysis of these samples.

8.0 FIELD DUPLICATES

Amec Foster Wheeler collected field duplicates of samples DP-06-5-6 (DP-06-5-6-DUP), DP-11-3.5-4.5 (DP-11-3.5-4.5-DUP), DP-13-3-5 (DP-13-3-5-DUP), and DP-13-GW (DP-13-W-DUP). Detections in the field duplicate pairs are summarized in Table 2. RPDs between primary and field duplicate results were either less than 30% for hexavalent chromium, chloride, and metals; less than 50% for VOCs; or the difference between primary and duplicate results were less than the RL, indicating acceptable sampling and analytical precision, with the following exceptions:

- The RPD was high at 120% between hexavalent chromium results from sample DP-06-5-6 and it's field duplicate, DP-06-5-6-DUP. Amec Foster Wheeler J qualified the detected hexavalent chromium results from this sample and its duplicate because of potential sampling or analytical imprecision. (J-FD)
- RPDs were high between arsenic (44%), copper (49%), manganese (49%), and nickel (31%) results from sample DP-11-3.5-4.5 and its field duplicate DP-11-3.5-4.5-DUP. Amec Foster Wheeler J qualified the detected results of these analytes from sample DP-11-3.5-4.5 and its duplicate because of potential sampling or analytical imprecision. (J-FD)
- RPDs were high between arsenic (75%), cadmium (122%), chromium (107%), copper (143%), lead (65%), manganese (152%), and nickel (138%) results from sample DP-13-GW and its field duplicate, DP-13-W-DP. Additionally, dissolved copper (17.2 mg/kg) and dissolved lead (0.400 mg/kg) were detected in the duplicate sample at concentrations greater than twice the RL, but were not detected in the primary sample, DP-13-GW. Amec Foster Wheeler J qualified the detected and UJ qualified the nondetected results of these analytes from sample DP-13-GW and its duplicate because of potential sampling or analytical imprecision. (J/UJ-FD)

Amec Foster Wheeler Environment & Infrastructure, Inc.

9.0 SUMMARY AND CONCLUSIONS

Amec Foster Wheeler evaluated a total of 974 data records from field samples during the validation. Amec Foster Wheeler J qualified 44 results (4.5%) because of high laboratory duplicate RPDs, low post-digestion spike recoveries, low LCS recovery, low MS/MSD recovery, high MS/MSD recovery, and high field duplicate RPDs. No data were rejected, and the data may be considered 100% usable as presented in Apex's and BAL's laboratory reports.


REFERENCES

- EPA, 2004. SW 846 Test Methods for Evaluating Solid Wastes, Update IIIB.
- EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-014-002.
- EPA, 2014. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Superfund Data Review, EPA-540-R-013-001.

Amec Foster Wheeler Environment & Infrastructure, Inc.

LIMITATIONS

This report was prepared exclusively for the City of Sherwood by Amec Foster Wheeler Environment & Infrastructure, Inc. The quality of information, conclusions, and estimates contained herein is consistent with the level of effort involved in Amec Foster Wheeler services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions, and qualifications set forth in this report. This data validation report is intended to be used by the City of Sherwood only, subject to the terms and conditions of its contract with Amec Foster Wheeler. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

TABLES

TABLE 1List of Field Samples Submitted to Apex Laboratory and Brooks Applied LabsFormer Frontier Leather PropertySherwood, Oregon

Field	Sample	Collection	Apex	BAL	Neter
Sample ID	Matrix	Date	Sample ID	Sample ID	Notes
DP-03-3.5-4.5	Soil	11/10/2015	A5K0450-01	1546054-18	
DP-06-5-6	Soil	11/10/2015	A5K0450-02	1546054-19	
DP-06-5-6-DUP	Soil	11/10/2015	A5K0450-03	1546054-20	Field Duplicate of DP-06-5-6
DP-06-0-1	Soil	11/10/2015	A5K0450-04	1546054-21	
DP-06-12-13	Soil	11/10/2015	A5K0450-05	1546054-22	
DP-07-0-1	Soil	11/10/2015	A5K0450-06	1546054-23	
DP-07-3.5-4.5	Soil	11/10/2015	A5K0450-07	1546054-24	
DP-08-0-1	Soil	11/10/2015	A5K0450-08	1546054-25	
DP-08-3.5-4.5	Soil	11/10/2015	A5K0450-09	1546054-26	
DP-6-GW	Water	11/10/2015	A5K0450-10	Not Submitted	
DP-05-0-1.5	Soil	11/11/2015	A5K0450-11	1546054-27	
DP-05-3.5-4.5	Soil	11/11/2015	A5K0450-12	1546054-28	
DP-18-0-1	Soil	11/11/2015	A5K0450-13	1546054-29	
DP-18-3.5-4.5	Soil	11/11/2015	A5K0450-14	1546054-30	
DP-14-0-1	Soil	11/11/2015	A5K0450-15	1546054-44	
DP-14-3.5-4.5	Soil	11/11/2015	A5K0450-16	1546054-45	
DP-13-0-1	Soil	11/11/2015	A5K0450-17	1546054-40	
DP-13-3-5	Soil	11/11/2015	A5K0450-18	1546054-41	
DP-13-3-5-DUP	Soil	11/11/2015	A5K0450-19	1546054-42	Field Duplicate of DP-13-3-5
DP-13-8-9	Soil	11/11/2015	A5K0450-20	1546054-43	
DP-16-3.5-4.5	Soil	11/10/2015	A5K0450-21	1546054-09	
DP-2-0-1	Soil	11/10/2015	A5K0450-22	1546054-10	
DP-2-3.5-4.5	Soil	11/10/2015	A5K0450-23	1546054-11	
DP-2-8-9	Soil	11/10/2015	A5K0450-24	1546054-12	
DP-2-GW	Water	11/10/2015	A5K0450-25	Not Submitted	
DP-01-0-1	Soil	11/10/2015	A5K0450-26	1546054-13	
DP-01-3.5-4.5	Soil	11/10/2015	A5K0450-27	1546054-14	
DP-04-0-1	Soil	11/10/2015	A5K0450-28	1546054-15	
DP-04-3.5-4.5	Soil	11/10/2015	A5K0450-29	1546054-16	
DP-03-0-1	Soil	11/10/2015	A5K0450-30	1546054-17	
DP-17-0-1	Soil	11/10/2015	A5K0450-31	1546054-01	
DP-17-3.5-4.5	Soil	11/10/2015	A5K0450-32	1546054-02	
DP-17-8-9	Soil	11/10/2015	A5K0450-33	1546054-03	
DP-17-GW	Water	11/10/2015	A5K0450-34	Not Submitted	
DP-20-0-1	Soil	11/10/2015	A5K0450-35	1546054-04	
DP-20-3.5-4.5	Soil	11/10/2015	A5K0450-36	1546054-05	
DP-19-0-1	Soil	11/10/2015	A5K0450-37	1546054-06	
DP-19-3.5-4.5	Soil	11/10/2015	A5K0450-38	1546054-07	
DP-16-0-1	Soil	11/10/2015	A5K0450-39	1546054-08	
TRIP BLANK	Water	11/10/2015	A5K0450-40	Not Submitted	Trip Blank
DP-13-GW	Water	11/11/2015	A5K0450-41	Not Submitted	
DP-3-9-10	Soil	11/11/2015	A5K0450-42	Not Submitted	
DP-3-14.5-15	Soil	11/11/2015	A5K0450-43	Not Submitted	
DP-13-W-DUP	Water	11/11/2015	A5K0450-44	Not Submitted	Field Duplicate of DP-13-GW
DP-15-0-1	Soil	11/11/2015	A5K0450-50	1546054-46	
DP-15-4-5	Soil	11/11/2015	A5K0450-51	1546054-47	
DP-12-0-1	Soil	11/11/2015	A5K0450-52	1546054-38	
DP-12-3.5-4.5	Soil	11/11/2015	A5K0450-53	1546054-39	
DP-10-0-1	Soil	11/11/2015	A5K0450-54	1546054-31	
DP-10-3.5-4.5	Soil	11/11/2015	A5K0450-55	1546054-32	
DP-11-0-1	Soil	11/11/2015	A5K0450-56	1546054-33	

Former Frontier Leather Property Data Quality Review \\por-fs1\clientdata\13000\13082\DATA\Data Review\FrontierLeather_DQR_Nov2015

TABLE 1 List of Field Samples Submitted to Apex Laboratory and Brooks Applied Labs Former Frontier Leather Property Sherwood, Oregon

Field	Sample	Collection	Арех	BAL	Notes
Sample ID	Matrix	Date	Sample ID	Sample ID	Notes
DP-11-3.5-4.5	Soil	11/11/2015	A5K0450-57	1546054-34	
DP-11-3.5-4.5 DUP	Soil	11/11/2015	A5K0450-58	1546054-35	Field Duplicate of DP-11-3.5-14.5
DP-9-0-1	Soil	11/11/2015	A5K0450-59	1546054-36	
DP-9-3.5-4.5	Soil	11/11/2015	A5K0450-60	1546054-37	
DP-COMPOSITE	Soil	11/10/2015	A5K0450-61	Not Submitted	

Notes:

BAL = Brooks Applied Labs

ID = identification

TABLE 2 Field Duplicate Detections Former Frontier Leather Property Sherwood, Oregon

Method	Analyte	Average RL (mg/kg)	Primary Sample (mg/kg)	Field Duplicate (mg/kg)	Relative Percent Difference	Notes
		Samples DP-06-5-6	and DP-06-5-6-DUF)		
6020	Arsenic	1.36	2.56	2.70	5%	
	Copper	1.36	17.1	17.4	2%	
	Lead	0.272	5.29	5.49	4%	
	Manganese	1.36	523	616	16%	
	Nickel	1.36	13.9	13.9	0%	
	Zinc	5.44	44.6	48.2	8%	
EPA 200.8	Total Chromium	1.43	19.1	22.7	17%	
SW7199	Hexavalent Chromium	0.028	0.062	0.247	120%	J-FD
	Sar	nples DP-11-3.5-4.5	and DP-11-3.5-4.5-	DUP		
EPA 200.8	Total Chromium	1.14	32.2	33.3	3%	
6020	Arsenic	1.23	4.24	6.64	44%	J-FD
	Cadmium	0.245	0.284	0.289	2%	
	Copper	1.23	15.8	26.1	49%	J-FD
	Lead	0.245	7.38	8.98	20%	
	Manganese	1.23	546	904	49%	J-FD
	Nickel	1.23	17.6	24.0	31%	J-FD
	Zinc	4.90	59.4	71.9	19%	
		Samples DP-13-3-5	and DP-13-3-5-DUF	0		
EPA 200.8	Total Chromium	1.20	22	20.1	9%	
6020	Arsenic	2.02	4.85	3.91	21%	
	Cadmium	0.271	0.331	0.306	8%	
	Copper	1.36	23.5	24.6	5%	
	Lead	0.271	7.51	6.99	7%	
	Manganese	1.36	883	950	7%	
	Nickel	2.02	25.5	26.5	4%	
	Zinc	5.42	65.4	59.8	9%	
SW7199	Hexavalent Chromium	0.026	0.342	NT	NC	

TABLE 2 Field Duplicate Detections Former Frontier Leather Property Sherwood, Oregon

Method	Analyte	Analyte Average RL Primary Sample Fie		Field Duplicate (µg/L)	Relative Percent Difference	Notes
	0					
			V and DP-13-W-DUF			
EPA 300.0	Chloride	1.00	11.8	11.4	3%	
6020	Arsenic	1.00	1.40	3.09	75%	J-FD
	Cadmium	0.200	0.211	0.867	122%	J-FD
	Chromium	1.00	9.36	31.1	107%	J-FD
	Copper	1.00	10.2	61.3	143%	J-FD
	Lead	0.200	4.70	9.23	65%	J-FD
	Manganese	10.5	521	3780	152%	J-FD
	Nickel	1.00	10.1	55.5	138%	J-FD
	Zinc	4.00	25.4	146	19%	
	Dissolved Copper	2.00	2.00 U	17.2	NC	J/UJ-FD
	Dissolved Chromium	1.00	3.64	3.97	9%	
	Dissolved Lead	0.200	0.200 U	0.400	NC	J/UJ-FD
	Dissolved Manganese	1.00	10.3	11.2	8%	

Notes:

mg/kg = milligrams per kilogram NC = Not Calculable NT = Not Tested RL = Reporting Limit

Qualifier Definitions:

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was not detected above the reported sample qantiation limit. However, the reported quanitation limit is approximate and may or may not represent the actual limit of quanitation necessary to accurately and precisely measure the analyte in the sample.

Reason Codes

FD = High RPD between parent sample and field duplicate results.

TABLE 3 Qualifiers Added During Data Quality Review Former Frontier Leather Property Sherwood, Oregon

Sample ID Analyt Method		Analyte	Concentration		Qualifiers and Bias/Reason Codes		
DP-01-0-1	EPA 200.8	Chromium	456 mg/kg	J	HD		
DP-06-5-6	7199	Hexavalent Chromium	0.062 mg/kg	J	FD		
DP-06-5-6-DUP	7199	Hexavalent Chromium	0.247 mg/kg	J	FD		
DP-07-0-1	EPA 200.8	Chromium	46.2 mg/kg	J	LM, HD		
DP-11-3.5-4.5	6020	Arsenic	4.24 mg/kg	J	FD		
		Copper	15.8 mg/kg	J	FD		
		Manganese	546 mg/kg	J	FD		
		Nickel	17.6 mg/kg	J	FD		
DP-11-3.5-4.5 DUP	6020	Arsenic	6.64 mg/kg	J	FD		
		Copper	26.1 mg/kg	J	FD		
		Manganese	904 mg/kg	J	FD		
		Nickel	24.0 mg/kg	J	FD		
DP-13-3-5-DUP	6020	Manganese	950 mg/kg	J	HD		
DP-13-GW	6020	Arsenic	1.40 µg/L	J	FD		
		Cadmium	0.211 µg/L	J	FD		
		Chromium	9.36 µg/L	J	FD		
		Copper	10.2 µg/L	J	FD		
		Lead	4.70 µg/L	J	FD		
		Manganese	521 µg/L	J	FD		
		Nickel	10.10 µg/L	J	FD		
		Dissolved Copper	2 µg/L	UJ	FD		
		Dissolved Lead	0.200 µg/L	UJ	FD		
DP-13-W-DUP	6020	Arsenic	3.09 µg/L	J	FD		
		Cadmium	0.867 µg/L	J	FD		
		Chromium	31.1 µg/L	J	FD		
		Copper	61.3 µg/L	J	FD		
		Lead	9.23 µg/L	J	FD		
		Manganese	3780 µg/L	J	FD		
		Nickel	55.5 µg/L	J	FD		
		Dissolved Copper	17.2 µg/L	J	FD		
		Dissolved Lead	0.400 µg/L	J	FD		
DP-16-0-1	6020	Antimony	1.12 mg/kg	UJ	LD, LM		
DP-17-GW	6020	Antimony	10.0 µg/L	UJ	LM		
		Arsenic	24.1 µg/L	J	HD		
		Nickel	211 µg/L	J	HM		
	8260B	2-Butanone	10.0 µg/L	UJ	LL		
	1	2-Hexanone	10.0 µg/L	UJ	LL		
		Acetone	20.0 µg/L	UJ	LL		
DP-2-GW	8260B	2-Butanone	10.0 µg/L	UJ	LL		
	1	2-Hexanone	10.0 µg/L	UJ	LL		
		Acetone	20.0 µg/L	UJ	LL		

TABLE 3 Qualifiers Added During Data Quality Review Former Frontier Leather Property Sherwood, Oregon

Sample ID	Analytical Method	Analyte	Concentration	Bia	lifiers and s/Reason Codes
DP-6-GW	8260B	2-Butanone	10.0 µg/L	UJ	LL
		2-Hexanone	10.0 µg/L	UJ	LL
		Acetone	20.0 µg/L	UJ	LL

Notes:

μg/L = micrograms per liter mg/kg = milligrams per kilogram

Qualifier Definitions:

J = The analyte was positively identified; the associated numerical value is the approximate concentration UJ = The analyte was not detected above the reported sample qantiation limit. However, the reported quanitation limit is approximate and may or may not represent the actual limit of quanitation necessary to accurately and precisely measure the

Reasion Codes

FD = High RPD between parent sample and field duplicate results. Potential sampling or analytical imprecision. HD = High RPD between laboratory duplicate results. Potential analytical imprecision.

HM = High MS/MSD recovery. Potential high analytical bias.

LD = Low post-digestion spike recovery. Potential low analytical bias.

LM = Low MS/MSD recovery. Potential low analytical bias.

LL = Low LCS recovery. Potential low analytical bias.

APPENDIX D-2

Laboratory Reports

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, January 13, 2016

Michelle Peterson AMEC Foster Wheeler 7376 SW Durham Road Portland, OR 97224

RE: Former Frontier Leather / 561M13082

Enclosed are the results of analyses for work order <u>A5K0450</u>, which was received by the laboratory on 11/12/2015 at 4:37:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: Former Frontier Leather	
7376 SW Durham Road	Project Number: 561M13082	Reported:
Portland, OR 97224	Project Manager: Michelle Peterson	01/13/16 16:26

	SAMPLE INFORMATION										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
DP-Composite	A5K0450-61	Soil	11/10/15 14:25	11/12/15 16:37							

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: Forme	er Frontier Leather	
7376 SW Durham Road	Project Number: 561M	13082	Reported:
Portland, OR 97224	Project Manager: Miche	lle Peterson	01/13/16 16:26

ANALYTICAL SAMPLE RESULTS

	TCLP Metals by EPA 6020 (ICPMS)									
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes		
DP-Composite (A5K0450-61)			Matrix: Soil							
Batch: 5120493										
Chromium	ND		0.100	mg/L	5	12/16/15 13:34	1311/6020A			
Lead	ND		0.0500	"	"	"	"			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: Former Frontier Leather	
7376 SW Durham Road	Project Number: 561M13082	Reported:
Portland, OR 97224	Project Manager: Michelle Peterson	01/13/16 16:26

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP	Metals by	/ EPA 60	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5120493 - EPA 13 [,]	11/3015						Soi	1				
Blank (5120493-BLK1)				Pre	pared: 12	/16/15 10:18	Analyzed:	12/16/15 1	3:16			
1311/6020A												
Chromium	ND		0.100	mg/L	5							TCLP
Lead	ND		0.0500	"	"							TCLP
LCS (5120493-BS1)				Pre	pared: 12	/16/15 10:18	Analyzed:	12/16/15 1	3:19			
1311/6020A												
Chromium	2.65		0.100	mg/L	5	2.50		106	80-120%			TCLP
Lead	2.65		0.0500	"	"	"		106				TCLP

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler	Project: For	rmer Frontier Leather	
7376 SW Durham Road	Project Number: 561	M13082	Reported:
Portland, OR 97224	Project Manager: Mic	chelle Peterson	01/13/16 16:26

SAMPLE PREPARATION INFORMATION

TCLP Metals by EPA 6020 (ICPMS)							
Prep: EPA 1311/30) <u>15</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5120493							
A5K0450-61	Soil	1311/6020A	11/10/15 14:25	12/16/15 10:18	5mL/50mL	5mL/50mL	1.00

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

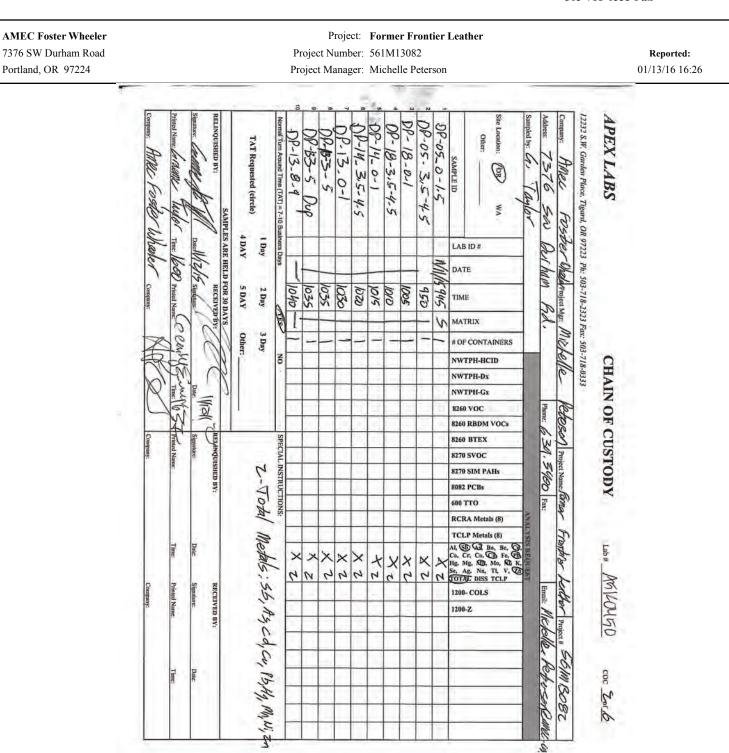
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler 7376 SW Durham Road		Project: Former Frontier Leather Project Number: 561M13082		Reported:		
Portland,	OR 97224	Project Manager:	Michelle Peterson	01/13/16 16:26		
		Notes and De	finitions			
Qualifiers	<u>:</u>					
TCLP	This batch QC sample was prepared with	n TCLP or SPLP fluid from prepa	ration batch 5120493.			
Notes an	nd Conventions:					
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the reporting limit					
NR	Not Reported					
dry	Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.					
RPD	Relative Percent Difference					
MDL	If MDL is not listed, data has been evaluated to the Method Reporting Limit only.					
WMSC	Water Miscible Solvent Correction has b	een applied to Results and MRLs	s for volatiles soil samples per EPA 8000C			
Batch QC	analyses were performed with the approp order to meet or exceed method and regu- results are available upon request. In case	priate Batch QC (including Samp latory requirements. Any except ses where there is insufficient san	C derived from client samples included in le Duplicates, Matrix Spikes and/or Matrix ions to this will be qualified in this report. nple provided for Sample Duplicates and/o uracy and precision of the extraction and a	x Spike Duplicates) in Complete Batch QC or Matrix Spikes, a		
Blank Policy						
	For accurate comparison of volatile resu and soil sample results should be divided		water sample results should be divided be account for the sample prep factor.	y the dilution factor,		
	Results qualified as reported below the M qualifications are not applied to J qualifi		bias if associated with a B or B-02 qualif L.	ied blank. B and B-02		
	QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.					
***			licate results when the %RPD is not availa analyte, while the other is Non Detect (NI			

Apex Laboratories

Philip Nevenberg

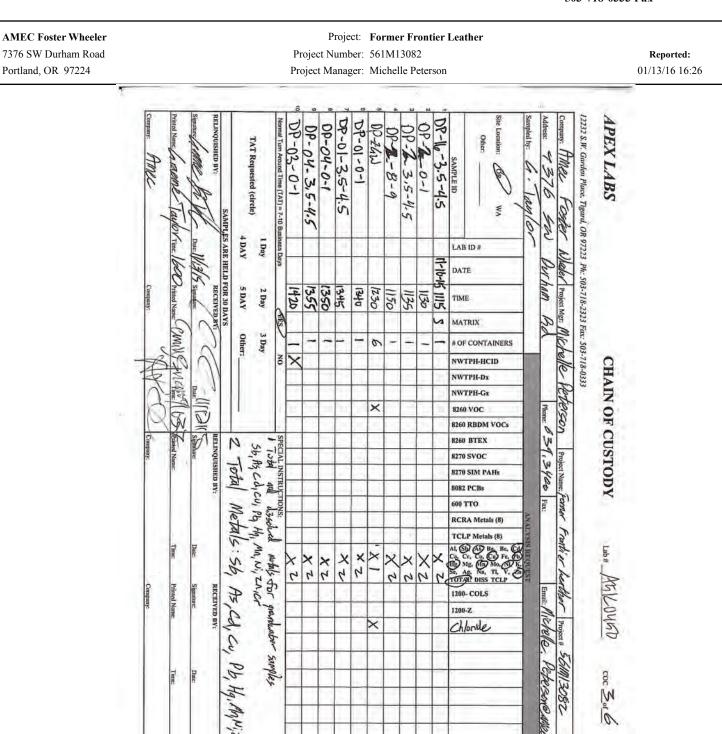
Philip Nerenberg, Lab Director


12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: Former Frontier Leather 7376 SW Durham Road Project Number: 561M13082 Reported: Portland, OR 97224 01/13/16 16:26 Project Manager: Michelle Peterson 12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 APEX LABS 17 DP-05-0-03-3.5 TAT Requested (circle) DP-6-)P-1-07-3 06-5-6-0UP -06-5-6 -06-07-08-3.5-4.5 0 AMPL Time (TAT) = 7-10 Gw -4.5 12-13 EID 2-4 3 4 DAY ES ARE HEL 1 Day LAB ID # S CB 1-10-DATE 3 5 DAY 2 Day N75 1610 529 623 5 510 TIME 444 3 5 MATRIX 3 Day N # OF CONTAINERS NWTPH-HCID CHAIN OF CUSTODY NWTPH-Dx NWTPH-Gx X 8260 VOC 8260 RBDM VOCs 639.3400 8260 BTEX SPECIAL INSTRUCTIONS I total "dissolved samples: Sb, 8270 SVOC Project Name Tota 8270 SIM PAHs 8082 PCBs 600 TTO metals: Pormar RCRA Metals (8) PS TCLP Metals (8) cd, cr, cu, Ph Hg, Mn, Ni, Zn metals to ground water Al, Ca, Cr, Ca, Ca Ca, Cr, Ca, Ca Mg, Ca, Mg 56 Number of State XXX FRONTI XZ X NN XN X (In 44 TI, TCL ALANDICO Company Printed 1200-COLS errath icus Pbin Nam 1200-Z chloride Hold exten colu 28081 W19 NO ONSIGAD N

Apex Laboratories

Philip Nevenberg


12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

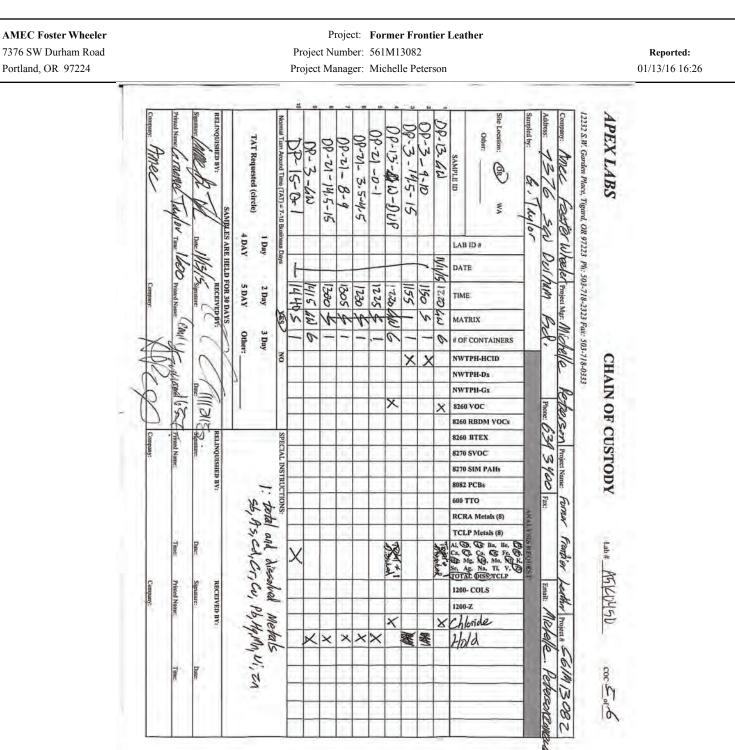
Apex Laboratories

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg


12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: Former Frontier Leather 7376 SW Durham Road Project Number: 561M13082 Reported: Portland, OR 97224 01/13/16 16:26 Project Manager: Michelle Peterson 2232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 APEX LABS DP-14-3-5-4-5 1-19-0-1 p-20-3.5-4.5 1-20-1 P-16-0--17 - 4W TAT Requested (circle) 8-41 0-1 DR. ind Time (TAT) = 7-10 WN n 4 DAY I Day LAB ID # C a 40 11-10-159 30 11-10-157 DATE 5 DAY 2 Day 1055 1035 50 8 0 TIME 5 ٤ S V S 105 V MATRIX Other: 3 Day 0 # OF CONTAINERS + NWTPH-HCID CHAIN OF CUSTODY NWTPH-Ds NWTPH-Gx × × 8260 VOC 8260 RBDM VOCs 8260 BTEX 1 Total and Dissolutions 2 Total 5b, As, cd, cr, cu, Pb, LINQUISHED BY 8270 SVOC 8270 SIM PAHs Metals: 5b, As, Ca, Cu, Pb, Hg, 8082 PCBs dissolvel Tamer 600 TTO RCRA Metals (8) TCLP Metals (8) Frantifiar metals Ha AL SD G Ba Lab# X ××-XXX 7 4 4 х Mn, Ni, Zn TI, for Grondwater 4 N 4 ARK 0450 TOT/ DISS TC Printed RECEIVED BY: 1200- COLS 1200-Z X Chloride Mn, NI, ZA Supples 13081 0

Apex Laboratories

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: Former Frontier Leather 7376 SW Durham Road Project Number: 561M13082 Reported: Portland, OR 97224 01/13/16 16:26 Project Manager: Michelle Peterson 2232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 APEX LABS P-TAT Requested (circle) D' um Around Time (TAT) = 7-10 12-3.5-4 12-0 0 0-0-S 1-35 5-4.5 DWP -3.5-6 0 MPLE ID in 1 ŧ 45 UT 1 in 'ul UI) 4 DAY I Day ES ARE HELD FOR LAB ID # len ssi 1-11-15/605 1-1-5 1-1-15 DATE t 5 DAY 1500 2 Day 1540 1510 1535 1530 1526 520 1515 44 TIME MATRIX 3 Day Other # OF CONTAINERS NWTPH-HCID CHAIN OF CUSTODY NWTPH-Dx NWTPH-Gx 10 8260 VOC 8260 RBDM VOCs 8260 BTEX SPECI 8270 SVOC .3400 N INS 8270 SIM PAHs 8082 PCBs 600 TTO TOPlay RCRA Metals (8) Frantier TCLP Metals (8) Lab # Time X A 2 Se. Ag. Na. TI, V. € N N N N N A5120450 4 Printed Num 1200- COLS PE, Ha, Ma, Ni, Za ECEIVED BY: 1200-Z Robele, Veterson Camee Su con 2005 W192 COC 6006

Apex Laboratories

Philip Nevenberg

December 21, 2015

Michelle Peterson RG, LG Amec Foster Wheeler 7376 SW Durham Road Portland, OR 97224 (503) 639-3400 michelle.peterson@amecfw.com

RE: Amec Foster Wheeler Project Number 561M130820

Ms. Peterson,

Attached is the report associated with the forty-seven (47) soil samples submitted for chromium analyses. All samples were received in acceptable condition on November 13, 2015 in a sealed cooler at 4.0°C. Hexavalent chromium determination was performed by an EPA 3060A extraction followed by quantitation via ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry. Total chromium determination was performed by an EPA 3050B digestion followed by quantitation via inductively coupled plasma triple quadrupole mass spectrometry. Any issues associated with the analyses are addressed in the attached report.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more details, please see the Report Information page in your report.

Please feel free to contact me if you have any questions regarding this report.

Sincerely,

Ben Woznick

Ben Wozniak Project Manager ben@brooksapplied.com

Case Narrative

1. Sample Reception

Forty-seven (47) soil samples were submitted to Brooks Applied Labs (BAL) for total chromium quantitation; ten (10) of these samples also were submitted for hexavalent chromium quantitation. The samples were received in acceptable condition on November 13, 2015 in a sealed cooler at 4.0°C.

All samples were received in a laminar flow clean hood, void of trace metals contamination and ultra-violet radiation, and designated discrete sample identifiers. Each sample submitted in a HDPE jar was stored in a secure, monitored refrigerator (maintained at a temperature of $\leq 6^{\circ}$ C) until all preparatory and analytical procedures could be performed.

It was noted upon receipt that the sample identified on the COC as DP-3.5-4.5 was not received, but a sample bottle labeled as DP-9-3.5-4.5 with the same collection date and time as the missing sample was instead received. The client was contacted regarding this discrepancy and confirmed that the sample ID recorded on the bottle was correct; consequently, results for this sample have been reported using the DP-9-3.5-4.5 identifier.

It should also be noted that one of the original chain of custody (COC) forms was missing from the sample shipment. BAL staff generated a COC for those samples which were absent from the COCs that were included in the shipment. The client was contacted about the missing COC and emailed BAL a copy of the missing form. Both the COC completed by BAL staff and the original COC sent at a later date have been included in this report.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are also monitored for contamination to account for any biases associated with the sample results.

<u>Hexavalent Chromium Quantitation by IC-ICP-DRC-MS (Soils)</u> All samples were extracted in accordance with EPA Method 3060A. In summary, a known mass of each sample was weighed into a polypropylene vial. A buffered alkaline extraction solution, MgCl₂, and a phosphate buffer solution were then applied to each sample. All vials were then heated, with constant agitation, at 90-95°C in a hotblock apparatus for a minimum of one (1) hour. The resulting extracts were cooled, filtered, and injected directly into autosampler vials. All extracts were analyzed for hexavalent chromium via ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS).

Three sets of laboratory fortified blanks (BS) and matrix spikes (MS/MSD) were prepared with the extraction to identify the extraction efficiency and the capacity of the extraction procedure and/or sample matrices to induce interconversion of trivalent chromium and hexavalent chromium. The first set was prepared with an aqueous trivalent chromium [Cr(III)] standard,

the second set was prepared with an aqueous hexavalent chromium [Cr(VI)] standard, and the third set was prepared with a solid lead chromate [PrCrO₄] standard.

<u>Total Chromium Quantitation by ICP-QQQ-MS (Soils)</u> A known mass of each sample was weighed into a polypropylene vial. All samples were then digested with aliquots of concentrated HNO3 and H2O2 in a hot block apparatus, in accordance with EPA Method 3050B. The resulting digests were analyzed for total chromium via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS).

3. Sample Analysis

All sample analysis is preceded by a minimum of a five-point calibration curve spanning the entire concentration range of interest. All calibration curves, associated with each species of interest, are standardized by linear regression resulting in a response factor. All sample results are **instrument blank corrected** to account for any operational biases.

Prior to sample analysis, all calibration curves are verified using second source standards which are identified as initial calibration verification standards (ICV).

Ongoing instrument performance is identified by the analysis of continuing calibration verification standards (CCV) and continuing calibration blanks (CCB) at a minimum interval of every ten analytical runs.

<u>Hexavalent Chromium Quantitation by IC-ICP-DRC-MS</u> All sample extracts for hexavalent chromium quantitation were analyzed via a modified EPA Method 7199, employing ion chromatography inductively coupled plasma dynamic reaction cell mass spectrometry (IC-ICP-DRC-MS). Aliquots of each sample extract are injected onto an anion exchange column and mobilized by an alkaline (pH > 7) gradient. The eluting chromium species are then introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which preferentially reacts with interfering ions of the same target mass to charge (m/z) ratios. A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

The retention time for hexavalent chromium is compared to known standards for species identification.

<u>Total Chromium Quantitation by ICP-QQQ-MS</u> The sample digests for total chromium quantitation were analyzed via a modified EPA Method 200.8, employing inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Aliquots of each sample digest are introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through an initial quadrupole (Q1), which filters the target masses prior to their entrance into a second chamber. The second chamber contains specific reactive gasses or collision gasses that preferentially react either with

interfering ions of the same target mass to charge ratios (m/z) or with the target analyte, producing an entirely different mass to charge ratio (m/z) which can then be differentiated from the initial interferences. The ions then exit the collision/reaction chamber into the mass analyzer (Q2). A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

<u>Total Solids (Percent Moisture) Analysis</u> All samples were analyzed for total solids content in accordance with SM2540G.

4. Analytical Issues and Discussion

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or certified reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

All data is reported without qualification, aside from concentration qualifiers, and all other associated quality control results meet acceptance criteria with the following exceptions:

The relative percent difference (RPD) associated with the matrix duplicate B152040-DUP2 performed on the sample identified as DP-1-0-1 was above the control limit of 25% for total chromium (178%). Similarly, the RPD associated with the matrix duplicate B152040-DUP3 performed on the sample identified as DP-7-0-1 was also elevated for total chromium (60%). Three other matrix duplicate sets associated with batch B152040 – identified as B152040-DUP1, B152040-DUP4, and B152040-DUP5 – were within control, demonstrating the precision of the applied methods. Both B152040-DUP2 and B152040-DUP3 (and their associated native samples) were re-analyzed and the reported results were confirmed. Samples DP-1-0-1 and DP-7-0-1 were then visually inspected and found to be heterogeneous. The elevated RPDs associated with the matrix duplicates performed on these samples are therefore attributed this heterogeneity, and the total chromium results for these two samples have been qualified **M** to reflect the observed variability.

The recovery of the matrix spike duplicate B152040-MSD3 performed on the sample identified as DP-7-0-1 was below the control limit of 75% for total chromium (73%). The RPD associated with this matrix spike duplicate was also above the control limit of 25% for total chromium (41%). As previously mentioned, sample DP-7-0-1 was observed to be heterogeneous with regards to its total chromium content. Since the acceptable recoveries of the three laboratory fortified blanks, the three certified reference materials, and three other matrix spike duplicate sets (B152040-MS1/-MSD1, B152040-MS4/-MSD4, and B152040-MS5/-MSD5) associated with batch B152040 demonstrate the accuracy of the applied methods, the failing recovery and RPD associated with B152040-MSD3 is attributed to the heterogeneity noted for its native sample. As the total chromium result for sample DP-7-0-1

was already qualified \mathbf{M} due to the matrix duplicate failure, no further qualification was required.

The total chromium result associated with sample DP-15-4-5 exceeded the calibration curve for chromium during the analysis of Batch B152040. A linear range verification standard at a concentration above that of this sample was included as part of the analytical sequence, and its recovery was within acceptance limits at 96.5%. Since the linearity of the instrument response was demonstrated at a concentration above that of sample DP-15-4-5, no qualification of this sample result was necessary.

It should be noted that the method detection limit (MDL) for hexavalent chromium has been calculated as three times the standard deviation of the replicate analyses of the lowest standard in the calibration curve. The MDL for total chromium has been calculated as the absolute value of the average of the four method blanks plus three times the standard deviation of these same blanks. All MDLs have been set no lower than one-tenth the associated method reporting limit (MRL).

If you have any questions or concerns regarding this report, please feel free to contact me.

Sincerely,

Ben Woznick

Ben Wozniak Project Manager ben@brooksapplied.com

6 of 38

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK	method blank	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BS	laboratory fortified blank	ND	non-detect
CAL CCB CCV	calibration standard continuing calibration blank continuing calibration verification	ND NR N/C PS	non-reportable not calculated post preparation spike
COC	chain of custody record	REC	percent recovery
D	dissolved fraction	RPD	relative percent difference
DUP	duplicate	RSD	relative standard deviation
IBL	instrument blank	SCV	secondary calibration verification
ICV	initial calibration verification	SOP	standard operating procedure
MDL	method detection limit	SRM	standard reference material
MRL	method reporting limit	T	total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- H Holding time and/or preservation requirements not met. Result is estimated.
- J-1 Estimated value. A full explanation is presented in the narrative.
- J-M Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- M Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- **N** Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
DP-17-0-1	1546054-01	Soil	Sample	11/10/2015	11/13/2015
DP-17-3.5-4.5	1546054-02	Soil	Sample	11/10/2015	11/13/2015
DP-17-8-9	1546054-03	Soil	Sample	11/10/2015	11/13/2015
DP-20-0-1	1546054-04	Soil	Sample	11/10/2015	11/13/2015
DP-20-3.5-4.5	1546054-05	Soil	Sample	11/10/2015	11/13/2015
DP-19-0-1	1546054-06	Soil	Sample	11/10/2015	11/13/2015
DP-19-3.5-4.5	1546054-07	Soil	Sample	11/10/2015	11/13/2015
DP-16-0-1	1546054-08	Soil	Sample	11/10/2015	11/13/2015
DP-16-3.5-4.5	1546054-09	Soil	Sample	11/10/2015	11/13/2015
DP-2-0-1	1546054-10	Soil	Sample	11/10/2015	11/13/2015
DP-2-3.5-4.5	1546054-11	Soil	Sample	11/10/2015	11/13/2015
DP-2-8-9	1546054-12	Soil	Sample	11/10/2015	11/13/2015
DP-1-0-1	1546054-13	Soil	Sample	11/10/2015	11/13/2015
DP-1-3.5-4.5	1546054-14	Soil	Sample	11/10/2015	11/13/2015
DP-4-0-1	1546054-15	Soil	Sample	11/10/2015	11/13/2015
DP-4-3.5-4.5	1546054-16	Soil	Sample	11/10/2015	11/13/2015
DP-03-0-1	1546054-17	Soil	Sample	11/10/2015	11/13/2015
DP-03-3.5-4.5	1546054-18	Soil	Sample	11/10/2015	11/13/2015
DP-06-5-6	1546054-19	Soil	Sample	11/10/2015	11/13/2015
DP-06-5-6-DUP	1546054-20	Soil	Field Duplicate	11/10/2015	11/13/2015
DP-6-0-1	1546054-21	Soil	Sample	11/10/2015	11/13/2015
DP-6-12-13	1546054-22	Soil	Sample	11/10/2015	11/13/2015
DP-7-0-1	1546054-23	Soil	Sample	11/10/2015	11/13/2015
DP-7-3.5-4.5	1546054-24	Soil	Sample	11/10/2015	11/13/2015
DP-8-0-1	1546054-25	Soil	Sample	11/10/2015	11/13/2015
DP-8-3.5-4.5	1546054-26	Soil	Sample	11/10/2015	11/13/2015
DP-5-0-1.5	1546054-27	Soil	Sample	11/11/2015	11/13/2015
DP-5-3.5-4.5	1546054-28	Soil	Sample	11/11/2015	11/13/2015
DP-18-0-1	1546054-29	Soil	Sample	11/11/2015	11/13/2015
DP-18-3.5-4.5	1546054-30	Soil	Sample	11/11/2015	11/13/2015
DP-10-0-1	1546054-31	Soil	Sample	11/11/2015	11/13/2015
DP-10-3.5-4.5	1546054-32	Soil	Sample	11/11/2015	11/13/2015
DP-11-0-1	1546054-33	Soil	Sample	11/11/2015	11/13/2015
DP-11-3.5-4.5	1546054-34	Soil	Sample	11/11/2015	11/13/2015
DP-11-3.5-4.5 Dup	1546054-35	Soil	Field Duplicate	11/11/2015	11/13/2015
DP-9-0-1	1546054-36	Soil	Sample	11/11/2015	11/13/2015
DP-9-3.5-4.5	1546054-37	Soil	Sample	11/11/2015	11/13/2015
DP-12-0-1	1546054-38	Soil	Sample	11/11/2015	11/13/2015
DP-12-3.5-4.5	1546054-39	Soil	Sample	11/11/2015	11/13/2015
DP-13-0-1	1546054-40	Soil	Sample	11/11/2015	11/13/2015
DP-13-3-5	1546054-41	Soil	Sample	11/11/2015	11/13/2015

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
DP-13-3-5 Dup	1546054-42	Soil	Field Duplicate	11/11/2015	11/13/2015
DP-13-8-9	1546054-43	Soil	Sample	11/11/2015	11/13/2015
DP-14-0-1	1546054-44	Soil	Sample	11/11/2015	11/13/2015
DP-14-3.5-4.5	1546054-45	Soil	Sample	11/11/2015	11/13/2015
DP-15-0-1	1546054-46	Soil	Sample	11/11/2015	11/13/2015
DP-15-4-5	1546054-47	Soil	Sample	11/11/2015	11/13/2015

Batch Summary

Analyte
%TS
Cr

Cr(VI)

Lab Matrix Soil/Sediment

Soil/Sediment

Soil/Sediment

SM 2540G EPA 200.8 IC-ICP-MS

Method

Prepared	Analyzed	Batch	Sequence
12/09/2015	12/14/2015	B152048	N/A
11/24/2015	12/08/2015	B152040	1501042
12/01/2015	12/03/2015	B152141	1501027

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-03-0-1										
1546054-17	%TS	Soil	NA	79.47		0.003	0.01	%	B152048	N/A
1546054-17	Cr	Soil	dry	31.3		0.243	1.16	mg/kg	B152040	1501042
DP-03-3.5-4.5										
1546054-18	%TS	Soil	NA	79.56		0.003	0.01	%	B152048	N/A
1546054-18	Cr	Soil	dry	19.7		0.250	1.19	mg/kg	B152040	1501042
DP-06-5-6										
1546054-19	%TS	Soil	NA	71.39		0.003	0.01	%	B152048	N/A
1546054-19	Cr	Soil	dry	19.1		0.325	1.55	mg/kg	B152040	1501042
1546054-19	Cr(VI)	Soil	dry	0.062		0.006	0.028	mg/kg	B152141	1501027
DP-06-5-6-DUP										
1546054-20	%TS	Soil	NA	72.85		0.003	0.01	%	B152048	N/A
1546054-20	Cr	Soil	dry	22.7		0.277	1.32	mg/kg	B152040	1501042
1546054-20	Cr(VI)	Soil	dry	0.247		0.006	0.027	mg/kg	B152141	1501027
DP-10-0-1										
1546054-31	%TS	Soil	NA	81.36		0.003	0.01	%	B152048	N/A
1546054-31	Cr	Soil	dry	23.0		0.261	1.24	mg/kg	B152040	1501042
DP-1-0-1										
1546054-13	%TS	Soil	NA	80.78		0.003	0.01	%	B152048	N/A
1546054-13	Cr	Soil	dry	456	М	0.260	1.24	mg/kg	B152040	1501042
DP-10-3.5-4.5										
1546054-32	%TS	Soil	NA	80.51		0.003	0.01	%	B152048	N/A
1546054-32	Cr	Soil	dry	24.0		0.239	1.14	mg/kg	B152040	1501042
DP-11-0-1										
1546054-33	%TS	Soil	NA	79.31		0.003	0.01	%	B152048	N/A
1546054-33	Cr	Soil	dry	60.1		0.245	1.17	mg/kg	B152040	1501042
			-							
DP-11-3.5-4.5										
1546054-34	%TS	Soil	NA	83.35		0.003	0.01	%	B152048	N/A
1546054-34	Cr	Soil	dry	32.2		0.252	1.20	mg/kg	B152040	1501042
		-	5			-	-	5 5		

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-11-3.5-4.5 L	Dup									
1546054-35	%TS	Soil	NA	85.73		0.003	0.01	%	B152048	N/A
1546054-35	Cr	Soil	dry	33.3		0.224	1.07	mg/kg	B152040	1501042
DP-12-0-1										
1546054-38	%TS	Soil	NA	75.00		0.003	0.01	%	B152048	N/A
1546054-38	Cr	Soil	dry	25.1		0.275	1.31	mg/kg	B152040	1501042
DP-12-3.5-4.5										
1546054-39	%TS	Soil	NA	77.49		0.003	0.01	%	B152048	N/A
1546054-39	Cr	Soil	dry	29.8		0.281	1.34	mg/kg	B152040	1501042
	-		2					00		
DP-1-3.5-4.5										
1546054-14	%TS	Soil	NA	75.10		0.003	0.01	%	B152048	N/A
1546054-14	Cr	Soil	dry	16.4		0.281	1.34	mg/kg	B152040	1501042
	0.		J				-	5 5		
DP-13-0-1										
1546054-40	%TS	Soil	NA	88.73		0.003	0.01	%	B152048	N/A
1546054-40	Cr	Soil	dry	27.7		0.233	1.11	mg/kg	B152040	1501042
1546054-40	Cr(VI)	Soil	dry	0.213		0.005	0.023	mg/kg	B152141	1501027
			-							
DP-13-3-5										
1546054-41	%TS	Soil	NA	78.22		0.003	0.01	%	B152048	N/A
1546054-41	Cr	Soil	dry	22.0		0.264	1.26	mg/kg	B152040	1501042
1546054-41	Cr(VI)	Soil	dry	0.342		0.006	0.026	mg/kg	B152141	1501027
	()									
DP-13-3-5 Dup										
1546054-42	%TS	Soil	NA	78.89		0.003	0.01	%	B152048	N/A
1546054-42	Cr	Soil	dry	20.1		0.240	1.14	mg/kg	B152040	1501042
DP-13-8-9										
1546054-43	%TS	Soil	NA	78.90		0.003	0.01	%	B152048	N/A
1546054-43	Cr	Soil	dry	19.2		0.251	1.19	mg/kg	B152040	1501042
			-							
DP-14-0-1										
1546054-44	%TS	Soil	NA	79.03		0.003	0.01	%	B152048	N/A
1546054-44	Cr	Soil	dry	354		0.254	1.21	mg/kg	B152040	1501042
-										

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-14-3.5-4.5										
1546054-45	%TS	Soil	NA	78.85		0.003	0.01	%	B152048	N/A
1546054-45	Cr	Soil	dry	20.6		0.257	1.22	mg/kg	B152040	1501042
DP-15-0-1										
1546054-46	%TS	Soil	NA	79.64		0.003	0.01	%	B152048	N/A
1546054-46	Cr	Soil	dry	310		0.266	1.26	mg/kg	B152040	1501042
DP-15-4-5										
1546054-47	%TS	Soil	NA	68.37		0.003	0.01	%	B152048	N/A
1546054-47	Cr	Soil	dry	32300		0.311	1.48	mg/kg	B152040	1501042
DP-16-0-1										
1546054-08	%TS	Soil	NA	87.95		0.003	0.01	%	B152048	N/A
1546054-08	Cr	Soil	dry	1550		0.243	1.16	mg/kg	B152040	1501042
DP-16-3.5-4.5										
1546054-09	%TS	Soil	NA	78.63		0.003	0.01	%	B152048	N/A
1546054-09	Cr	Soil	dry	60.2		0.265	1.26	mg/kg	B152040	1501042
DP-17-0-1										
1546054-01	%TS	Soil	NA	82.71		0.003	0.01	%	B152048	N/A
1546054-01	Cr	Soil	dry	181		0.245	1.17	mg/kg	B152040	1501042
1546054-01	Cr(VI)	Soil	dry	6.43		0.005	0.024	mg/kg	B152141	1501027
DP-17-3.5-4.5										
1546054-02	%TS	Soil	NA	81.37		0.003	0.01	%	B152048	N/A
1546054-02	Cr	Soil	dry	44.9		0.249	1.18	mg/kg	B152040	1501042
1546054-02	Cr(VI)	Soil	dry	2.26		0.005	0.025	mg/kg	B152141	1501027
DP-17-8-9										
1546054-03	%TS	Soil	NA	75.41		0.003	0.01	%	B152048	N/A
1546054-03	Cr	Soil	dry	16.4		0.258	1.23	mg/kg	B152040	1501042
DP-18-0-1										
1546054-29	%TS	Soil	NA	83.91		0.003	0.01	%	B152048	N/A
1546054-29	Cr	Soil	dry	51.7		0.245	1.17	mg/kg	B152040	1501042

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-18-3.5-4.5										
1546054-30	%TS	Soil	NA	77.64		0.003	0.01	%	B152048	N/A
1546054-30	Cr	Soil	dry	43.9		0.265	1.26	mg/kg	B152040	1501042
DP-19-0-1										
1546054-06	%TS	Soil	NA	80.78		0.003	0.01	%	B152048	N/A
1546054-06	Cr	Soil	dry	45.2		0.256	1.22	mg/kg	B152040	1501042
DP-19-3.5-4.5										
1546054-07	%TS	Soil	NA	80.11		0.003	0.01	%	B152048	N/A
1546054-07	Cr	Soil	dry	42.8		0.271	1.29	mg/kg	B152040	1501042
DP-20-0-1										
1546054-04	%TS	Soil	NA	82.76		0.003	0.01	%	B152048	N/A
1546054-04	Cr	Soil	dry	24.9		0.248	1.18	mg/kg	B152040	1501042
			,					0 0		
DP-2-0-1										
1546054-10	%TS	Soil	NA	78.68		0.003	0.01	%	B152048	N/A
1546054-10	Cr	Soil	dry	31.6		0.265	1.26	mg/kg	B152040	1501042
1546054-10	Cr(VI)	Soil	dry	1.36		0.006	0.026	mg/kg	B152141	1501027
	~ /									
DP-20-3.5-4.5										
1546054-05	%TS	Soil	NA	80.67		0.003	0.01	%	B152048	N/A
1546054-05	Cr	Soil	dry	24.3		0.263	1.25	mg/kg	B152040	1501042
			2					00		
DP-2-3.5-4.5										
1546054-11	%TS	Soil	NA	80.75		0.003	0.01	%	B152048	N/A
1546054-11	Cr	Soil	dry	18.3		0.263	1.25	mg/kg	B152040	1501042
1546054-11	Cr(VI)	Soil	dry	0.266		0.005	0.025	mg/kg	B152141	1501027
	~ /									
DP-2-8-9										
1546054-12	%TS	Soil	NA	79.71		0.003	0.01	%	B152048	N/A
1546054-12	Cr	Soil	dry	31.3		0.263	1.25	mg/kg	B152040	1501042
	- •		,					5 5		-
DP-4-0-1										
1546054-15	%TS	Soil	NA	76.07		0.003	0.01	%	B152048	N/A
1546054-15	Cr	Soil	dry	599		0.258	1.23	mg/kg	B152040	1501042
101000+10		2011	J	000		2.200			2.020.0	1001012

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-4-3.5-4.5										
1546054-16	%TS	Soil	NA	74.63		0.003	0.01	%	B152048	N/A
1546054-16	Cr	Soil	dry	580		0.267	1.27	mg/kg	B152040	1501042
DP-5-0-1.5										
1546054-27	%TS	Soil	NA	75.85		0.003	0.01	%	B152048	N/A
1546054-27	Cr	Soil	dry	203		0.269	1.28	mg/kg	B152040	1501042
DP-5-3.5-4.5										
1546054-28	%TS	Soil	NA	76.71		0.003	0.01	%	B152048	N/A
1546054-28	Cr	Soil	dry	22.0		0.276	1.31	mg/kg	B152040	1501042
DP-6-0-1										
1546054-21	%TS	Soil	NA	72.62		0.003	0.01	%	B152048	N/A
1546054-21	Cr	Soil	dry	989		0.278	1.32	mg/kg	B152040	1501042
1546054-21	Cr(VI)	Soil	dry	0.212		0.006	0.028	mg/kg	B152141	1501027
DP-6-12-13										
1546054-22	%TS	Soil	NA	73.83		0.003	0.01	%	B152048	N/A
1546054-22	Cr	Soil	dry	32.5		0.270	1.28	mg/kg	B152040	1501042
1546054-22	Cr(VI)	Soil	dry	0.284		0.006	0.027	mg/kg	B152141	1501027
DP-7-0-1										
1546054-23	%TS	Soil	NA	80.85		0.003	0.01	%	B152048	N/A
1546054-23	Cr	Soil	dry	46.2	М	0.259	1.23	mg/kg	B152040	1501042
DP-7-3.5-4.5										
1546054-24	%TS	Soil	NA	76.52		0.003	0.01	%	B152048	N/A
1546054-24	Cr	Soil	dry	22.0		0.275	1.31	mg/kg	B152040	1501042
DP-8-0-1										
1546054-25	%TS	Soil	NA	76.02		0.003	0.01	%	B152048	N/A
1546054-25	Cr	Soil	dry	60.6		0.290	1.38	mg/kg	B152040	1501042
DP-8-3.5-4.5										
1546054-26	%TS	Soil	NA	75.88		0.003	0.01	%	B152048	N/A
1546054-26	Cr	Soil	dry	301		0.273	1.30	mg/kg	B152040	1501042

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
DP-9-0-1										
1546054-36	%TS	Soil	NA	80.78		0.003	0.01	%	B152048	N/A
1546054-36	Cr	Soil	dry	26.1		0.264	1.26	mg/kg	B152040	1501042
DP-9-3.5-4.5										
1546054-37	%TS	Soil	NA	89.63		0.003	0.01	%	B152048	N/A
1546054-37	Cr	Soil	dry	13.7		0.244	1.16	mg/kg	B152040	1501042

Batch: B152040 Lab Matrix: Soil/Sediment Method: EPA 200.8

Sample	Analyte		Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B152040-BS1	Laboratory Fortified Blank, Cr	(1549001)	50.00	51.35	mg/kg	103%	75-125		
B152040-BS2	Laboratory Fortified Blank, Cr	(1549001)	50.00	51.02	mg/kg	102%	75-125		
B152040-BS3	Laboratory Fortified Blank, Cr	(1549001)	50.00	52.19	mg/kg	104%	75-125		
B152040-SRM1	Certified Reference Materia	al, (NC00378	8, CRM052-50 334.0)G Loamy 342.3	Clay 1 - 305 mg/kg		75-125		
	U.		004.0	042.0	iiig/kg	102 /0	10-120		
B152040-SRM2	Certified Reference Materia Cr	al, (NC00378	8, CRM052-50 334.0)G Loamy 340.8	Clay 1 - 305 mg/kg		75-125		
B152040-SRM3	Certified Reference Materia Cr	nl, (NC00378	8, CRM052-50 334.0)G Loamy 335.7	Clay 1 - 305 mg/kg		75-125		
B152040-DUP1	Duplicate, (1546054-05) Cr	24.28		23.16	mg/kg			5%	25
B152040-MS1	Matrix Spike , (1546054-05) Cr	24.28	62.90	88.51	mg/kg	102%	75-125		
B152040-MSD1	Matrix Spike Duplicate, (15 Cr	546054-05) 24.28	64.70	95.60	mg/kg	110%	75-125	8%	25
B152040-DUP2	Duplicate, (1546054-13) Cr	456.2		25.94	mg/kg			178%	25
B152040-MS2	Matrix Spike, (1546054-13) Cr	456.2	57.02	92.47	mg/kg	NR	75-125		
B152040-MSD2	Matrix Spike Duplicate, (15 Cr	46054-13) 456.2	59.86	121.3	mg/kg	NR	75-125	N/C	25

Batch: B152040 Lab Matrix: Soil/Sediment Method: EPA 200.8

Sample B152040-DUP3	Analyte Duplicate, (1546054-23)	Native	Spike	Result	Units	REC & Limits	RPD & Lir	nits
B152040-D0F5	Cr	46.17		24.82	mg/kg		60%	25
B152040-MS3	Matrix Spike, (1546054-23) Cr) 46.17	60.93	113.5	mg/kg	111% 75-125		
B152040-MSD3	Matrix Spike Duplicate, (1 Cr	546054-23) 46.17	59.53	89.58	mg/kg	73% 75-125	41%	25
B152040-DUP4	Duplicate, (1546054-31) Cr	23.05		21.19	mg/kg		8%	25
B152040-MS4	Matrix Spike, (1546054-31) Cr	23.05	57.16	78.43	mg/kg	97% 75-125		
B152040-MSD4	Matrix Spike Duplicate, (1 Cr	546054-31) 23.05	63.95	91.09	mg/kg	106% 75-125	9%	25
B152040-DUP5	Duplicate, (1546054-45) Cr	20.63		20.54	mg/kg		0.4%	25
B152040-MS5	Matrix Spike, (1546054-45) Cr	20.63	64.59	88.75	mg/kg	105% 75-125		
B152040-MSD5	Matrix Spike Duplicate, (1 Cr	546054-45) 20.63	65.43	91.20	mg/kg	108% 75-125	2%	25

Batch: B152048 Lab Matrix: Soil/Sediment Method: SM 2540G

Sample B152048-DUP1	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Lir	nits
%TS	Duplicate, (1546054-41) %TS	78.22		78.49	%		0.3%	15
B152048-DUP2	Duplicate, (1546054-42) %TS	78.89		78.70	%		0.2%	15
B152048-DUP3	Duplicate, (1546054-43) %TS	78.90		78.66	%		0.3%	15
B152048-DUP4	Duplicate, (1546054-44) %TS	79.03		80.75	%		2%	15
B152048-DUP5	Duplicate, (1546054-45) %TS	78.85		78.43	%		0.5%	15

Batch: B152141 Lab Matrix: Soil/Sediment Method: IC-ICP-MS

Sample B152141-BS1	Analyte Laboratory Fortified Blank,		Spike	Result	Units	REC &	Limits	RPD & Lii	mits
5102141-501	Cr(VI)		20.04	0.026	mg/kg	0.1%	0-1%		
B152141-BS2	Laboratory Fortified Blank, Cr(VI)	Cr(VI) (NC0	20.00	18.60	mg/kg	93%	80-120		
B152141-BS3	Laboratory Fortified Blank, Cr(VI)	PbCrO4 (N	C00442) 656.5	559.2	mg/kg	85%	80-120		
B152141-SRM1	Certified Reference Materia Cr(VI)	al, (NC00360	6, NIST 270 551.2	1 -Hexavalen 530.9	t Chromiu mg/kg		75-125		
B152141-DUP1	Duplicate, (1546054-41) Cr(VI)	0.342		0.322	mg/kg			6%	25
B152141-MS1	Matrix Spike, Cr(III) (154608 Cr(VI)	5 4-41) 0.342	25.47	1.492	mg/kg	5%	0-15%		
B152141-MS2	Matrix Spike, Cr(VI) (15460) Cr(VI)	54-41) 0.342	25.32	23.40	mg/kg	91%	75-125		
B152141-MS3	Matrix Spike, PbCrO4 (1546 Cr(VI)	6 054-41) 0.342	812.7	768.1	mg/kg	95%	75-125		
B152141-MSD1	Matrix Spike Duplicate, Cr(Cr(VI)	III) (1546054 0.342	- 41) 25.62	1.650	mg/kg	5%	0-15%	12%	N/A
B152141-MSD2	Matrix Spike Duplicate, Cr(Cr(VI)	VI) (154605 4 0.342	1-41) 25.48	23.34	mg/kg	90%	75-125	0.9%	25
B152141-MSD3	Matrix Spike Duplicate, Pb Cr(VI)	CrO4 (15460 0.342	9 54-41) 802.4	742.9	mg/kg	93%	75-125	2%	25

Method Blanks & Reporting Limits

Batch: B152040 Matrix: Soil/Sediment Method: EPA 200.8 Analyte: Cr				
Sample	Result	Units		
B152040-BLK1	-0.021	mg/kg wet		
B152040-BLK2	0.006	mg/kg wet		
B152040-BLK3	-0.001	mg/kg wet		
B152040-BLK4	0.009	mg/kg wet		
	Average: -0.002 Limit: 0.092		Standard Deviation: 0.014 Limit: 0.028	MDL: 0.042 MRL: 0.200

20 of 38 18804 North Creek Parkway, Suite 100, Bothell, WA 98011 · P(206) 632-6206 · F(206) 632-6017 · info@brooksapplied.com · www.brooksapplied.com

Method Blanks & Reporting Limits

Batch: B152048
Matrix: Soil/Sediment
Method: SM 2540G
Analyte: %TS

Sample	Result	Units
B152048-BLK1	0.002	%
B152048-BLK2	0.001	%
	Average: 0.00	
	Limit: 0.01	

MDL: 0.003 MRL: 0.01

Method Blanks & Reporting Limits

Batch: B152141 Matrix: Soil/Sediment Method: IC-ICP-MS Analyte: Cr(VI)

Sample	Result	Units
B152141-BLK1	0.008	mg/kg wet
B152141-BLK2	0.007	mg/kg wet
B152141-BLK3	0.008	mg/kg wet
B152141-BLK4	0.012	mg/kg wet
	Average: 0.009	
	Limit: 0.020	

MDL: 0.004 MRL: 0.020

Lab ID: 1546054-01 Sample: DP-17-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-02 Sample: DP-17-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-03 Sample: DP-17-8-9 Des Container A Client-Provided	Size 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-04 Sample: DP-20-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-05 Sample: DP-20-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-06 Sample: DP-19-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Lab ID: 1546054-07 Sample: DP-19-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-08 Sample: DP-16-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-09 Sample: DP-16-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-10 Sample: DP-2-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-11 Sample: DP-2-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-12 Sample: DP-2-8-9 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Lab ID: 1546054-13 Sample: DP-1-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-14 Sample: DP-1-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-15 Sample: DP-4-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-16 Sample: DP-4-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-17 Sample: DP-03-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-18 Sample: DP-03-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Lab ID: 1546054-19 Sample: DP-06-5-6 Des Container A Client-Provided	<mark>Size</mark> 8oz jar		Matrix: Soil Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
	,	Provided			
Lab ID: 1546054-20		Report	Matrix: Soil		Collected: 11/10/2015
Sample: DP-06-5-6-DUP		-	Type: Field Duplicate		Received: 11/13/2015
Des Container	Size	Lot	Preservation	P-Lot	pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-21		Report	Matrix: Soil		Collected: 11/10/2015
Sample: DP-6-0-1		Sample	Type: Sample		Received: 11/13/2015
Des Container	Size	Lot	Preservation	P-Lot	pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-22		•	Matrix: Soil		Collected: 11/10/2015
Sample: DP-6-12-13			Type: Sample		Received: 11/13/2015
Des Container	Size	Lot	Preservation	P-Lot	pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-23 Sample: DP-7-0-1			Matrix: Soil Type: Sample		Collected: 11/10/2015 Received: 11/13/2015
Des Container	Size	Lot	Preservation	P-Lot	pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-24		-	Matrix: Soil		Collected: 11/10/2015
Sample: DP-7-3.5-4.5 Des Container	Size	Sample Lot	Type: Sample Preservation	P-Lot	Received: 11/13/2015
A Client-Provided	8oz jar	Not	None	F-L0(pH Ship. Cont. Cooler
	ouz jai	Provided	NONE		Coolei

Lab ID: 1546054-25 Sample: DP-8-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-26 Sample: DP-8-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/10/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-27 Sample: DP-5-0-1.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-28 Sample: DP-5-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-29 Sample: DP-18-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-30 Sample: DP-18-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	 ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Lab ID: 1546054-31 Sample: DP-10-0-1 Des Container	Size		rt Matrix: Soil ble Type: Sample Preservation	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-32			rt Matrix: Soil		Collected: 11/11/2015
Sample: DP-10-3.5-4.5 Des Container	Size	Samp Lot	ble Type: Sample Preservation	P-Lot	Received: 11/13/2015 pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None	P-LUI	Cooler
Lab ID: 1546054-33 Sample: DP-11-0-1 Des Container	Size		ort Matrix: Soil ble Type: Sample Preservation	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None		Cooler
Lab ID: 1546054-34		Repo	rt Matrix: Soil		Collected: 11/11/2015
Sample: DP-11-3.5-4.5 Des Container	Size	Samp Lot	ble Type: Sample Preservation	P-Lot	Received: 11/13/2015 pH Ship. Cont.
A Client-Provided	8oz jar	Not Provided	None	P-LOI	pH Ship. Cont. Cooler
Lab ID: 1546054-35 Sample: DP-11-3.5-4.5 Dup			rt Matrix: Soil ble Type: Field Duplicate		Collected: 11/11/2015 Received: 11/13/2015
DesContainerAClient-Provided	Size 8oz jar	Lot Not Provided	Preservation None	P-Lot	pH Ship. Cont. Cooler
Lab ID: 1546054-36 Sample: DP-9-0-1			ort Matrix: Soil Die Type: Sample		Collected: 11/11/2015 Received: 11/13/2015
DesContainerAClient-Provided	Size 8oz jar	Lot Not Provided	Preservation None	P-Lot	pH Ship. Cont. Cooler

Lab ID: 1546054-37 Sample: DP-9-3.5-4.5 Des Container A Client-Provided	Size 8oz jar		rt Matrix: Soil ble Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-38 Sample: DP-12-0-1 Des Container A Client-Provided	Size 8oz jar	•	rt Matrix: Soil ble Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-39 Sample: DP-12-3.5-4.5 Des Container A Client-Provided	<mark>Size</mark> 8oz jar		rt Matrix: Soil ble Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-40 Sample: DP-13-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	rt Matrix: Soil ble Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-41 Sample: DP-13-3-5 Des Container A Client-Provided	Size 8oz jar		rt Matrix: Soil De Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-42 Sample: DP-13-3-5 Dup Des Container A Client-Provided	Size 8oz jar	•	rt Matrix: Soil De Type: Field Duplicate Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Lab ID: 1546054-43 Sample: DP-13-8-9 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil Iple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-44 Sample: DP-14-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar		ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-45 Sample: DP-14-3.5-4.5 Des Container A Client-Provided	Size 8oz jar		ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-46 Sample: DP-15-0-1 Des Container A Client-Provided	<mark>Size</mark> 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler
Lab ID: 1546054-47 Sample: DP-15-4-5 Des Container A Client-Provided	Size 8oz jar	•	ort Matrix: Soil ple Type: Sample Preservation None	P-Lot	Collected: 11/11/2015 Received: 11/13/2015 pH Ship. Cont. Cooler

Shipping Containers

Cooler

Received: November 13, 2015 9:40 Tracking No: 774968498241 via FedEx Coolant Type: Blue Ice Temperature: 4.0 °C Description: Cooler Damaged in transit? No Returned to client? No Custody seals present? Yes Custody seals intact? Yes COC present? Yes

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

> PO Number: Phone: 503-639-3400 Email: graeme.taylor@amec.com

For BAL use	BAL Re	eport 1546054	
Received by: Ar Wallin	Date:	11/13/15	_
Work Order ID: 1546054	Time:	9.40	
Project ID: AEM- PRISOL			

Mailing Address: 7376 SW Durham Road Portland, OR 97224 Email Receipt Confirmation? No BAL PM:

Requested TAT (business days)	Collec	tion	Clie	nt Sampl	e Info				BRI	L Analys	ses Requ	ired			Comments
2 20 (standard) 15* 10* 5* Other Surcharges may apply to expedited TATS Sample ID 1 $DP-17-0-1$ [] 2 $DP-17-3.5-4.5$	Date	9:30 :	Matrix Type	ト ト Number of Containers	Z Z Field Filtered?	R Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	X ICP-MS Metals (specify)	As Species (specify)	Se Species (specify)	Filtration	Hexavelent Chromium	Chromium Speciation	Specify Here Chromium
pP-17-8-9	1	940		1	N				×				ナ		Chromium
4 DP-20-0-1	1 1	950	1			$\left \right $			×	-					Chromium
5 DP-20-3.5-4.5	1 .	1055		1	N	1	-		X						Chromium
5 DP-19-0-1	1	1100		1	N				×	-		_			Chromium
AP-19-3.5-4.5		1105	-	/	N				×		-				Chromium
DP-110-0-1	1				N			-	X						Chromium
DP-16-3.5-45	1	1110		1	N	6			~					1.2.1	Chromium
0 DP-2-0-1	1	1115	1		N			1	×				1		Chromium
Trip Blank (specify)	-	1130		_/	N				X				×		Chromium
1 1 1	1	1/ 1						-							Chromium
elinquished By:	Date	: 11/12/1	5 Time: /	515	Re	linquis	hed By	y:				Da	te:		Time:
Received By:	Date		Time:		Total Number of Packages:										

samples@brooksapplied.com | brooksapplied.com

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

> PO Number: Phone: 503-639-3400 Email: graeme.taylor@amec.com

	For BAL use	e only BAL Re	eport 1546054
Received by:	Jer Walter	Date:	11/15/10
Work Order ID:	1546054	Time:	9:48
Project ID: A	EM-PRISO	_	

Mailing Address: 7376 SW Durham Road Portland, OR 97224

Email Receipt Confirmation? No

BAL PM:

Requested TAT	Collect	ion	Clie	nt Sample	e Info		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	na 1 2	BRL	. Analys	es Requ	ired			Comments
(business days)	Date	Time	Matrix Type	Number of Containers	Field Filtered?	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify)	Se Species (specify)	Filtration	Hexavelent Chromium	Chromium Speciation	yes plase analyze Specify Here
	11-10-15	1135	501	1	N	None			×			1	X		Chromium
2 DP-2-8-1		1150	(1	N	1			\times						Chromium
3 DP- 1-0-1		1340			(X			1			Chromium
4 DP-1-3.5-4.5		1345							X						Chromium
5 DP-4-0-1		1350						1	X						Chromium
6 OP-4-3,5-4.5		1355			1				X	1.00	i i	1.1.1			Chromium
7 DP-03-0-1		1420			4				X	t = 1		-			Chromium
8 DP-03-35-4.5		1425			N				X						Chromium
9 DP-06-5-6		1445							X				X		Chromium
10 OP-06-5-6-DUP		1445				L			X				X		Chromium
Trip Blank (specify)	,		/	1	T	1.0				1 2 1		1	1		Chromium
Relinquished By:	E Date	: 1/12/15	Time:	1519	R	elinquis	hed E	By:				Da	ate:		Time:
Received By:	Date):	Time:		Total Number of Packages:										

samples@brooksapplied.com | brooksapplied.com

1 ---

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

> PO Number: Phone: 503-639-3400 Email: graeme.taylor@amec.com

Received by:	for BAL use	only BALF	Report 1546054	
Work Order ID:	1546054	Time:	9.40	
Project ID:	AEM-PRISO	_		

Mailing Address: 7376 SW Durham Road Portland, OR 97224

Email Receipt Confirmation? No

BAL PM:

Requested TAT					ient Sample	Info		BRL Analyses Required						Comments		
business days) 2 20 (standard) 15* 10* 5* Other Surcharges may apply to expedited TATs Sample ID		Date	Time	Matrix Type	Number of Containers	Field Filtered?	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify)	Se Species (specify)	Filtration	Hexavelent Chromium	Chromium Speciation	Specify Here
OP-6-0-1	IV	10/15	1510	5)	N	None	1.		X				X		Chromium
DP-6-12-13	-	D/15	1555	5	İ	N	1			×				X		Chromium
PP-7-0-1	17	1	1605	5	1	N				X						Chromium
DP-7-3,5-4.5	1	1	1610	3	1.1	N	1			X						Chromium
PP-8-0-1			1620	5	1	N				X				1-1-1		Chromium
DP-B-3.5-4.1		l,	1625	\$	1	N	4			X						Chromium
DP-5-0-15		1/15	945	5	1	N				X						Chromium
DP-5-3,5-4,5		í	950	5	1	N				X						Chromium
DP-18-0-1			1005	5	1	N				X						Chromium
0 08-18-3.5-4.5	-	-	1010	5	1	N	- miles			X				1		Chromium
Trip Blank (specify)			1.					1.1.1								Chromium
Relinquished By: hme R.	Th	Date	: IVIZ	/15 Tim	e: 1515	R	elinquis	shed E	By:				D	ate:		Time:
Received By:	7	Date	ə:	Tim	e:	Т	otal Nu	mber	of Pac	kages:						1

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

> PO Number: Phone: 503-639-3400 Email: graeme.taylor@amec.com

	For BAL use	only BALR	eport 1546054
Received by:	Ja Waltin	Date: _	11/13/13
Work Order ID:	1546054	Time:	9:40
Project ID:	AEM- PR 1501		

Mailing Address: 7376 SW Durham Road Portland, OR 97224

Email Receipt Confirmation? No

BAL PM:

Requested TAT		Collect	ion	Clie	ent Sample	e Info	1	-		BRI	. Analys	es Requ	ired			Comments
(business days)		Date	Time	Matrix Type	Number of Containers	Field Filtered?	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify)	Se Species (specify)	Filtration	Hexavelent Chromium	Chromium Speciation	Specify Here
	11-11	-15	1510	5	1	N	N			×						Chromium
2 DP-10 3.5-1.5		1	1515	(1	C	11			×						Chromium
3 DP-11-0-1			1520							\times						Chromium
4 DP-11=3.5-4.5		-	1525			1				X						Chromium
5 DP-11-35-4.5 PUP			1530							X					are.743	Chromium
6 DP-9-0-1			1535							×						Chromium
7 09-35-4.5	1	_	1540	-	L	-	-			X						Chromium
8								_							1	Chromium
9													1.1			Chromium
10			1													Chromium
Trip Blank (specify)													1.21		1	Chromium
Relinquished By:		Date	e:	Time:	9 <u>_</u>	R	Relinquished By: D		Da	ate:		Time:				
Received By:		Date	e:	Time:		Т	otal Nur	nber	of Pack	ages:	Total Number of Packages:					

Page _____ of _____ List Hazardous Contaminants:

samples@brooksapplied.com | brooksapplied.com

Contact:

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

	BAL R	eport 1546054
For BAL use Received by: Ju Wallin	only Date:	11/13/15
Work Order ID: 15460 54	Time:	9:40
Project ID: <u>AEM - PR 1501</u>	_	

Client: Amer Foster Wheeler PO Number: Graeme Taylor Phone: Client Project ID: Email: Samples Collected By:

Email Receipt Co	nfirmation?	(Yes/No)

BALPM: Ben

Mailing Address:

Requested TAT (business days)	Collection Client Sample				ole Info		BAL Analyses Required								Comments	
 20 (standard) 15* 10* 5* Other *Surcharges may apply to expedited TATs 	Date	Time	Matrix Type	Number of Containers	Field Filtered? (Yes/No)	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify) Inorg, III, V, MMA, DMA	Se Species (specify) Se(IV), Se(VI), SeCN, Uknown	Filtration	Other (specify)	Other (specify)		
	11/11/15	15:00	Se. 1	1	No.	None		~	X	4 =	000	ш	0			ecify Here
2 DP 12 - 3.5 - 45	1	15:05		1	190	105110			×						Tota	I Cr
3 OP-13-0-1		10.30		1					X					-	-	
4 DP 13-3-5		10:35		1					X			-		-	-	
5 DP-13-3-5-DUP		10:35		1				_	X					-		
6 OP-13-8-9		10:40		1					X			_				
7 DP-14-0-1		10:15		1					X					-		
8 DP-14-35-45	1	10:30		1												_
9 DP-15-0-1		14:40		1					X							
10 DP-15-4-5	L	14:45	1	1.	1	1			X							
Trip Blank				-	1				X					-		
Relinquished By: Date:		Time:	Time: F			ned By	ed By:					Date:			Time:	
Received By: Date:			Time:	,	То	tal Num	ber of	per of Packages:								(·

(1) Samples not included on Original COCS, this COC wise made by BAL upon reciept - 20 11/14/15

samples@brooksapplied.com | brooksapplied.com

printing this label: After | 1. Use

Use the 'Print' button on this page to print your label to your laser or inkjet printer.
 Fold the printed page along the horizontal line.
 Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number

delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, nonincidental,consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct,

11/12/2015

Chain-of-Custody Form

Ship samples to: 18804 North Creek Parkway, Suite 100 Bothell, WA 98011

> PO Number: Phone: 503-639-3400 Email: graeme.taylor@amec.com

For BAL	use only BAL Date:	Report 1546054
Work Order ID:	Time:	
Project ID:		
Mailing Address: 7376 SW Du Portland, OR		a hi ang bi shi saya T

Email Receipt Confirmation? No

BAL PM:

Requested TAT (business days)	Collec	tion	Cliei	nt Sample	Info				BRI	. Analys	es Requ	ired			Comments
 20 (standard) 15* 10* 5* Other *Surcharges may apply to expedited TATs 	Date	Time	Matrix Type	Number of Containers	Field Filtered?	Preservation Type	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify)	Se Species (specify)	Filtration	Hexavelent Chromium	Chromium Speciation	No, please do Not analyce. Specify Here
	11-11-15	1015	Ź	1	N	None			X						Chromium
		1020				_			\times						Chromium
		1030							X				\times		Chromium
4 DP-13_3-5		035							X				\boldsymbol{X}		Chromium
5 DP-13-3-5 Dup		1035							X						Chromium
6 <u>pp-13-8-4</u>		1040 -							X				NAM		Chromium
7 DP-15-0-1		1440			gaagee and the second				\times						Chromium
8 DRFH-5 DP-15-4	<u>ح</u>	1445							$\left \right\rangle$						Chromium
9 DP-/2-0-1		1500							\times						Chromium
10 DP-12-3.5-4.5		1505	lan anno 1990 anno 1	77					X						Chromium
Trip Blank (specify)			. <u>.</u>												Chromium
Relinquished By:	Date	e:1/12/15	Time:	1513	R	elinquis	hed B	sy:				Date: Time:			Time:
Received By:	Dat		Time:		Total Number of Packages:										
Page <u>U_of 5</u> List Hazardous Contaminants:															

samples@brooksapplied.com | brooksapplied.com

APPENDIX E

Surface Water Right Records within the LOF

IN THE CIRCUIT COURT OF THE STATE OF OREGON

FOR THE COUNTY OF WASHING TON

IN THE MATTER OF THE DETERMINATION) OF THE RELATIVE RIGHTS TO THE USE) OF THE WATERS OF TUALATIN RIVER) AND ITS TRIBUTARIES, WASHINGTON AND) OTHER COUNTIES.)

DECREE No. 21-830

Now at this time the above entitled matter coming before the Court for entry of decree upon the Findings of Fact and Order of Determination of the State Engineer, and this Court having heretofore heard the arguments of counsel for the objectors and exceptors to said Findings of Fact and Order of Determination, and having received petitions for certain amendments and corrections to typographical errors therein contained, being now fully advised in the premises and having entered its Memorandum Opinion on the 27th day of July, 1960:

IT IS CONSIDERED, ORDERED, ADJUDGED AND DECREED:

(a) That the exceptions and objections of all claimants, be, and they hereby are disallowed and denied.

(b) That the proceedings of the State Engineer in this matter, be, and they hereby are approved as hereinafter amended.

(c) That the Findings of Fact and Order of Determination of the State Engineer, as filed in this Court on the 10th day of December, 1959, are hereby made the Findings and Order of Determination and Decree of this Court, subject however, to the following modifications:

Ι

That, relative to Statement and Proof of Claim No. 21 in the name of John and Gladys Cereghino, treated under Finding No. 21 appearing on page 118 of the Findings of Fact and Order of Determination of the State Engineer, Mr. Fred A. Anderson, Counsel for claimants, petitioned the Court for an amendment of said Claim No. 21 to show the acreage for which a right for irrigation was being claimed, to coincide with the acreage found to be irrigated by the State Engineer's survey, as shown on the map prepared and made a part of the record herein, being 12.1 acres within the SW_4^1 SW_4^1 Section 28, T. 2 S., R. 1 W., W.M. That the 7.0 acres for which a right was asserted in Statement of Proof of Claim No. 21 was an inadvertent error which was overlooked in checking said claim before filing same.

The petition for amendment having been considered and there being no objections thereto, it is hereby ordered that the right of John and Gladys Cereghino under Proof No. 21, appearing in the tabulation on page 142, for the irrigation of 7.0 acres within the SW_4^1 SW_4^1 , Section 28, T. 2 S., R. 1 W., W.M., be, and the same hereby is amended and modified to read 12.1 acres in said subdivision, section, township and range.

419

That, upon request of the State Engineer for the correction of certain typographical errors appearing in the Findings of Fact and Order of Determination, which were detected and called to the attention of the Court prior to the hearing before the Court, it is hereby ordered that the following corrections be made:

(a) On page 118 under Finding No. 28, in the third line of the first paragraph, "section 29" shall be changed to read "section 28."

(b) On page 140, under tabulation of rights allowed, Proof No. 3, Nels and Eleanor Anderson, the first line in the last column shall be changed to read "20.0 acres in $SE_{\frac{1}{4}}^{\frac{1}{4}}SW_{\frac{1}{4}}^{\frac{1}{4}}$ "

(c) On page 146, under tabulation of rights allowed, Proof No. 49, Don and Bessie Galbreath, the second line in the last column shall be changed to read, "4.0 acres in $SE_4^1 SW_4^1$."

IT IS FURTHER CONSIDERED, ORDERED, ADJUDGED AND DECREED: that, in accordance with said Findings of Fact and Order of Determination of the State Engineer as modified and amended herein, the various claimants are entitled to the use of the waters of Tualatin River and its tributaries as contained in these Findings and this Decree, and they, and each of them, their successors and assigns, and all persons claiming under them, are hereby enjoined and prohibited from using any of the waters of said stream system in any other amount, manner and priorities than herein found, nor upon any lands or place of use other than herein set out and described without first having complied with the provisions of ORS 540.510 to 540.550 inclusive, or statutory legislation supplementary thereto.

ENTERED in open Court this 9th day of September , 1960.

SGD/J. S. Bohannon J. S. Bohannon, Circuit Judge

SGD/Glen Hieber Glen Hieber, Circuit Judge

STATE OF OREGON,) County of Washington)

SS

I, Roger Thomssen, County Clerk and ex-officio Clerk of the <u>Circuit</u> Court of the State of Oregon for the County of Washington, do hereby certify that the foregoing copy of Decree

has been by me compared with the original and that it is a correct transcript therefrom, and the whole of such original Decree as the same appears of record at my office and in my custody. IN WITNESS WHEREOF, I have hereunto set my hand and affixed the seal of said court this <u>4th</u> day of <u>October</u>, A. D., 19 60.

ROGER THOMSSEN, COUNTY CLERK

By E. Donohue

Deputy

STATE OF OREGON))) COUNTY OF MARION)

2

I, Lewis A. Stanley, State Engineer of the State of Oregon, do hereby certify that the foregoing copy of Decree In the Matter of the Determination of the Relative Rights to the Use of the Waters of Tualatin River and its Tributaries, Washington and Other Counties, is a full and correct copy of such Decree of the Circuit Court as the same was received in this office and entered of record herein this 5th day of October, 1960.

IN WITNESS WHEREOF, I have hereunto set my hand this 5th day of October, 1960.

LINIS A. Stanley State Engineer

STATE OF OREGON

COUNTY OF Washington

CERTIFICATE OF WATER RIGHT

This Is to Certify, That JOHN AND GLADYS CERECHINO

Sherwood

JAMES AND CHRISTINA CEREGHINO , State of Oregon , has a right to the use of

the waters of Rock Creek

of Route 4,

for the purpose of Irrigation for Tract 1 and Stock Drinking directly from the source, and is limited not to exceed 20 head for Tract 2. and that said right has been confirmed by decree of the Circuit Court of the State of Oregon for County, and the said decree entered of record at Salem, in the Order Record of Washington the STATE ENGINEER, in Volume 16, at page 1,19; that the priority of the right thereby confirmed dates from 1890

that the amount of water to which such right is entitled, for the purposes aforesuid, is limited to an amount actually beneficially used for said purposes, and shall not exceed 0.130 c.f.s. for Tract 1 and shall be further limited to the provisions of Finding No. 58 of said Decree for Tract 2.

A description of the lands irrigated under such right, and to which the water is appurtenant (or, if for other purposes, the place where such water is put to beneficial use), is as follows:

> Tract 1 0.7 acre in NELSEL 9.7 acres in SELSEL Section 29

T. 2 S., R. 1 W., W.M. Being within the east half of the E_2^1 SE4 said Section 29 lying south of the Senthern Pacific Railroad r/w.

Tract

NELSEL and SELSEL Section 29 T. 2 S., R. 1 W., W.M. Within the above described tract of land.

And said right shall be subject to all other conditions and limitations contained in said decree. The right to the use of the water for the purposes aforesaid is restricted to the lands or place of use herein described.

this 10th

WITNESS the signature of the State Engineer, affixed

day of January

. 19 62 .

LEWIS A. STANLEY

1, ge 29190. Recorded in State Record of Water Right Certificates, Volume 21

State Engineer .

APPENDIX F

Updated Recreational User RBCs

Urban Residential RBCs revised to reflect recreational user / trespasser exposure assumptions

RISK-BASED CONCENTRATIONS

main main <		RISK-BASED CONCENTRATIONS																													
Cal al Cal Cal Cal	Contaminate	ed Medium		1			SOIL					ſ			SOIL					SOIL					SOIL				GROUNDWAT	R	
	Exposure P	athway				Soil Indestion			and Inhalatio	00				Volati			Air		Vanor		Ruildings			Les			ter	Indestion [from Tanwa	ler.
Description								5							RBCs	0				RBC _{si}	3-				RBC _{sw}						-
D Desc esc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc Desc <th>Receptor So</th> <th>cenario</th> <th></th> <th>Residen</th> <th>ntial</th> <th>Urban Residential</th> <th>Occupatio</th> <th>mal</th> <th>Construction</th> <th>Worker E</th> <th>Excavation W</th> <th>Vorker</th> <th>Residen</th> <th>tial</th> <th>Urban Resid</th> <th>dential</th> <th>Occupational</th> <th>Residentia</th> <th>al</th> <th>Urban Residenti</th> <th>al Oc</th> <th>upational</th> <th>Residen</th> <th>itial</th> <th>Urban Reside</th> <th>ential</th> <th>Occupational</th> <th>Residential</th> <th>Urban Residentia</th> <th>Occupati</th> <th>onal Residenti</th>	Receptor So	cenario		Residen	ntial	Urban Residential	Occupatio	mal	Construction	Worker E	Excavation W	Vorker	Residen	tial	Urban Resid	dential	Occupational	Residentia	al	Urban Residenti	al Oc	upational	Residen	itial	Urban Reside	ential	Occupational	Residential	Urban Residentia	Occupati	onal Residenti
Dist ist Dist Dist		Direct or Indirect Pathway (se		DCS		DCS	DCS		DCS		DCS		IVS		IVS		IVS	IVS		IVS		IVS	ILS		ILS			DCW	DCW	DCW	IVW
1 Name No Name	ONON	Chemical		4 700	Note	Note	70.000	Note	21.000	Note	500.000	Note		Note		Note	Note		Note	No	te tav	Note	e v	Note		Note	Hote	510 Note	e Not	2 600	Note
Biolog iolog Biolog <	107-13-1				- Oddi			- 0001		- Obla		- Obla	1.3	- mux	9.3	- mux	5.8	0.079	- 11103	0.56	1.)	0.00036	- oour	0.026	- oour			3.7		2,200
Sect ect Sect Se	309-00-2	Aldrin	-, -								30	>Csat	-	>Csat	-	>Csat		-		- >C	sat -		at 0.023		2.1		0.10	0.00092	0.084	0.0042	-
Nome Nome Nome Nome Nome No o No No No No No No No No No No No No No No No			nc, v		>Csat			>Csat		>Csat	-	>Max	-	>Max	-	>Max	- >Max	-		- >N	1ax -	>Ma	× -	>Csat		>Csat	- >Csat	- >S	- >	- 0.21	>S -
141 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140<	7440-38-2		nc, nv								+20	>Max	-	NV	-	NV	- NV	-		- N	IV -	NV	•								
	56-55-3									>Csat			-	>Csat	-	>Csat			>Csat	- >C	sat -				- 3	>Csat					-
												>Csat	11		81			0.16		1.1	2.										3,100
Sinter inter Sinter Sinter Sinter Sinter <			c, nv									>Csat	-	NV	-	NV	- NV	-	NV	- N	IV -				- 3	>Csat	- >Csat				-
Summa umma Summa Summa	205-99-2		c, nv	0.15						>Csat		>Csat	-		-			-		- N	IV -				- 3	>Csat				0.64	-
1 1 1 1 1								>Csat		>Csat	6,700		-		-			-						>Csat	- 1	>Csat	- >Csat		- >5		>S -
Second econd Second Second <td>117-81-7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td>37.000</td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td>- >Csat</td> <td>-</td> <td></td> <td></td> <td></td>	117-81-7							>Csat		>Csat	37.000													>Csat		>Csat	- >Csat	-			
1000000000000000000000000000000000000		Bromodichloromethane	C, V			190						>Csat	2.4				11	0.041		0.29	0.5	3						0.13		0.60	
Name Nam Name Name Name<					I			l I		>Csat				Ιſ		Ιſ			ſ					1		I					
10 10 10 10 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>170</td><td>NV</td><td>- 000</td><td>NV</td><td>- NV</td><td>1.3</td><td>NV</td><td>4.U</td><td>V -</td><td>NV</td><td>*</td><td></td><td></td><td></td><td>v.40 *</td><td>7.5 - >S</td><td>52U - >5</td><td>- 30</td><td>32,000 >S -</td></td<>											-		170	NV	- 000	NV	- NV	1.3	NV	4.U	V -	NV	*				v.40 *	7.5 - >S	52U - >5	- 30	32,000 >S -
	56-23-5		c, v	7.5		220	34		320				15		110		65				1.	3					0.058				1,800
	108-90-7							>Csat		>Csat			-	>Csat	-	>Csat	- >Csat				-	>Csa		\square							- 2.000
Phate hate					>Csat	160 - >Max	17	>Max	210	>Max	5,800		3.3	>Csat	- 24	>Csat	14 - >Max	0.22	>Csat	1.6 - >C	sat -) >Csi			0.22	>Csat					3,900
State tate State State <td>67-66-3</td> <td>Chloroform</td> <td>c, v</td> <td>5.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.9</td> <td></td> <td>28</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0034</td> <td></td> <td></td> <td></td> <td>0.015</td> <td>0.22</td> <td>25</td> <td>0.98</td> <td></td>	67-66-3	Chloroform	c, v	5.8									3.9		28								0.0034				0.015	0.22	25	0.98	
Bittels biolog Summity is also	74-87-3		nc, v		>Csat			>Csat					-		-			24		73	30	0			230						440,000
Biole Montion And And And And And			C, V	1.0		42 >Csat	7.4	>Max	01	>Csat	1,700	>Csat >Max			-	- 000	0000	-	. 000	- >C	sat -	>Csa	at 0.45			>Csat	2.1	0.040	9.1	0.21	
viscole viscole <t< td=""><td></td><td></td><td></td><td></td><td></td><td>6.5</td><td>6.3</td><td></td><td></td><td></td><td>1,400</td><td></td><td>-</td><td>NV</td><td></td><td>NV</td><td></td><td>-</td><td></td><td>- N</td><td>v -</td><td>NV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>						6.5	6.3				1,400		-	NV		NV		-		- N	v -	NV									-
	218-01-9				>Csat			>Csat				>Csat	-		-			-		- N	- V			>Csat		>Csat	- >Csat	- >S	- >	-	>S -
954 000 4 0.00													-		-	NV	- NV	-		- N	V -	NV									-
B33 D C C C C C C C C C C C<	72-54-8		c, nv	2.7		64	12		94		2,600	>Csat	-	NV	-	NV	- NV	-	NV	- N	IV -	NV	1.1		36		2.6	0.031	1.0	0.074	-
Shall Besch State	72-55-9												-		-										150				4.2		-
No. o. No. No.	50-29-3 53-70-3											>Csat	-		-					- N						>Csat			- >5		
13-300000000000000000000000000000000000	95-50-1		nc, v		>Csat			>Csat		>Csat		>Csat		>Csat	-	>Csat	- >Csat	-	>Csat	- >C	sat -	>Csa			_ 3	>Csat	160				-
53-34 1.1.0inomente 6.v. 8.v. 8.v. 8.v. 9.v. .v. 9.v.	106-46-7																														4,900
55.4 11-bit controme m m m m<										>Csat				NV		NV			NV												- 16.000
996000 van-1 20clementation van-1 20clementation Van-1 Van	75-35-4			1,800	>Csat			>Csat	13,000	>Csat			-	>Csat	-	>Csat									450				19,000		
11144 Debicombunde C, V , V C, V	156-59-2							>Csat				>Csat	-	>Max	-	>Max	- >Max	-	>Max	- >h	1ax -	>Ma									
State State <th< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td>>Csat</td><td></td><td>>Csat</td><td></td><td>>Csat</td><td>- 0.53</td><td>>Max</td><td>37</td><td>>Max</td><td>- >Max 6.9</td><td>- 0.53</td><td>>Max</td><td>- >\ 37</td><td>lax -</td><td>>Ma</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5 700</td></th<>				,				>Csat		>Csat		>Csat	- 0.53	>Max	37	>Max	- >Max 6.9	- 0.53	>Max	- >\ 37	lax -	>Ma									5 700
Object Object<	75-09-2									>Csat		>Csat		>Csat		>Csat															-,
Separate	94-75-7				>Csat			>Csat		>Csat		>Csat	-		-			-		- N	IV -										-
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.02</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>Csat</td> <td>-</td> <td></td> <td>-</td> <td>144</td> <td>147</td> <td>-</td> <td></td> <td>- N</td> <td>V -</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>						0.02						>Csat	-		-	144	147	-		- N	V -					-					
Big 0.0 Dependence	621-64-7																- NV	-		- N			0.00094		0.036				0.42		-
bits bits <th< td=""><td>123-91-1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>370</td><td>28</td><td></td><td>200</td><td>37</td><td>D</td><td></td><td></td><td>0.13</td><td></td><td></td><td></td><td></td><td></td><td>820,000</td></th<>	123-91-1																370	28		200	37	D			0.13						820,000
100-062 EDC 12-discontentaries CV 3.8 Call 100 1 200 Call 5.00 Call 5.00 <td></td> <td></td> <td>C, NV</td> <td></td> <td></td> <td></td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td>NV</td> <td></td> <td>NV</td> <td>- NV 0.65</td> <td>0.012</td> <td>NV</td> <td>- N 0.085</td> <td>V -</td> <td>6 NV</td> <td></td> <td></td> <td>0.011</td> <td>>Csat</td> <td></td> <td></td> <td></td> <td></td> <td>- 180</td>			C, NV					>Csat		>Csat		>Csat		NV		NV	- NV 0.65	0.012	NV	- N 0.085	V -	6 NV			0.011	>Csat					- 180
1112202 Endow 100 100 100 100 <	107-06-2		C, V	3.6		150	16		200		5,600	>Csat								0.000		_						0.17			
100 100 Call 100 Call 1000 Call 4000 Call 40000 all 40000		and the second se			>Csat			>Csat		>Csat			-	>Max	-	>Max	- >Max	-	>Max	- >ħ	tax -	>Ma	× -	>Csat	- 3	>Csat			- >5		>S -
2028.4 20 Horanheme nc, m 2, m 4, m 1, m	72-20-8				>Csat			≻usat		- Obut			- 36	NV	- 250	NV		1.3	NV	- N 9.1	1				16	≠usat					9.900
Scole Final depinde c.v 15 v 2000 v 4.00 V V V V <td>206-44-0</td> <td></td> <td>nc, nv</td> <td></td> <td>>Csat</td> <td></td> <td></td> <td>>Csat</td> <td></td> <td></td> <td></td> <td>>Csat</td> <td>-</td> <td>NV</td> <td>-</td> <td>NV</td> <td>- NV</td> <td>-</td> <td>NV</td> <td>- N</td> <td>IV -</td> <td>NV</td> <td>-</td> <td>>Csat</td> <td>- 1</td> <td>>Csat</td> <td>- >Csat</td> <td>- >S</td> <td>- ></td> <td>-</td> <td>>S -</td>	206-44-0		nc, nv		>Csat			>Csat				>Csat	-	NV	-	NV	- NV	-	NV	- N	IV -	NV	-	>Csat	- 1	>Csat	- >Csat	- >S	- >	-	>S -
76-44 Hegachier C.v 0.11 2.9 0.45 4.0 1 2.9 0.45 4.0 1 2.9 0.45 4.0 1 2.9 0.45 4.0 1 2.9 0.45 4.0 2.9 1 2.9 1 2.9 </td <td>86-73-7</td> <td></td> <td></td> <td></td> <td>>Csat</td> <td></td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td></td> <td>-</td> <td>>Max</td> <td></td> <td>>Max</td> <td>- >Max</td> <td>-</td> <td>>Max</td> <td>- >ħ</td> <td>tax -</td> <td>>Ma</td> <td>x -</td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td></td> <td>- >5</td> <td></td> <td>-</td>	86-73-7				>Csat			>Csat		>Csat			-	>Max		>Max	- >Max	-	>Max	- >ħ	tax -	>Ma	x -	>Csat		>Csat			- >5		-
1024-57 Hegachic Expande C 0.055 1 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>Csat</td> <td></td> <td>1,500,000</td>												>Csat																			1,500,000
313-84 313-84	1024-57-3			0.055			0.24		2.0		56		28		-	>Csat	- >Csat	28		- >C	sat -	>Csa	at 0.0042		0.28		0.016	0.0014	0.092	0.0053	-
Sease genma-HeadeblocyCyclobeane (Lindam) c.v 0.49 1			c, v							\vdash			1.0		7.2		13	1.0		7.2	1:										
37.2.1 Heachingendance C, v 7, 4 2 90 3.2 3.2 3.0 2.2.a 5.0.0 5.8.a 6.0.0 5.8.a 6.0.0 5.8.a 6.0.0 6.0	319-84-6 58-89-9											>Csat >Csat		NV NV		NV NV	- NV		NV	- N	IV -	NV NV									
YA39 Led NA NA Value L Main L L Main L <t< td=""><td>67-72-1</td><td>Hexachloroethane</td><td></td><td>7.4</td><td> </td><td>290</td><td>32</td><td></td><td>370</td><td></td><td>10,000</td><td>>Csat</td><td>8.1</td><td></td><td>58</td><td></td><td></td><td>0.58</td><td></td><td>4.1</td><td>7.</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.34</td><td></td><td></td><td>5,000</td></t<>	67-72-1	Hexachloroethane		7.4		290	32		370		10,000	>Csat	8.1		58			0.58		4.1	7.							0.34			5,000
Maganese nc, m 1.80 36.00 2.500 8.200 2.500 2.30,00 > 2.500 > 1.00 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 > 2.30,00 > 2.500 > 1.00 1.00 <td>193-39-5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td>>Csat</td> <td>-</td> <td></td> <td></td> <td>NV</td> <td>- NV</td> <td>-</td> <td></td> <td>- N</td> <td>IV -</td> <td>NV</td> <td>· ·</td> <td>>Csat</td> <td></td> <td>>Csat</td> <td></td> <td></td> <td>- >8</td> <td></td> <td>>S -</td>	193-39-5							>Csat		>Csat		>Csat	-			NV	- NV	-		- N	IV -	NV	· ·	>Csat		>Csat			- >8		>S -
bit Add/add/add/add/add/add/add/add/add/add/					L			L		L		\vdash	L .			NV NV	- NV	-		- N	V -	NV NV	30	L	30	L	30 L			10	L -
1634-04-14 MTBE (methyl-baulyt ether) c,v 250 8,30 -Cast 1,00 -2ast 320,000 -Cast 340 -2ast 340 -2ast 320,000 -Cast 340 -2ast <	94-74-6							>Csat				>Csat				NV		-		- N	IV -		0.097		3.9		0.61				-
Option	7439-97-6												-	NV		NV		-	NV				•		•		•		- >8		
ctual ctual dtual ctual dtual dtual ctual ctual <th< td=""><td>1634-04-4 91-20-3</td><td></td><td>C, V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1634-04-4 91-20-3		C, V																												
S7-86-5 Pentachlorophenol c.m/ 1.0 25 4.0 34 960 - NV NV - NV <td>7440-02-0</td> <td>and the second /td> <td>c, nv</td> <td>0.0</td> <td>+ 1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>NV</td> <td></td> <td>NV</td> <td></td> <td>-</td> <td>NV</td> <td>-</td> <td>_</td> <td></td> <td>*</td> <td>+</td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td>-</td> <td>>S -</td>	7440-02-0	and the second	c, nv	0.0	+ 1				-		-		-	NV		NV		-	NV	-	_		*	+	*		*			-	>S -
	87-86-5	Pentachlorophenol	c, nv	1.0		25	4.0		34		960		-	NV	-	NV	- NV	-	NV	- N	IV -	NV	0.066		2.2		0.17	0.044	1.5	0.12	-

Medium			GROUNDW	ATER					GROUNDW	ATER	2		GROUNDWATE	R			SOIL GA	AS					AIR			
	-		µg/L (pp	b)					µg/L (pp	b)			µg/L (ppb)				µg/m ³						µg/m ³			
way	→	Vola	itilization to C RBC	Dutdoo	r Air			Vapo	r Intrusion in RBC	to Bui	ldings		GW in Excavation RBCure	on		Vapo	r Intrusion in RBC	to Buil	dings				Inhalatio RBC _{at}	on		
ario —		ial	Urban Resid	o lential	Occupatio	nal	Resident	al	Urban Resid	ential	Occupatio	inal	Construction & Excava	ation	Resident	al	Urban Resid	ential	Occupatio	onal	Resident	tial	Urban Resid	ential	Occupati	ional
Direct or Indirect Pathway (se	e notes)	-	IVW		IVW		IVW		IVW		IVW		Worker DCW		ICA		ICA		ICA		DCA		DCA		DCA	
Chemical	Note	Note		Note		Note		Note		Note		Note	5011	Note	1	Note	1	Note	1	Note	Don	Note	DOM	Note	500	N
cenaphthene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>
crylonitrile	c, v		16,000		9,800		700		5,000		9,200		250		8.3		59		180		0.041		0.29		0.18	
Vdrin	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	3.5		0.11		0.81		2.5		0.00057		0.0041		0.0025	
Anthracene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	
Vrsenic	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	6,300		-	NV	-	NV	-	NV	0.00065		0.0046		0.0029	
Barium	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	2.7E+07		-	NV	-	NV	-	NV	0.52		1.6		2.2	Τ
Benz[a]anthracene	c, v	>S	-	>S	-	>S	-	>S		>S		>S	-	>S	-	>Pv	-	>Pv	-	>Pv	0.0092		0.054		0.11	
Benzene	C, V		22,000		14,000		210		1,500		2,800		1,800		72		510		1,600		0.36		2.6		1.6	
Benzidine	c, nv	NV	-	NV	-	NV	-	NV		NV		NV	17		-	NV	-	NV	-	NV	0.000015		0.000088		0.00018	
Benzo[a]pyrene (BaP equivalents)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.00092		0.0054		0.011	_
Benzo[b]fluoranthene	c, nv	NV	-	NV	-	NV	-	NV		NV		NV	-	>S	-	NV		NV	-	NV	0.0092		0.054		0.11	
Benzo[k]fluoranthene	c, nv	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	-	>S >S	-	NV NV	-	NV NV	-	NV NV	0.0092		-	>Pv	-	
Beryllium	c, nv		-		-		-		-		-		-	-	-		-		-		0.0012		0.0083		0.0051	
Bis(2-ethylhexyl)phthalate	c, nv	NV	-	NV	-	NV	-	NV	- 1.300	NV	-	NV	450	>S	- 15	NV	- 110	NV	- 330	NV	-	>Pv	- 0.54	>Pv	-	
Bromodichloromethane Bromoform	C, V	\vdash	9,700 900.000	$ \vdash $	6,000		180 36.000		1,300		2,300 470.000		450	-	15 510		110 3.600	_	330	\vdash	0.076	-			0.33	+
Bromoform Bromomethane	c, v nc, v		900,000 96,000		550,000 130,000		36,000 2,100		250,000 6,300		470,000 27,000		14,000 1,200		510 1,000		3,600 3,100		11,000 22,000		2.6 5.2		18 16		11 22	
Bromometnane Cadmium	nc, v c, nv	NV	90,000	NV	130,000	NV	2,100	NV	0,300	NV	21,000	NV	1,200	>S	1,000	NV	3,100	NV	22,000	NV	5.2 0.0016		0.011		0.0068	
Carbon tetrachloride	C, NV C, V	INV	- 12 000	INV	7,700	INV	92	INV	650	INV	1.200	INV	1 800	10	94	INV	660	INV	2 000	INV	0.0016		3.3		2.0	
Carbon tetrachionide Chlorobenzene	c, v nc, v	29	-	29	-	29	92 67,000		200,000		1,200	>S	10,000		94 10,000		31,000		2,000		52		3.3 160		220	
Chlorodibromomethane (dibromochloromethane)	C, V		- 28,000	- 3	- 17,000	- 3	980		6,900		- 13,000	- 0	610	+	21	_	150		450	\vdash	0.10	+	0.74	-	0.45	+
Chloroethane (ethyl chloride)	nc. v	>S	-	>S	-	>S	2.800.000		-	>S	-	>S	2.400.000		2.100.000		6.300.000		4.4E+07		10.000		31.000		44.000	
Chloroform	C, V	[]	10,000	- T	6,300	-	120		880	-	1,600	Ē	720		2,100,000		170		530		0.12		0.87		0.53	1
Chloromethane	nc, v		1,300,000		1,800,000		26,000		78,000		330,000		22,000		19,000		56,000		390,000		94		280		390	1
Chordane	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	5.6		40		-	>Pv	0.028		0.20		0.12	
Chromium (III)	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	1.0E+15		3.1E+15		4.4E+15	t
Chromium (VI)	c, nv	NV	-	NV	-	NV	-	NV		NV	-	NV	9,400		-	NV		NV	-	NV	0.000012		0.000070		0.00015	
Chrysene	c, nv	NV	-	NV	-	NV	-	NV		NV	-	NV	-	>S	-	NV		NV	-	NV	0.092		0.54		1.1	
Copper	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	5,400,000		-	NV		NV	-	NV	1.0E+15		3.1E+15		4.4E+15	
Cyanide (hydrogen cyanide) A	nc, nv	NV	-	NV	-	NV	-	NV		NV	-	NV	81,000		-	NV	-	NV	-	NV	0.83		2.5		3.5	
DDD (4,4'-Dichlorodiphenyldichloroethane)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	31		-	NV	-	NV	-	NV	0.041		0.29		0.18	Т
DDE (4,4'-Dichlorodiphenyldichloroethene)	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	5.8		41		-	>Pv	0.029		0.21		0.13	
DDT (4,4'-Dichlorodiphenyltrichloroethane)	c, nv	NV	-	NV	-	NV	-	NV		NV		NV	-	>S	-	NV	-	NV	-	NV	0.029		0.21		0.13	
Dibenz[a,h]anthracene	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	
1,2-Dichlorobenzene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	37,000		42,000		130,000		880,000		210		630		880	
1,4-Dichlorobenzene	C, V		35,000		21,000		540		3,800		7,100		1,500		51		360		1,100		0.26		1.8		1.1	
3,3-Dichlorobenzidine	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.0083		0.059		0.036	
1,1-Dichloroethane	C, V		110,000		68,000		1,100		7,800		14,000		10,000		350		2,500		7,700		1.8		12		7.7	
1,1-Dichloroethene	nc, v		1,700,000		2,400,000		29,000		86,000		360,000		44,000		42,000		130,000		880,000		210		630		880	
cis-1,2-Dichloroethene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	18,000		-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	_
trans-1,2-Dichloroethene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	180,000		-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	
Dichloroethylether	C, V		40,000		30,000		2,300		16,000		30,000		51		1.7		12		37		0.0085		0.060		0.037	
Dichloromethane	c, v	NV	6,100,000		1.3E+07	NV	90,000	NV	520,000		3,300,000	NV	640,000		20,000		120,000	NV	1,200,000	NV	100		590		1,200	
2,4-Dichlorophenoxyacetic acid (2,4-D)	nc, nv		-	NV	-		-		-	NV	-		77,000		-	NV	-		-		-	>Pv	-	>Pv	-	
Dieldrin 2.6-Dinitrotoluene	c, nv	NV NV	-	NV NV	-	NV NV	-	NV	-	NV NV	-	NV	2.4	$ \rightarrow $	-	NV.	-	NV NV	-	NV NV	0.00061	. 0	0.0043		0.0027	+
	nc, nv	NV NV	-	NV NV	-	NV NV	- I	NV NV	-	NV NV	-	NV NV	5,300 370		- 1	NV VV	-	NV NV	-	NV NV	- 0.0014	>Pv	- 0.0100	>PV	- 0.0061	
Di-N-propylnitrosamine (N-nitroso-di-N-propylamine) I,4-Dioxane	C, NV C, V	INV	- 5,800,000	INV	4,500,000	INV	340,000	INV	2,400,000	INV	4,500,000	INV	3,400		110	INV	- 800	INV	2,500	INV	0.0014		0.0100 4.0		2.5	
1,4-Dioxane Diphenylnitrosamine	c, v c, nv	NV	3,000,000	NV	-1,000,000	NV	340,000	NV	2,400,000	NV	4,000,000	NV	3,400	>S	110	NV	000	NV	2,300	NV	1.1		4.0		4.7	1
EDB (1,2-dibromoethane)	C, IIV	140	1 300	NV.	790	INV	45	14.4	320	147	590	140	- 27	-3	0.94	147	6.6	14.5	20	NV	0.0047		0.033		4.7	
EDC (1,2-dichloroethane)	C, V		15.000		9,000	-	300		2,100		3.900		630		22		150	-	470		0.0047		0.035		0.020	+
Endosulfan (alpha-beta)	nc, v	>S		>S	-	>S	-	>S		>S	-	>S	-	>S		>Pv		>Pv	- 10	>Pv	-	>Pv	-	>Pv	-	1
Endrin	nc, nv	NV	-	NV	-	NV	-	NV		NV		NV	170		-	NV	-	NV		NV		>Pv		>Pv		
Ethylbenzene	C, V	¨	70,000		43,000		620		4,400		8,200		4,500		220		1,600		4,900	"	1.1	1	8.0		4.9	1
Fluoranthene	nc, nv	NV	-	NV	-	NV	-	NV	-	NV		NV	-	>S	-	NV	-	NV	-	NV		>Pv		>Pv	-	
Fluorene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	†
Formaldehyde	c, v		1.1E+07		8,500,000		650,000		4,600,000		8,500,000		1,300		43		310		940		0.22		1.5		0.94	
Heptachlor	c, v	>S	-	>S	-	>S	88		-	>S	-	>S	1.8		0.43		3.1		9.4		0.0022		0.015		0.0094	
Heptachlor Epoxide	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	3.2		0.22		1.5		4.7		0.0011		0.0077		0.0047	
lexachlorobenzene	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	1.2		8.7		27		0.0061		0.043		0.027	
lpha-Hexachlorocyclohexane (alpha-HCH)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	18		-	NV	-	NV	-	NV	0.0016		0.011		0.0068	1
amma-Hexachlorocyclohexane (Lindane)	c, nv	NV	-	NV	-	NV	- 1	NV	-	NV	-	NV	100		-	NV	-	NV	-	NV	0.0091		0.064		0.040	
Hexachloroethane	c, v		35,000		22,000		570		4,100		7,500		860		51		360		1,100		0.26		1.8		1.1	
ndeno[1,2,3-cd]pyrene	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	
ead	NA, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	
langanese	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	3,200,000		- 1	NV	-	NV	-	NV	0.052	1	0.16		0.22	Ĩ
ICPA ((4-chloro-2-methylphenoxy)acetic acid)	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	1,700		-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	
fercury	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.31		0.94		1.3	
ITBE (methyl t-butyl ether)	c, v		2,500,000		1,500,000		67,000		470,000		870,000		63,000		2,200		15,000		47,000		11		77		47	
laphthalene	c, v		25,000		16,000		840		5,900		11,000		500		17		120		360		0.083		0.59		0.36	
lickel	c, nv	NV	-	NV		NV		NV		NV		NV		>S	-	NV		NV		NV	0.011		0.077		0.047	ſ

	RISK-BASED CONCENTRATIONS																												
Contaminate	ad Medium				5	OIL					SO	IL	_				SOIL				SOI	L				GROUNDW	ATER		
					mg/l	ig (ppm)					mg/Kg						mg/Kg (ppm)				mg/Kg (µg/L (pp	b)		
Exposure Pa	athway	+		Soil In	gestion, Derma	l Contact BC _{ss}	, and Inhalation	on		N N	olatilization to RB0		r Air			Vapor	Intrusion into B RBC _{si}	uildings		Ŀ	eaching to G RBC		vater		Ingestion, De	mal & Inhal RBC _{te}		om Tapwater	
Receptor So	nenario		Residential	Urban Resi	1	pational	Construction	Worker	Excavation Worker	Residential	Urban Re		Occupatio	ional	Resider	tial	Urban Residentia	I Occupa	tional	Residential	Urban Res	-	Occupat	linnal	Residential	Urban Resid	<u> </u>	Occupational	Residenti
Receptor at	Direct or Indirect Pathway (se												1.1																
CASn	Chemical Chemical	Note	DCS Note	DCS	Note	DCS Note	DCS	Note	DCS Note	IVS No	IV:	S Note	IVS	Note	IVS	Note	IVS Not	IV	5 Note	ILS Note	ILS	Note	ILS	Note	DCW Note	DCW	Note	DCW Note	IVW
	Polychlorinated biphenyls (Total PCBs)	C, V	0.23	6.0	>Csat 0.7		8.4	>Csat	230 >Csat			>Csat		>Csat		>Csat	- >Cs	_	>Csat	0.24		>Csat	t 1.1	NOLE	0.0060	0.55	INDIE	0.028	
98-82-8	iso-Propylbenzene (cumene)	nc, v	3,500 >Csa		>Csat 57,0			>Csat	750,000 >Csat	- >0		>Csat		>Csat		>Csat	- >Cs		>Csat	96		>Csat		>Csat	440	29,000		2,000	
129-00-0	Pyrene	nc, v	1,800 >Csa	35,000	>Csat 23,0				210,000 >Csat	- >N		>Max		>Max	-	>Max	- >M		>Max	- >Csa		>Csat		>Csat	110	- 28,000	25	- >S	
7440-22-4	Silver	nc, nv	390	7,600	5,80		1,800	- Obul	49,000	- N		NV	-	NV	-	NV	- N		NV	*	•	- 000		· Obuk	100	3,600		820	-
100-42-5	Styrene	nc, v	7,900 >Csa		>Csat 130,0			>Csat	- >Max			>Csat		>Csat	-	>Csat	- >Cs		>Csat	170		>Csat	800		1.200	75.000		5.700	
	2,3,7,8-TCDD (dioxin) equivalents	c, v	4.7E-06	0.00012	0.000		0.00017		0.0048	0.010	0.073		0.13		0.010		0.073	0.13		6.8E-06	0.00063		0.000031		9.1E-08	8.4E-06		4.2E-07	0.022
127-18-4	Tetrachloroethene (PCE)	c, v	220 >Csa		>Csat 1,00			>Csat	280,000 >Csat	- >C		>Csat		>Csat	2.8		20	36		0.46	28		1.9		12	700		48	64,000
108-88-3	Toluene	nc, v	5,800 >Csa	120,000	>Csat 88,0				770,000 >Csat	- >C		>Csat	I -	>Csat		>Csat	- >Cs		>Csat	83		>Csat			1,100	46,000		6,300	-
8001-35-2	Toxaphene	c, nv	0.49	120,000	2.1		17		470	- N		NV	-	NV	-	NV	- N		NV	0.36	12		0.93		0.015	0.52	-	0.040	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	nc, v	400,000 >Csa		>Max -			>Max	- >Max	- >C		>Max		>Max	-	>Csat	- >Cs		>Csat	- >Csa		>Csat		>Csat	55,000		>S	- >S	
71-55-6	1,1,1-Trichloroethane	nc, v	53,000 >Csa		>Max 870,0			>Csat	- >Max			>Csat		>Csat	-	>Csat	- >Cs		>Csat	190	-	>Csat			8,000	600,000	- 1	37,000	
79-00-5	1,1,2-Trichloroethane	c, v	5.8	240	26		320		8,900 >Csat	5.6	40		24		0.32		2.3	4.2		0.0063	0.56		0.029		0.28	25		1.3	4,700
79-01-6	Trichloroethene	NA, v	6.7	17	51		470	>Csat	13,000 >Csat		33		96		0.12		0.26	2.3		0.013	0.053		0.020		0.49	2.0		3.3	3,300
75-69-4	Trichlorofluoromethane (Freon 11)	nc, v	7,600 >Csa	270,000	>Csat 130,0			>Csat	- >Max			>Csat		>Csat	190		560	-	>Csat	61	-	>Csat	280		1,100	86,000		5,200	780.000
88-06-2	2,4,6-Trichlorophenol	c, nv	49	1,200	21		1,700		47,000 >Csat	- N	v -	NV	-	NV	-	NV	- N		NV	2.4	86		8.9		4.4	160		16	-
95-63-6	1,2,4-Trimethylbenzene	nc, v	110	6,500	>Csat 2,00			>Csat	54,000 >Csat	230	700		980		16		49	210		2.8	300		12		15	1,600		61	
108-67-8	1,3,5-Trimethylbenzene	nc, v	780 >Csa		>Csat 12,0			>Csat	98,000 >Csat	- >N		>Max		>Max	-	>Max	- >M:		>Max	21	-	>Csat			110	4,900		600	
75-01-4	Vinvl chloride	C. V	0.36	7.9	4.4		34		950 >Csat	5.3	20		89		0.043		0.16	2.2		0.00057	0.014		0.010		0.027	0.68		0.49	350
1330-20-7	Xylenes	nc, v	1,400 >Csa	71,000	>Csat 25,0	00 >Csa	at 20,000	>Csat	560,000 >Csat	- >C	sat -	>Csat	-	>Csat	160		- >Cs	at -	>Csat	23	-	>Csat	100		190	18,000		830	-

For a complete explanation of notes, please see "Notes to Accompany Risk-Based Concentrations for Individual Chemicals." W WARNING: Both non-cancer and cancer endpoints must be calculated for these substances to show all the lowest RBCs.

Ψ WARN

RISK-BASED CONCENTRATIONS																										
Medium	,		GROUNDW						GROUNDW		2		GROUNDWATE	R			SOIL G						AIR			
hway		Vola	µg/L (pp itilization to (b) Dutdoo	r Air			Vano	µg/L (pp r Intrusion in	b) to Rui	Idinae		µg/L (ppb) GW in Excavation	-		Vano	µg/m ³ r Intrusion in	to Ruil	Idinge				µg/m ³ Inhalati	00		
lwdy		VOID	RBC		1.00			vapo	RBC.		iuliiga		RBC	÷		vapo	RBC		luinga				RBC			
			Urban Resid	-			Resident		Urban Resid		Occupatio		Construction & Excava	tion			Urban Resid		Occupatio		Residen		Urban Resid	-		
nario	-	Ial		tential	Occupatio	nai		181		iential	1 - C	inai	Worker		Resident	181		ential	1	inal		tial		sential	Occupati	
Direct or Indirect Pathway (se			IVW	1	IVW		IVW		IVW		IVW		DCW		ICA		ICA		ICA		DCA	1	DCA	1	DCA	
Chemical	Note	Note		Note		Note		Note		Note		Note		Note	1	Note	1	Note		Note	0.0000	Note	0.007	Note	0.047	Note
Polychlorinated biphenyls (Total PCBs) iso-Propylbenzene (cumene)	c, v nc, v	>S >S	-	>S >S	-	>S >S		>S >S	-	>S >S		>S >S	30 51,000		0.99 83,000		7.0 250,000		22 1,800,000		0.0038 420		0.027		0.017 1,800	
Pyrene	nc, v nc, v	>S	-	>S	-	>S		>S	-	>S		>S	51,000	>S	83,000	>Pv	250,000	>Pv	1,800,000	>Pv	420	>Pv	1,300	>Pv	1,800	>Pv
Silver	nc, nv	NV	-	NV	-	NV		NV		NV		NV	1,100,000	23		NV		NV		NV	1.0E+15	~~~	3.1E+15	>FV	4.4E+15	244
Styrene	nc, v	>S		>S		>S		>S		>S		>S	170,000		210,000	147	630,000	14.0	4,400,000	INV	1,000		3,100		4,400	
2,3,7,8-TCDD (dioxin) equivalents	C, V		0.15		0.11		0.0083		0.059	- 0	0.11		0.00045		0.000015		0.00010		0.00032		5.7E-08		4.0E-07		2.5E-07	
Tetrachloroethene (PCE)	c, v		0.10	>S	0.11	>S	3,700		26,000		48,000		34,000		2,200		15,000		47,000		11		77		47	
Toluene	nc. v	>S	-	>S		>S	0,700	>S	20,000	>S	40,000	>S	220,000		1,000,000		3,100,000		2.2E+07		5,200		16,000		22.000	
Toxaphene	c, nv	NV	-	NV	-	NV		NV	-	NV		NV	18	-		NV	-	NV	-	NV	0.0088	1	0.062		0.038	<u>+</u>
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	nc, v	>S	-	>S		>S		>S	-	>S		>S		>S	6,300,000		1.9E+07		1.3E+08		31,000		94,000		130,000	
1,1,1-Trichloroethane	nc, v	>S	-	>S	-	>S		>S	-	>S		>S	1,100,000	-	1,000,000		3,100,000		2.2E+07		5,200		16,000		22,000	
1.1.2-Trichloroethane	c, v		34.000		21.000		870		6.200		11.000		1.000		35		250		770		0.18		1.2		0.77	
Trichloroethene	NA, v		6,900		20,000		200		430		3,700		3,000		95		200		2,900		0.47		1.0		2.9	
Trichlorofluoromethane (Freon 11)	nc, v		-	>S	-	>S	36,000		110,000		460,000		160,000		150,000		440,000		3,100,000		730		2,200		3,100	
2,4,6-Trichlorophenol	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	11,000		-	NV	-	NV	-	NV	0.91		6.4		4.0	
1,2,4-Trimethylbenzene	nc, v	>S	-	>S	-	>S	5,800		17,000			>S	1,700		1,500		4,400		31,000		7.3		22		31	
1,3,5-Trimethylbenzene	nc, v	>S	-	>S	-	>S	-	>S	-	>S		>S	15,000		-	>Pv		>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv
Vinyl chloride	c, v		1,300		5,900		17		64		880		960		33		120		2,800		0.17		0.61		2.8	
Xylenes	nc, v	>S	-	>S	-	>S	86,000		-	>S	-	>S	23,000		21,000		63,000		440,000		100		310		440	

ING: Both non-cancer and cancer endpoints must be calculated for these substances to show all the lowest RBCs.

	RISK-BASED CONCENTRATIONS																														
Contaminate	ed Medium						SOIL							_	SOIL						DIL			SOIL					GROUNDWATE	R	
Exposure P	athway				Soil Inc	pestion	mg/Kg (pp Dermal Cor		nd Inhalatio	0				Volatili	mg/Kg (pp ization to O		Air		Var	mg/K	g (ppm) n into Bui	Idinas		mg/Kg (pp eaching to Gro		er	Ir	naestion	µg/L (ppb) Dermal & Inhalation	from Tapwater	
Exposurer		→			0000 1115	geotion,	RBC _{ss}	indot, di						* Olden	RBC _{so}	, ataoo, ,			v up		BC _{si}	lango	-	RBC _{sw}	N			igeotion, i	RBCtw	nom rupnata	
Receptor Se		→	Resident	ntial	Urban Resid	dential	Occupatio	nal C	Construction 1	Norker I	Excavation V	Vorker	Residentia	al L	Urban Reside	ential	Occupational	R	sidential		esidential	Occupational	Residential	Urban Reside	lential	Occupational	R	esidential	Urban Residential	Occupational	Residenti
CASn	Direct or Indirect Pathway (se Chemical	e notes)	DCS	Nete	DCS	Mate	DCS	Note	DCS	Note	DCS	Mate	IVS	Mate	IVS	Note	IVS	ote	IVS	1	VS	IVS	ILS Not	ILS	Note	ILS	nte	DCW	DCW Note	DCW	IVW
83-32-9	Acenaphthene	note nc, v	4,700	>Csat	91,000	>Csat	70,000	>Csat	21,000	>Csat	590,000	>Csat	-	>Max	-	>Max		Aax -	>Ma	з х -	>Max	- >Ma	1400	C .	>Csat		Csat 51	10	- >S	2,500	-
107-13-1	Acrylonitrile	c, v	0.86		28		4.0		40		1,100		1.3		9.3		5.8	0.0	79	0.56		1.0	0.00036	0.026		0.0017	0.0	152	3.7	0.25	2,200
309-00-2 120-12-7	Aldrin Anthracene	C, V	0.031		0.77		0.13		1.1		30	>Csat	-	>Csat >Max	-	>Csat >Max		sat -	>Csi	at -	>Csat	- >Cs - >Ma		2.1		0.10	0.00	092	0.084	0.0042	-
7440-38-2	Anthracene Arsenic	nc, v c, nv	23,000 0.43	Posat	460,000 10	POSat	350,000 1.9	Posal	110,000 15	POSal	420	>max	-	NV	-	NV	- 1	vax -	NV	x -	NV	- NV		a	POSAL		-sat -	152	2.0	0.31	
7440-39-3	Barium	nc, nv	15,000		300,000		220,000		69,000		-	>Max	-	NV	-	NV	- 1	ŧ۷ -	NV	-	NV	- NV		•		•	4,0		140,000	33,000	-
56-55-3 71-43-2	Benz[a]anthracene Benzene	C, V C, V	0.15 8.2		3.3 270		2.9 37		24 380	>Csat	660 11.000	>Csat >Csat	- 11	>Csat	- 81	>Csat	- >0 50	sat -	>Csi	at - 1.1	>Csat	- >Cs 2.1	at 0.64 0.023	- 1.6	>Csat	8.8 0.10	0.0		0.71 32	0.17 2.1	- 3.100
92-87-5	Benzidine	c, v c, nv	0.2		0.011		0.0100		0.082		2.3	POSat		NV	-	NV	- 1	v •	0 NV	-	NV	- NV		0.0012		0.00070	0.00		0.0033	0.0019	
50-32-8	Benzo[a]pyrene (BaP equivalents)	c, nv	0.015		0.33		0.29		2.4		67	>Csat	-	NV	-	NV	- 1	ŧ۷.	NV	-	NV	- NV	0.60	-	>Csat	- >0	Csat 0.00		0.11	0.064	-
205-99-2 207-08-9	Benzo[b]fluoranthene Benzo[k]fluoranthene	c, nv c, nv	0.15 1.5		3.3 33		2.9 29		24 240	>Csat	670 6,700	>Csat	-	NV NV	-	NV NV		₩ -	NV NV	-	NV NV	- NV - NV		-	>Csat >Csat		Csat 0.0 Csat 0.3		1.1 - >S	0.64 - >S	-
7440-41-7	Beryllium	nc, nv	1.5		3,000	POSat	2,300	Posal	240 700	POSal	19,000	POSat	-	NV	-	NV		۰۷ ۱۷	NV		NV	- NV		a	POSAL		4		1,400	330	
117-81-7	Bis(2-ethylhexyl)phthalate	c, nv	39		940	>Csat	160	>Csat	1,300	>Csat	37,000	>Csat	-	NV	-	NV		۰. v	NV	-	NV	- NV		at -	>Csat		Csat 5.		220	33	-
75-27-4 75-25-2	Bromodichloromethane	C, V C, V	3.4 57	$\left \right $	190 1.900	>Cest	15 260		230 2.700	>Cest	6,300 74 000	>Csat	2.4	_	17		11 360	0.0		0.29	_	0.53	0.0020	0.21		0.0088	0.1		14 240	0.60	1,400
75-25-2 74-83-9	Bromororm Bromomethane	c, v nc, v	46		1,900	- Coal	260 750		370	- 0581	10,000	>Csat	170		500		700	8.		4.0		110	0.046	3.3 5.7		0.22	3.		520	36	32,000
7440-43-9	Cadmium	nc, nv	78		1,500		1,100		350		9,700		-	NV	-	NV	- 1	ŧv -	NV	-	NV	- NV	•			•	2	0	710	160	-
56-23-5 108-90-7	Carbon tetrachloride Chlorobenzene	c, v	7.5 530		220 18.000	Cont	34 8.700	>Cont	320 4.700	>Cont	8,900 130.000	>Csat	15	Cont	110	Cont	65	0.1 sat 7		0.85		1.6	0.013 at 5.8	0.76 430		0.058	0.4		27 5.800	2.1	1,800
108-90-7	Chlorodibromomethane (dibromochloromethane)	nc, v c, v	3.7	+ +	160	-0581	8,700	0681	4,700	0581	5,800	>Csat	3.3	- usdl	24	- Godi	- >0	-sat 7		1.6		- >Cs 2.9	0.0024	430		0.011	0.1		5,800	0.77	3,900
75-00-3	Chloroethane (ethyl chloride)	nc, v	160,000	>Csat	-	>Max	-	>Max	-	>Max	-	>Max	-	>Csat	-	>Csat	- >	Лах -	>Csi	at -	>Csat	- >Cs	at 310	-	>Csat	1,300	21,0		2,200,000	88,000	-
67-66-3 74-87-3	Chloroform Chloromethane	c, v nc, v	5.8 1.400	2Cont	360 84.000	>Csat	26 25.000	>Csat	410 25.000	>Cont	11,000 700.000	>Csat >Csat	3.9	>Csat	28	>Cert	17	0.0 sat 2		0.22		0.41 300	0.0034	0.37 230		0.015 9.1	0.1		25 20,000	0.98	1,400 440.000
12789-03-6	Chordane	C, V	1,400	Posat	42	>Csat	7.4	Posal	61	>Csat	1,700	>Csat	-	>Csat	-	>Csat	- >0	sat 2 sat -	>Csi	/ 3 at -	>Csat	- >Cs	2.2 at 0.45	- 230	>Csat	2.1	0.0		4.1	0.21	-
16065-83-1	Chromium (III)	nc, nv	120,000		-	>Max	-	>Max	530,000		-	>Max	-	NV	-	NV		ŧ۷ -	NV	-	NV	- NV		•		:	30,0		1,100,000	250,000	-
18540-29-9 218-01-9	Chromium (VI) Chrysene	c, nv c, nv	0.30	>Ceat	6.5 330	>Cest	6.3 290	>Csat	49 2,400	>Ceat	1,400 67,000	>Csat	-	NV NV	-	NV NV		1V -	NV NV	-	NV NV	- N		at *	>Csat		0.0 Csat -	150	1.5 S - >S	0.90	-
7440-50-8	Copper	nc, nv	3,100	- 0001	61,000	- Odu	47,000	- 0541	14,000	- 000	390,000	- Obut		NV		NV		۹V	NV		NV	- NV		*	- Odul		80	00	29,000	6,500	
74-90-8	Cyanide (hydrogen cyanide) A	nc, nv	47		910		700		210		5,900		-	NV	-	NV	- 1	ŧ۷ -	NV	-	NV	- NV	•	•		•	1		430	98	-
72-54-8 72-55-9	DDD (4,4'-Dichlorodiphenyldichloroethane) DDE (4,4'-Dichlorodiphenyldichloroethene)	c, nv c, v	2.7		64 45		12 8.2		94 66		2,600 1,800	>Csat		NV >Csat		NV >Csat		√V - sat -	NV >Csi	-	NV >Csat	- N\ - >Cs		36 150		2.6	0.0		1.0 4.2	0.074	-
50-29-3	DDT (4,4'-Dichlorodiphenyltrichloroethane)	c, v c, nv	1.9		45		8.5		66		1,800	>Csat	-	NV		NV		۱V -	NV	-	NV	- NV		-	>Csat	70	0.0		- >S	1.4	
53-70-3	Dibenz[a,h]anthracene	c, nv	0.015		0.33		0.29		2.4		67	>Csat	-	NV	-	NV	- 1	۰V ک	NV	-	NV	- NV		-	>Csat		Csat 0.00		0.11	0.064	-
95-50-1 106-46-7	1,2-Dichlorobenzene 1,4-Dichlorobenzene	nc, v c, v	2,200	>Csat	79,000 1,300	>Csat	36,000 64	>Csat	20,000	>Csat	560,000 36,000	>Csat	- 8.1	>Csat	- 58	>Csat	- >0	sat 0.1	>Csi 9	at - 7.0	>Csat	- >Cs 13	at 36 0.057	- 6.8	>Csat	160 0.25	30		23,000 58	1,400 2.1	- 4,900
91-94-1	3,3-Dichlorobenzidine	c, nv	1.2		29	>Csat	5.1		42	>Csat	1,200	>Csat	-	NV	-	NV		IV -	NV	-	NV	- NV		6.5		1.00	0.1		6.7	1.0	-
75-34-3	1,1-Dichloroethane	c, v	58		2,400	>Csat	260		3,200	>Csat	89,000	>Csat	56		400		240	0.4		3.2		5.9	0.044	3.9		0.20	2.		240	13	16,000
75-35-4 156-59-2	1,1-Dichloroethene cis-1,2-Dichloroethene	nc, v nc, v	1,800 160	>Csat	54,000 3.000	>Csat >Csat	29,000 2.300	>Csat >Csat	13,000 710	>Csat	370,000 20.000	>Csat >Csat	-	>Csat >Max	-	>Csat >Max	- >	sat 5 Aax -	>Ma	160 × -	>Max	680 - >Ma	6.7 x 0.63	450 24		32 4.5	28		19,000 1.300	1,400 260	570,000
156-60-5	trans-1,2-Dichloroethene	nc, v	1,600		30,000	>Csat	23,000	>Csat	7,100	>Csat	200,000	>Csat	-	>Max	-	>Max	- >	Лах -	>Ma	x -	>Max	- >Ma	IX 7.0	260		51	36	50	13,000	2,600	
111-44-4 75-09-2	Dichloroethylether	c, v	0.29		12 1.600		1.3 1.600		16 12.000		450 340.000		0.53		3.7		6.9	0.5 sat 2		3.7 150		6.9 950	0.00019 0.14	0.017 4.4		0.00087	0.0		1.3 370	0.063	5,700 1.000.000
75-09-2 94-75-7	Dichloromethane 2,4-Dichlorophenoxyacetic acid (2,4-D)	c, v nc, nv	76 630	>Csat	1,600	>Csat	8,200	>Csat	2,700	>Csat	74,000	>Csat >Csat	-	>Csat NV	-	>Csat NV		lsat 2 √V	NV	150	NV	- NV		4.4		2.4	17		6,500	1,200	-
60-57-1	Dieldrin	c, nv	0.034		0.82		0.14		1.2		33	>Csat	-	NV	-	NV	- 1	NV -	NV	-	NV	- NV		0.36		0.030	0.0		0.059	0.0050	-
606-20-2	2,6-Dinitrotoluene	nc, nv	19	ΙT	370	>Csat	250	T	80	ΙT	2,200	>Csat	-	NV NV	- 1	NV NV		₩ -	NV	1	NV NV	- NV		37	ΙT	7.8	5.		210	43	-
621-64-7 123-91-1	Di-N-propylnitrosamine (N-nitroso-di-N-propylamine) 1,4-Dioxane	c, nv c, v	0.078 5.4		1.9 150		0.33 24		2.7 210		74 5,900		- 28	NV	- 200	INV	370	2	B NV	200	NV	- NV 370	0.00094 0.0023	0.036		0.0054 0.012	0.0		0.42 25	0.062 2.4	- 820,000
86-30-6	Diphenylnitrosamine	c, nv	110		2,700	>Csat	470	>Csat	3,800	>Csat	110,000	>Csat	-	NV	-	NV		NV -	NV	-	NV	- NV		-	>Csat	45	1		480	57	-
106-93-4	EDB (1,2-dibromoethane) EDC (1.2-dichloroethane)	c, v	0.16	+	6.9 150	\vdash	0.73	\rightarrow	9.0	\vdash	250 5.600	>Csat	0.15	-+	1.1 24		0.65	0.0		0.085	-	0.16	0.00012	0.011		0.00056	0.0		0.68	0.034	180
107-06-2 115-29-7	EDC (1,2-dichloroethane) Endosulfan (alpha-beta)	c, v nc, v	3.6 380	>Csat	150 7,400	>Csat	16 4,900	>Csat	200 1,600	>Csat	5,600 45,000	>Csat		>Max		>Max	15 - >I	лах -	>Ma	x -	>Max	1.0 - >Ma	0.0028 IX - >Cs	0.25 at -	>Csat	0.013 - >0	Csat 9		15 - >S	0.78 - >S	2,100
72-20-8	Endrin	nc, nv	19	>Csat	370	>Csat	250	>Csat	80	>Csat	2,200	>Csat	-	NV	-	NV		۰V .	NV	1 -	NV	- NV		-	>Csat		Csat 1.	.9	92	8.6	-
100-41-4 206-44-0	Ethylbenzene Fluoranthene	c, v nc, nv	34 2 400	>Ceet	1,300 46.000	>Csat	150 30.000	>Ceat	1,700 10,000	>Csat	49,000 280,000	>Csat	36	NI/	250	NV	160	1.	3	9.1	NP/	17 N	0.22	16	>Cest	0.90	1.	.5	110	6.4	9,900
206-44-0 86-73-7	Fluoranthene	nc, nv nc, v	3,100	>Csat	61,000	>Csat	47,000	>Csat	14,000	>Csat	390,000	>Csat	-	>Max	-	>Max	- >	Лах	>Ma	× -	>Max	- NV - >Ma	- >Cs	at -	>Csat	- >	Csat 28	30	- >8	1,300	1 - 1
50-00-0	Formaldehyde	nc, v	330		19,000		2,900		2,800		78,000	>Csat	2,300		6,900		29,000	2,3		6,900		29,000	0.092	9.8		0.39	2		2,200	86	7.3E+07
76-44-8 1024-57-3	Heptachlor Heotachlor Epoxide	c, v c, v	0.11		2.9 1.4		0.45		4.0 2.0		110 56		18 28		130	>Cert	230	sat 2		130		230 - >Cs	0.017 at 0.0042	0.74		0.048	0.0		0.059	0.0039	1:1
1024-57-3 118-74-1	Heptachlor Epoxide Hexachlorobenzene	c, v	0.055		1.4 8.6		0.24		2.0		320		1.0		7.2	- Godi	13	-sat 2		7.2	Posat	- >Cs 13	0.0042	1.7		0.016	0.00		0.092	0.045	
319-84-6	alpha-Hexachlorocyclohexane (alpha-HCH)	c, nv	0.086		2.1		0.36		3.0		83	>Csat	-	NV	-	NV		٩V -	NV	-	NV	- NV		0.23		0.023	0.0		0.27	0.027	- 1
58-89-9 67-72-1	gamma-Hexachlorocyclohexane (Lindane) Hexachloroethane	c, nv nc, v	0.49 41		12 830	>Csat	2.1 540	>Csat	17 180		470 5,100	>Csat >Csat	-	NV >Csat		NV >Csat		√V - Sat 7	NV	- 210	NV	- NV - >Cs		1.3 19		0.13 1.9	0.0		1.5 290	0.16 30	
193-39-5	Indeno[1,2,3-cd]pyrene	c, nv	0.15		3.3	>Csat	2.9	>Csat	24	>Csat	670	>Csat	-	NV		NV		√ - IV	NV		NV	- NV		at -	>Csat		Csat 0.0		- >S	- >s	
7439-92-1	Lead	NA, nv	400	L	400	L	800	L	800	L	800	\square	L	NV	-	NV	- 1	ŧ۷ -	NV	-	NV	- N	30 L	30	L	30	L 1		. 15 L	15 L	· ·
7439-96-5 94-74-6	Manganese MCPA ((4-chloro-2-methylohenoxy)acetic acid)	nc, nv nc, nv	1,800 32		36,000 610	>Csat	25,000 410	>Cent	8,200 130		230,000 3.700	>Ceat	-	NV NV	-	NV NV		₩ -	NV NV	1 :	NV NV	- N		* 3.9		• 0.61	48		17,000 290	3,900 47	
94-74-6 7439-97-6	Mercury	nc, nv	23		460	- Sar	350	Jac	110		2,900	. 0381	-	NV	-	NV	- 1	ŧv	NV		NV	- N	*	*		*	6.		- >S	49	
1634-04-4	MTBE (methyl t-butyl ether)	c, v	250		8,300	>Csat	1,100		12,000	>Csat	320,000	>Csat	340		2,400		1,500	8.		60		110	0.11	8.4		0.54	1	4	1,100	68	350,000
91-20-3 7440-02-0	Naphthalene Nickel	c, v nc, nv	5.3 1,500	+	730 30,000	>Csat	23 22,000		580 7,000	>Csat	16,000	>Csat	6.4	NV	45	NV	83	6. IV	1	45	NV	83 - NV	0.077	11		0.34	0.1		23 14,000	0.72 3,300	3,600
7440-02-0 87-86-5	Pentachlorophenol	nc, nv c, nv	1,500		25		4.0		34		190,000 960		-	NV		NV	- 1	ŧv	NV		NV	- NV		2.2		0.17	40		14,000	0.12	
			•							• •		. 1						•				• •	• • •	•					· · ·	• •	•

Urban Residential RBCs revsied to reflect recreational user/tresspasser exposure assumptions - alternate toxicity endpoint selected

Oregon Department of Environmental Quality Environmental Cleanup and Tanks Program

Medium			GROUNDW						GROUNDW		1		GROUNDWATE	R			SOIL G	AS					AIR			
	-	Mala	µg/L (pp atilization to (- 61-				µg/L (pp		aller er e		µg/L (ppb) GW in Excavatio	_			µg/m ³	te Duil	aller and				µg/m ³ Inhalatio			
way		Vola	RBC	Jutaoo	r Air			vapo	r Intrusion in RBC	to Bui	aings		GW in Excavatio RBCup	n		vapo	r Intrusion in RBC _m	to Buil	aings				RBC _~	on ,		
ario		al	Urban Resid	lential	Occupatio	nal	Resident	ial	Urban Resid	Iential	Occupatio	inal	Construction & Excava	ition	Resident	ial	Urban Resid	ential	Occupatio	nal	Resident	ial	Urban Resid	ential	Occupati	iona
Direct or Indirect Pathway (se	e notes)		IVW		IVW	_	IVW		IVW		IVW	-	Worker DCW		ICA	-	ICA		ICA	-	DCA	-	DCA		DCA	-
Chemical	Note	Note		Note		Note		Note		Note		Note		Note	1	Note	1	Note	1	Note		Note		Note		N
Acenaphthene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	;
Acrylonitrile	c, v		16,000		9,800		700		5,000		9,200		250		8.3		59		180		0.041		0.29		0.18	
Vdrin	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	3.5		0.11		0.81		2.5		0.00057		0.0041		0.0025	
Anthracene	nc, v	>S NV	-	>S NV	-	>S NV	-	>S NV	-	>S NV	-	>S NV	- 6 300	>S	-	>Pv NV	-	>Pv NV	-	>Pv NV	- 0.00065	>Pv	- 0.0046	>Pv	- 0.0029	
Barium	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	2.7E+07	-	-	NV	-	NV	-	NV	0.00085		1.6		2.2	+
Benz[a]anthracene	c, v	>S	-	>S		>S	-	>S	-	>S	-	>S	-	>S	-	>Pv		>Pv	-	>Pv	0.0092		0.054		0.11	
Benzene	c, v		22,000		14,000		210		1,500		2,800		1,800		72		510		1,600		0.36		2.6		1.6	
Benzidine	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	17		-	NV	-	NV	-	NV	0.000015		0.000088		0.00018	
Benzo[a]pyrene (BaP equivalents)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.00092		0.0054		0.011	4
Benzo[b]fluoranthene	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.0092		0.054		0.11	
Benzo[k]fluoranthene Beryllium	c, nv nc, nv	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	270,000	>S	-	NV NV	-	NV NV	-	NV NV	0.0092 0.021		0.063	>PV	0.088	
Bis(2-ethylhexyl)phthalate	c, nv	NV		NV		NV	-	NV		NV		NV	270,000	>S		NV		NV		NV	-	>Pv	-	>Pv	0.000	
Bromodichloromethane	c, v		9,700		6,000		180		1,300		2,300		450	-	15		110		330		0.076		0.54		0.33	
Bromoform	C, V		900,000		550,000		36,000		250,000		470,000		14,000		510		3,600		11,000		2.6		18		11	t
Bromomethane	nc, v		96,000		130,000		2,100		6,300		27,000		1,200		1,000		3,100		22,000		5.2		16		22	
Cadmium	nc, nv	NV	-	NV	-	NV	- 1	NV	-	NV	-	NV	130,000			NV	-	NV	-	NV	0.010		0.031		0.044	
Carbon tetrachloride	c, v		12,000		7,700		92		650 200.000		1,200		1,800		94		660		2,000		0.47		3.3		2.0	
Chlorobenzene Chlorodibromomethane (dibromochloromethane)	nc, v c. v	>S	- 28.000	>S	- 17.000	>S	67,000 980		200,000		- 13.000	>S	10,000		10,000		31,000		220,000 450		52 0.10		160		220	+
Chlorodibromomethane (dibromochloromethane) Chloroethane (ethyl chloride)	c, v nc, v	>S	20,000	>S		>S	980 2,800,000		0,900	>S		>S	610 2,400,000		21 2,100,000		150 6,300,000		450 4.4E+07		0.10		0.74 31,000		0.45 44,000	
Chloroform	C, V	Ĭ	10,000	Ŭ	6,300	5	2,800,000		880		1,600	Ĩ	720		2,100,000		170		4.4E+07 530		0.12		0.87		0.53	
Chloromethane	nc, v		1,300,000		1,800,000		26,000		78,000		330,000		22,000		19,000		56,000		390,000		94		280		390	1
Chordane	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	5.6		40		-	>Pv	0.028		0.20		0.12	
Chromium (III)	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	1.0E+15		3.1E+15		4.4E+15	Τ
Chromium (VI)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	9,400		-	NV	-	NV	-	NV	0.000012		0.000070		0.00015	
Chrysene	c, nv	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	-	NV NV	-	>S	-	NV NV	-	NV NV	-	NV NV	0.092		0.54		1.1	
Copper Cyanide (hydrogen cyanide) A	nc, nv nc, nv	NV	-	NV	-	NV	-	NV NU/	-	NV NV	-	NV	5,400,000 81,000		-	NV	-	NV	-	NV	1.0E+15 0.83		3.1E+15 2.5		4.4E+15 3.5	
DDD (4,4'-Dichlorodiphenyldichloroethane)	c, nv	NV		NV		NV	-	NV		NV	-	NV	31		-	NV		NV	-	NV	0.041		0.29		0.18	t
DDE (4,4'-Dichlorodiphenyldichloroethene)	c, v	>S		>S	-	>S	-	>S	-	>S		>S	-	>S	5.8		41			>Pv	0.029		0.21		0.13	
DDT (4,4'-Dichlorodiphenyltrichloroethane)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	0.029		0.21		0.13	
Dibenz[a,h]anthracene	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	
1,2-Dichlorobenzene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	37,000		42,000		130,000		880,000		210		630		880	∔
1,4-Dichlorobenzene 3.3-Dichlorobenzidine	c, v	NV	35,000	NV	21,000	NV	540	NV	3,800	NV	7,100	NV	1,500	>S	51	NV	360	NV	1,100	NV	0.26		1.8 0.059		1.1 0.036	
3,3-Dichlorobenzidine 1,1-Dichloroethane	c, nv c, v	NV	110,000	NV	68,000	NV	1,100	NV	7,800	NV	- 14,000	NV	- 10,000	>5	350	NV	2,500	NV	7,700	NV	1.8		12		7.7	
1,1-Dichloroethene	nc. v		1,700,000		2.400.000		29.000		86.000		360.000		44.000		42.000		130.000		880.000		210		630		880	
cis-1,2-Dichloroethene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	18,000		-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	
trans-1,2-Dichloroethene	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	180,000		-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	Т
Dichloroethylether	c, v		40,000		30,000		2,300		16,000		30,000		51		1.7		12		37		0.0085		0.060		0.037	
Dichloromethane	c, v		6,100,000		1.3E+07		90,000		520,000		3,300,000		640,000		20,000		120,000		1,200,000		100		590		1,200	
2,4-Dichlorophenoxyacetic acid (2,4-D)	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	77,000		-	NV	-	NV	-	NV	- 0.00061	>Pv	- 0.0043	>Pv	- 0.0027	
Dieldrin 2,6-Dinitrotoluene	c, nv nc, nv	NV NV	-	NV NV	-	NV NV	-	NV	-	NV NV	-	NV NV	2.4 5,300	$\left - \right $	-	NV NV	-	NV NV	-	NV NV	0.00061	2Pv	0.0043	20-	0.0027	+
Di-N-propylnitrosamine (N-nitroso-di-N-propylamine)	c, nv	NV		NV		NV		NV		NV		NV	370			NV		NV		NV	0.0014	~~~	0.0100	21.4	0.0061	
1,4-Dioxane	c, v		5,800,000		4,500,000		340,000		2,400,000		4,500,000		3,400		110		800		2,500		0.56		4.0		2.5	
DiphenyInitrosamine	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	1.1		7.7		4.7	
EDB (1,2-dibromoethane)	c, v		1,300		790		45		320		590		27		0.94		6.6		20		0.0047		0.033		0.020	
EDC (1,2-dichloroethane)	c, v		15,000		9,000		300		2,100		3,900		630		22		150		470		0.11		0.77		0.47	
Endosulfan (alpha-beta)	nc, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	>Pv	-	
Endrin Ethylbenzene	nc, nv c, v	NV	- 70,000	NV	- 43,000	NV	- 620	NV	- 4,400	NV	- 8,200	NV	170 4,500		- 220	NV	- 1,600	NV	- 4,900	NV	- 1.1	>PV	- 8.0	>PV	4.9	
-thylbenzene Fluoranthene	c, v nc, nv	NV	- 10,000	NV	43,000	NV	- 020	NV	4,400	NV	0,200	NV	4,5UU -	>S	- 220	NV	1,000	NV	4,900	NV		>Pv	0.0	>Pv	4.9	1
Fluorene	nc, v	>S	-	>S	-	>S	-	>S	-	>S		>S	-	>S	-	>Pv	-	>Pv		>Pv		>Pv	-	>Pv	-	†
Formaldehyde	nc, v		2.2E+08		3.9E+08		3.1E+07		9.2E+07		3.9E+08		2,400		2,000		6,100		43,000		10		31		43	
Heptachlor	c, v	>S	-	>S	-	>S	88		-	>S	-	>S	1.8		0.43		3.1		9.4		0.0022		0.015		0.0094	
leptachlor Epoxide	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	3.2		0.22		1.5		4.7		0.0011		0.0077		0.0047	
Hexachlorobenzene	c, v	>S	-	>S	-	>S	-	>S	-	>S	-	>S	-	>S	1.2		8.7		27		0.0061		0.043		0.027	4
Ipha-Hexachlorocyclohexane (alpha-HCH)	c, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	18		-	NV	-	NV	-	NV	0.0016		0.011		0.0068	
jamma-Hexachlorocyclohexane (Lindane) Jexachloroethane	c, nv nc, v	NV >S		NV >S	-	NV ≻S	l -	NV >S	-	NV >S	-	NV >S	100 700		- 6,300	NV	- 19,000	NV	- 130,000	NV	0.0091 31		0.064 94		0.040 130	1
Hexachioroethane ndeno[1,2,3-cd]pyrene	nc, v c, nv	NV		NV		NV		NV		NV	-	NV	-	>S		NV	-	NV		NV	-	>Pv	-	>Pv		1
.ead	NA, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	>S	-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	1
Aanganese	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	3,200,000		-	NV	-	NV	-	NV	0.052		0.16		0.22	Τ
ICPA ((4-chloro-2-methylphenoxy)acetic acid)	nc, nv	NV	-	NV	-	NV	-	NV	-	NV	-	NV	1,700		-	NV	-	NV	-	NV	-	>Pv	-	>Pv	-	1
Mercury	nc, nv	NV	-	NV	-	NV	- 1	NV	-	NV	-	NV	-	>S		NV	-	NV	-	NV	0.31		0.94		1.3	1
MTBE (methyl t-butyl ether)	C, V		2,500,000		1,500,000		67,000		470,000		870,000		63,000		2,200		15,000		47,000		11		77		47	
Naphthalene	C, V		25,000		16,000		840		5,900		11,000		500		17		120		360		0.083		0.59		0.36	4
lickel	nc, nv	NV	-	NV	-	NV	- 1	NV	-	NV	-	NV	1.3E+07	1		NV	-	NV	-	NV	0.094		0.28		0.39	1

	RISK-BASED CONCENTRATIONS																												
Contaminate	d Medium					SOIL						SOIL					SOIL				SOI	L				GROUNDW	ATER		
					mg	J/Kg (ppm))					ng/Kg (ppm)					mg/Kg (ppm)				mg/Kg (µg/L (pp	ıb)		
Exposure Pa	athway			Soil In	gestion, Derr	nal Conta RBC _{ss}	ict, and Inha	ation				tion to Outdo RBC _{so}	oor Air			Vapor	Intrusion into B RBC _{si}	uildings		L	eaching to G RBC		vater		Ingestion, De	rmal & Inhal RBC ₁₀		om Tapwater	
Receptor So	enario	_ ,	Residential	Urban Res		cupational	Construc	ion Worker	Excavation Worker	Residential	_	an Residential	I Occupa	ational	Resider	ntial	Urban Residentia	al Occup	ational	Residential	Urban Res		Occupat	ional	Residential	Urban Resid		Occupational	Residenti
ricooptor or	Direct or Indirect Pathway (se	anotec)	DCS	DCS		DCS		cs	DCS	IVS		IVS	IV		IVS		IVS	IV		ILS	ILS		ILS		DCW	DCW		DCW	IVW
CASn	Chemical	Note	Note		Note	No		Note	Note	11/3	lote	Note		Note	103	Note	No		Note	Note		Note	iLG	Note	Note		Note	Note	1000
	Polychlorinated biphenyls (Total PCBs)	nc, v	0.33	2.6		.59	4.9				_	- >Ma		>Max		>Max	- >M	_	>Max	0.63		>Csat	- 1	>Csat		0.57		0.13	-
98-82-8	iso-Propylbenzene (cumene)	nc, v	3,500 >Cs				sat 27,00					- >Csa		>Csat		>Csat	- >Cs		>Csat	96		>Csat		>Csat	440	29,000		2,000	
129-00-0	Pyrene	nc, v	1,800 >Cs				csat 7,500		210,000 >Csat			- >Ma		>Max		>Max	- >M		>Max	- >Csa	at -	>Csat		>Csat	110		>S	- >S	-
7440-22-4	Silver	nc, nv	390	7,600		800	1,800		49,000		NV	- NV		NV	-	NV	- N	/ -	NV	•	•		•		100	3,600		820	-
100-42-5	Styrene	nc, v	7,900 >Cs				csat 56,00					- >Csa		>Csat		>Csat	- >Cs		>Csat	170	-	>Csat	800		1.200	75.000		5.700	-
	2,3,7,8-TCDD (dioxin) equivalents	c, v	4.7E-06	0.00012		0016	0.0001		0.0048	0.010	0.	.073	0.13		0.010		0.073	0.13		6.8E-06	0.00063		0.000031		9.1E-08	8.4E-06		4.2E-07	0.022
127-18-4	Tetrachloroethene (PCE)	nc, v	270 >Cs	at 7,300	>Csat 4,3	300 >C	sat 1,800	>Csat	50,000 >Csat	- >	Csat	- >Csa	at -	>Csat	11		32	140		1.6	93		7.7		40	2,400		200	-
108-88-3	Toluene	nc, v	5,800 >Cs				csat 28,00		770,000 >Csat		Csat	- >Csa		>Csat		>Csat	- >Cs	iat -	>Csat	83	-	>Csat	490		1.100	46,000		6,300	-
8001-35-2	Toxaphene	c, nv	0.49	12	2		17		470	-	NV	- NV		NV	-	NV	- N	v -	NV	0.36	12		0.93		0.015	0.52		0.040	-
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	nc, v	400,000 >Cs				- xaN	>Max				- >Ma		>Max	-	>Csat	- >Cs		>Csat	- >Csa		>Csat		>Csat	55,000	-	>S	- >S	-
71-55-6	1,1,1-Trichloroethane	nc, v	53,000 >Cs				csat 470,00					- >Csa		>Csat		>Csat	- >Cs		>Csat	190	-	>Csat		1	8,000	600,000		37,000	-
79-00-5	1,1,2-Trichloroethane	nc, v	3.2	180		55	54	-	1,500 >Csat	6.7		20	28		0.38		1.1	4.8		0.0094	1.00		0.040		0.41	44		1.7	5,600
79-01-6	Trichloroethene	NA, v	6.7	17		51	470	>Csat				33	96		0.12		0.26	2.3		0.013	0.053		0.087		0.49	2.0		3.3	3,300
75-69-4	Trichlorofluoromethane (Freon 11)	nc, v	7,600 >Cs	_			sat 69,00				_	- >Csa		>Csat	190		560		>Csat	61		>Csat	280		1,100	86,000		5,200	780.000
88-06-2	2,4,6-Trichlorophenol	nc, nv	63	1,200		20	270		7,400 >Csat			- NV		NV		NV	- N		NV	6.3	270		35		12	500		65	,
95-63-6	1,2,4-Trimethylbenzene	nc, v	110	6,500			csat 2,000			230		700	980		16		49	210		2.8	300		12		15	1,600		61	
108-67-8	1,3,5-Trimethylbenzene	nc, v	780 >Cs				csat 3,500					- >Ma		>Max	-	>Max	- >M		>Max	21	-	>Csat			110	4,900		600	
75-01-4	Vinvl chloride	C. V	0.36	7.9		.4	34		950 >Csat			20	89		0.043		0.16	2.2		0.00057	0.014		0.010		0.027	0.68		0.49	350
1330-20-7	Xylenes	nc, v	1,400 >Cs				sat 20,00) >Csat				- >Csa		>Csat	160	+ +	- >Cs		>Csat	23	0.014	>Csat		-	190	18,000		830	330

For a complete explanation of notes, please see "Notes to Accompany Risk-Based Concentrations for Individual Chemicals." W WARNING: Both non-cancer and cancer endpoints must be calculated for these substances to show all the lowest RBCs.

Ψ WARN

Medium			GROUNDW						GROUNDW				GROUNDWATE	R			SOIL GA						AIR			
			µg/L (pp	b)					µg/L (pp	ib)			µg/L (ppb)				µg/m ³						µg/m ³			
1way		Vola	atilization to (RBC		r Air			Vapo	r Intrusion ir RBC,		dings		GW in Excavation RBC _{we}	n		Vapo	r Intrusion in RBC _{so}		ldings				Inhalati RBC _a			
				-							Occupatio		Construction & Excava	tion												
nario -	•	ial	Urban Resid	dential	Occupatio	nal	Resident	ial	Urban Resid	lential	1.1	inal	Worker		Residenti	al	Urban Resid	ential	Occupatio	inal	Resident	ial	Urban Resid	dential	Occupatio	nal
Direct or Indirect Pathway (se			IVW		IVW		IVW		IVW		IVW		DCW		ICA		ICA		ICA		DCA		DCA	1	DCA	
Chemical	Note nc. v	Note >S		Note >S		Note >S		Note >S		Note >S		Note		Note >S	1	>Pv		>Py		>Pv		>Pv		Note >Pv		>Pv
Polychlorinated biphenyls (Total PCBs)	nc, v nc, v	>S >S		>S >S	-	>S >S	-	>S >S	-	>S >S	-	>S >S	- 51.000	>8	- 83,000	>PV	- 250,000	>PV	- 1.800.000	>PV	420	>PV	1,300	>PV	1.800	>PV
iso-Propylbenzene (cumene) Pyrene	nc, v nc, v	>S		>S	-	>S	-	>S	-	>S		>S	51,000	>S	83,000	>Pv	250,000	>Pv	1,800,000	>Pv	420	>Pv	1,300	>Pv	1,800	>Pv
Silver	nc, nv	NV NV		NV		NV	-	NV		NV		NV	1,100,000	25	-	NV		NV		NV	1.0E+15	JPV	- 3.1E+15	AbA	- 4.4E+15	APV
Styrene	nc, v	>S	-	>S	-	>S		>S		>S	-	>S	170,000		210,000	INV	630,000	INV	4,400,000	INV	1,000		3,100		4.46715	i –
2,3,7,8-TCDD (dioxin) equivalents	C, V	~3	0.15	-3	0.11	~3	0.0083	-3	0.059		0.11	~3	0.00045		0.000015		0.00010		0.00032		5.7E-08		4.0E-07		4,400 2.5E-07	i –
Tetrachloroethene (PCE)	nc, v	>S	-	>S	-	>S	14.000		43.000		180.000		5.600		8.300		25.000		180.000		42		130		180	i –
Toluene	nc, v	>S	-	>S	-	>S	14,000	>S	45,000	>S	100,000	>S	220.000		1.000.000		3,100,000		2.2E+07		5.200		16.000		22 000	i –
Toxaphene	C, NV	NV	-	NV		NV	-	NV	-	NV		NV	18		-,000,000	NV	-	NV		NV	0.0088		0.062	+	0.038	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	nc, v	>S		>S		>S		>S		>S		>S	-	>S	6,300,000		- 1.9E+07		1.3E+08		31,000		94,000		130,000	i i
1,1,1-Trichloroethane	nc, v	>S		>S		>S		>S		>S		>S	1,100,000	-0	1,000,000		3,100,000		2.2E+07		5,200		16,000		22,000	i –
1,1,2-Trichloroethane	nc, v	Ŭ	17.000	Ŭ	24.000	Ŭ	1.000		3.100	Ŭ	13,000		49		42		130		880		0.21		0.63		0.88	I.
Trichloroethene	NA. v		6.900		20.000		200		430		3.700		3.000		95		200		2.900		0.47		1.0		2.9	i –
Trichlorofluoromethane (Freon 11)	nc, v		-	>S	-	>S	36,000		110,000		460,000		160,000		150,000		440,000		3,100,000		730		2,200		3,100	
2,4,6-Trichlorophenol	nc, nv	NV		NV		NV	00,000	NV	110,000	NV	400,000	NV	1,700		100,000	NV	440,000	NV	0,100,000	NV	,00	>Pv	2,200	>Pv	0,100	>Pv
1,2,4-Trimethylbenzene	nc, v	>S		>S		>S	5,800		17,000			>S	1,700		1,500		4,400		31,000		7.3		22		31	1
1,3,5-Trimethylbenzene	nc, v	>S		>S		>S	-	>S	-	>S		>S	15,000		.,	>Pv	-	>Pv	-	>Pv	-	>Pv		>Pv		>Pv
Vinyl chloride	C. V		1.300		5,900		17		64		880		960		33		120		2.800		0.17		0.61		2.8	i –
Xylenes	nc, v	>S	-	>S	-	>S	86,000		-	>S	-	>S	23.000		21,000		63,000	-	440.000		100		310		440	· · · ·

ING: Both non-cancer and cancer endpoints must be calculated for these substances to show all the lowest RBCs.

Parameter (unit)	Symbol	Resident	tial	Urban Resid	ential	Occupatio	onal	Construc Worke		Excavation \	Worke
			Note		Note		Note		Note		Note
ACCEPTABLE RISK LEVELS			1						-	r	
Acceptable Risk Level - Carcinogens	ARLc	1.00E-06	1	=		=		=		=	
Acceptable Risk Level - Noncarcinogens	ARLn	1	1	=		=		=		=	
EXPOSURE PARAMETERS Averaging Time - Carcinogen (yr)	ATc	70	3	=		=		=	T	=	T
Averaging Time - Varcinogen (yr) Averaging Time - Noncarcinogen (yr)	ATC	26	3	- 11	2	- 25	3	-	3	1	3
	ATIC	20 6	3	6	2	25 NA	3	NA	3	NA	3
Averaging Time - Noncarcinogen, Child (yr)	BWa	80	-	-	3						
Body Weight - Adult (kg)			3	=		=		=		=	
Body Weight - Child (kg)	BWc	15	3	=		NA		NA		NA	4
Exposure Duration - Adult (yr)	ED	26	3	11	4	25	3	1	21	1	6
Exposure Duration - Child (yr)	EDc	6	3	6	4	NA		NA		NA	1
Exposure Frequency (day/yr)	EF	350	3	18	3c	250	6	250	6	9	6
Exposure Time (hr/day)	ET	24		8		8		8		8	
Event Frequency - Groundwater (events/day)	EvF	1	24	1	24	2	24	2	6	=	
Event Time - Groundwater (hr/event) (age adjusted)	t _{event}	0.67	25	0.62	25	2	24	2	6	=	
Soil Ingestion Rate - Adult (mg/day)	IRS	100	6	100	6	100	6	330	21	330	21
Soil Ingestion Rate - Child (mg/day)	IRSc	200	4	200	4	NA		NA		NA	
Water Ingestion Rate - Adult (L/day)	IRW	2.5	3a	2.5	3a	0.7	4a	NA		NA	
Water Ingestion Rate - Child (L/day)	IRWc	0.78	Зb	=		NA		NA		NA	
Skin Surface Area - Adult to Soil (cm ²)	SA	6032	4	6032	4	3527	4	3527	4	3527	4
Skin Surface Area - Child to Soil (cm ²)	SAc	2373	3	=		NA		NA		NA	
Skin Surface Area - Adult to Groundwater (cm ²)	SAw	20900	3	20900	3	3527	3	6032	4	6032	4
Skin Surface Area - Child to Groundwater (cm ²)	SAwc	6378	3	6378	3	NA		NA		NA	
Soil to Skin Adherence Factor - Adult (mg/cm ² -day)	AF	0.07	5a	0.07	5a	0.12	5b	0.30	5c	0.30	5c
Soil to Skin Adherence Factor - Child (mg/cm ² -day)	AFc	0.20	5d	=		NA		NA		NA	
AGE-ADJUSTED EXPOSURE FACTORS									-		
Ingestion Factor - Soil (mg-yr/kg-d)	IFSadj	105	7	86	7a	NA		NA		NA	
Ingestion Factor - Water (L-yr/kg-d)	IFWadj	0.94	7	0.47	7a	NA		NA		NA	
Surface Area Tapwater-age adjusted (cm2-yr/kg)	SAwadj	6174	7	3857	7	NA		NA		NA	
Surface Area Factor - Skin (mg-yr/kg-d)	SFSadj	295	7	216	7a	NA		NA		NA	

Exposure Factors: Reasonable Maximum Exposure

SITE PARAMETERS											
Soil Bulk Density (g/cm ³)	ρ _b	1.70	8	=		=		=		=	
Soil Particle Density (g/cm ³)	ρs	2.74	9	=		=		=		=	
Soil Porosity	n	0.38	8	=		=		=		=	
Air Content - Vadose Zone Soils	n _a	0.26	10	=		=		=		=	
Air Content - Cap. Fringe Soils	n _{acap}	0.038	10	=		=		=		=	
Air Content - Foundation Cracks	n _{acrk}	0.26	10	=		=		=		=	
Water Content - Vadose Zone Soils	n _w	0.12	8	=		=		=		=	
Water Content - Cap. Fringe Soils	n _{wcap}	0.342	8	=		=		=		=	
Water Content - Foundation Cracks	n _{wcrk}	0.12	11	=		=		=		=	
Vadose Zone Thickness (cm)	L _v	295	12	=		=		=		=	
Capillary Fringe Thickness (cm)	L _{cap}	5.00	8	=		=		=		=	
Fraction Organic Carbon (shallow soil)	f _{oc}	0.005	8a	=		=		=		=	
Depth to Groundwater (cm)	Lw	300	8	=		=		=		=	
Groundwater Dilution-Attenuation Factor	DAF	60	19	=		=		=		=	
SOIL CONTAMINATION PARAMETERS				-		-					
Thickness of Contaminated Surface Soils (cm)	L _{ss}	100	8	=		=		=		=	
Fraction of Site with Surface Soil Contamination	f _{ss}	0.50	16	=		=		=		=	
Thickness of Clean Surface Soils (cm)	L _c	100	8	=		=		=		=	
Thickness of Subsurface Contamination (cm)	Ls	200	8	=		=		=		=	
Soil Gas Attenuation Factor for Chlorinated Hydrocarbons	AF_{ch}	200	23	200	23	1000	23	NA		NA	
Soil Gas Attenuation Factor for Petroleum Hydrocarbons	AF_{ph}	200	23	200	23	1000	23	NA		NA	
Fraction of Site with Subsurface Vol. To Outdoor Air	f _{so}	0.50	17	=		=		=		=	
Thickness of Clean Soils Under Building (cm)	L _{cb}	100	8	=		=		=		=	
Thickness of Contaminated Soils Under Building (cm)	L _{sb}	200	8	=		=		=		=	
Fraction of Contaminated Soils Under Building	f _{sb}	0.50	18	=		=		=		=	
Particulate Emission Factor for Soils (kg/m ³)	PEF	7.58E-10	13	=		=		=		=	
BUILDING PARAMETERS	1		1		1		1		1		
Building Air Exchange Rate (1/day)	ER	24	14	=		48	14	NA		NA	
Building Height (indoor air mixing zone) (cm)	L _B	200	8	=		300	8	NA		NA	
Foundation Wall Thickness (cm)	L _{crk}	15	8	=		=		NA		NA	
Foundation Crack Fraction VOLATILIZATION FACTORS	f _{crk}	0.0010	15	=		=		NA		NA	
Averaging time for Volatilization -Adults (yr)	t _{vol}	25	16	=		=		=		=	
Averaging time for Volatilization -Children (yr)	t _{volc}	6	16	=		NA		NA		NA	
Max. Soil to Building Vol. Factor (kg/m ³)	VF _{si} max	3.88E-03	18	- 3.88E-03	18	1.29E-03	18	NA		NA	
Max. Surface Soil Vol. Factor - Adult (kg/m ³)	VF _{ss} max	1.57E-05	16	1.57E-05	16	1.29E-03	16	1.57E-05	16	1.57E-05	16
Max. Surface Soil Vol. Factor - Child (kg/m ³)	VF _{ss} max	6.53E-05	16	=	10	NA	10	NA	10	NA	10
Max. Soil to Outdoor Air Vol. Factor - Adult (kg/m ³)	VF _{so} max	3.13E-05	17	- 3.13E-05	17	3.13E-05	17	NA		NA	
Volatile Organics Dispersion Term (g/m ² -s per kg/m ³)	Q/C	6.88E+01	17	5.15⊑-05	.,	5.15⊑-05	.,	=		=	
MISCELLANEOUS PARAMETERS	Q/U	0.002101	13	-	I	-	I		I		L
Ideal Gas Law Constant (m ³ -atm/K-mol)	R	8.21E-05	20	=		=		=		=	
Absolute Temperature (K)	т	2.93E+02	20	=		=		=		=	

Additional Information for Early Life-Stage Factor Calculations

Early Life-Stage Factors - Residential	Symbol	0 - 2 Yea	rs	3 - 6 Yea	rs	7 - 16 Yea	ars	17 - 26 Ye	ars	Total	
(See Note 22)			Note		Note		Note		Note		Note
Exposure Duration (yr)	ED	2		4		10		10		26	
Body Weight (kg)	BW	15		15		80		80		NA	
Soil Ingestion Rate (mg/day)	IRs	200		200		100		100		NA	
Air Inhalation Rate (m³/day)	IRa	10		10		20		20		NA	
Water Ingestion Rate (L/day) -adults	IRw	0.78		0.78		2.5		2.5		NA	
Age-dependent Adjustment Factor	ADAF	10		3		3		1		NA	
Soil to Skin Adherence Factor (mg/cm ²)	AF	0.2		0.2		0.07		0.07		NA	
Skin Surface Area - Adult to Soil (cm ²)	SA	2690		2690		6032		6032		NA	
Skin Surface Area - to tapwater (cm2)	SAtw	6378		6378		20900		20900		NA	
Adjusted Exposure Duration (yr)	EDadj	20		12		30		10		72	
Ingestion Factor - Soil (mg-yr/kg-d)	IFSadj	267		160		38		13		477	
Ingestion Factor - Water (L-yr/kg-d)	IFWadj	1		1		1		0		3	
Surface Area Factor - Skin (mg-yr/kg-d)	SFSadj	717		430		158		53		1359	
Surface Area Tapwater-age adjusted (cm2-yr/kg)	Sawr_adj	8504		5102		7838		2613		24056	

Early Life-Stage Factors - Urban Residential	Symbol	0 - 2 Yea	rs	3 - 6 Yea	rs	7 - 16 Yea	rs	17 - 26 Yea	ars	Total	
(See Note 22)			Note		Note		Note		Note		Note
Exposure Duration (yr)	ED	2		4		0		5		11	
Adjusted Exposure Duration (yr)	EDadj	20		12		0		5		37	
Ingestion Factor - Soil (mg-yr/kg-d)	IFSadj	267		160		0		6		433	
Ingestion Factor - Water (L-yr/kg-d)	IFWadj	1.04		0.624		0		0.16		2	
Surface Area Tapwater-age adjusted (cm2-yr/kg)	Sawu_adj	8504		5102		0		1306		14913	
Surface Area Factor - Skin (mg-yr/kg-d)	SFSadj	717		430		0		26		1174	

Early Life-Stage Factors - Vinyl Chloride Residential	Symbol	0 - 6 Yea	rs	0 - 6 Year	rs	7 - 30 Yea	rs	7 - 70 Yea	rs	Total	
(See Note 22)			Note		Note		Note		Note		Note
Exposure Duration (yr)	ED	6		6		24		64		100	
Adjusted Exposure Duration (yr)	EDadj	6		6		24		64		100	
Ingestion Factor - Soil (mg-yr/kg-d)	IFSadj	80		80		30		80		270	
Ingestion Factor - Water (L-yr/kg-d)	IFWadj	0.3		0.3		0.8		2.0		3.4	
Surface Area Factor - Skin (mg-yr/kg-d)	SFSadj	190		190		127		338		844	

Early Life-Stage Factors - Vinyl Chloride Urban Residential	Symbol	0 - 6 Yea	rs	0 - 6 Yea	rs	7 - 11 Yea	irs	7 - 70 Yea	rs	Total	
(See Note 22)			Note		Note		Note		Note		Note
Exposure Duration (yr)	ED	6		6		5		64		81	
Adjusted Exposure Duration (yr)	EDadj	6		6		5		64		81	
Ingestion Factor - Soil (mg-yr/kg-d)	IFSadj	80		80		6.3		80		246	
Ingestion Factor - Water (L-yr/kg-d)	IFWadj	0.3		0.3		0.2		2.0		2.8	
Surface Area Factor - Skin (mg-yr/kg-d)	SFSadj	190		190		26		338		744	

For explanation of notes, please see "Notes to Accompany Risk-Based Concentrations for Individual Chemicals."

APPENDIX G

ProUCL Output

APPENDIX G-1

Upland EU (0-5 feet)

UCL Statistics for Data Sets with Non-Detects

User Selected OptionsDate/Time of Computation1/30/2016 4:36:35 PMFrom FileUpland_EU_surfacedata_0-5.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

Arsenic

General Statistics

Total Number of Observations	62	Number of Distinct Observations	56
Number of Detects	56	Number of Non-Detects	6
Number of Distinct Detects	51	Number of Distinct Non-Detects	6
Minimum Detect	1.3	Minimum Non-Detect	0.6
Maximum Detect	24	Maximum Non-Detect	42
Variance Detects	8.944	Percent Non-Detects	9.677%
Mean Detects	4.327	SD Detects	2.991
Median Detects	4.02	CV Detects	0.691
Skewness Detects	5.292	Kurtosis Detects	34.94
Mean of Logged Detects	1.345	SD of Logged Detects	0.462

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.542	Normal GOF Test on Detected Observations Only			
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.232	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.118	Detected Data Not Normal at 5% Significance Level			

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	4.112	Standard Error of Mean	0.383
SD	2.956	95% KM (BCA) UCL	4.75
95% KM (t) UCL	4.752	95% KM (Percentile Bootstrap) UCL	4.752
95% KM (z) UCL	4.743	95% KM Bootstrap t UCL	5.178
90% KM Chebyshev UCL	5.262	95% KM Chebyshev UCL	5.782
97.5% KM Chebyshev UCL	6.505	99% KM Chebyshev UCL	7.924

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.009	Anderson-Darling GOF Test				
5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance Level				
K-S Test Statistic	0.147	Kolmogrov-Smirnoff GOF				
5% K-S Critical Value	0.119	Detected Data Not Gamma Distributed at 5% Significance Level				
Detected Data Not Gamma Distributed at 5% Significance Level						

Gamma Statistics on Detected Data Only

4.1	k star (bias corrected MLE)	4.32	k hat (MLE)
1.055	Theta star (bias corrected MLE)	1.002	Theta hat (MLE)
459.2	nu star (bias corrected)	483.8	nu hat (MLE)
2.137	MLE Sd (bias corrected)	4.327	MLE Mean (bias corrected)

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	1.935	nu hat (KM)	239.9
Approximate Chi Square Value (239.94, α)	205.1	Adjusted Chi Square Value (239.94, β)	204.3
95% Gamma Approximate KM-UCL (use when n>=50)	4.811	95% Gamma Adjusted KM-UCL (use when n<50)	4.829

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.281	Mean	4.085
Maximum	24	Median	3.895
SD	2.97	CV	0.727
k hat (MLE)	2.954	k star (bias corrected MLE)	2.822
Theta hat (MLE)	1.383	Theta star (bias corrected MLE)	1.447
nu hat (MLE)	366.3	nu star (bias corrected)	350
MLE Mean (bias corrected)	4.085	MLE Sd (bias corrected)	2.431
		Adjusted Level of Significance (β)	0.0461
Approximate Chi Square Value (349.95, α)	307.6	Adjusted Chi Square Value (349.95, β)	306.7
95% Gamma Approximate UCL (use when n>=50)	4.647	95% Gamma Adjusted UCL (use when n<50)	4.661

Lognormal G	GOF Test or	Detected	Observations	Only
-------------	-------------	----------	--------------	------

Lilliefors Test Statistic	0.171	Lilliefors GOF Test				
5% Lilliefors Critical Value	0.118	Detected Data Not Lognormal at 5% Significance Level				
Detected Data Not Lognormal at 5% Significance Level						

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	4.134	Mean in Log Scale	1.288
SD in Original Scale	2.917	SD in Log Scale	0.489
95% t UCL (assumes normality of ROS data)	4.753	95% Percentile Bootstrap UCL	4.789
95% BCA Bootstrap UCL	5.073	95% Bootstrap t UCL	5.194
95% H-UCL (Log ROS)	4.59		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	4.434	Mean in Log Scale	1.272
SD in Original Scale	3.692	SD in Log Scale	0.694
95% t UCL (Assumes normality)	5.217	95% H-Stat UCL	5.422

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 5.782

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

	General S		
Total Number of Observations	62	Number of Distinct Observations	50
		Number of Missing Observations	0
Minimum	12.7	Mean	923.7
Maximum		Median	19.7
	7109	Std. Error of Mean	902.9
Coefficient of Variation	7.697	Skewness	7.874
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.129	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.533	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5%	5 Significance Level	
		al Distribution	
95% Normal UCL	0.400	95% UCLs (Adjusted for Skewness)	0074
95% Student's-t UCL	2432	95% Adjusted-CLT UCL (Chen-1995)	
		95% Modified-t UCL (Johnson-1978)	2582
	Gamma G	OF Test	
A-D Test Statistic	24.33	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value 0.915 Data Not Gamma Distributed at 5% Significance Level		el	
K-S Test Statistic 0.541 Kolmogrov-Smirnoff Gamma GOF Test			
5% K-S Critical Value 0.126 Data Not Gamma Distributed at 5% Significance Level			el
Data Not Gamn	na Distributed	at 5% Significance Level	
	Gamma S	totistics	
k bot (MLE)	0.199	k star (bias corrected MLE)	0.2
k hat (MLE) Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)	24.69	nu star (bias corrected MLE)	24.82
MLE Mean (bias corrected)		MLE Sd (bias corrected)	
WEE Wear (bias concelea)	525.7	Approximate Chi Square Value (0.05)	14.48
Adjusted Level of Significance	0.0461	Adjusted Chi Square Value	14.29
	0.0401		14.25
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	1584	95% Adjusted Gamma UCL (use when n<50)	1605
	Lognormal (GOF Test	
Shapiro Wilk Test Statistic	0.307	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.352	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Lognormal at 5% Significance Level	
		% Significance Level	
	-	-	

Lognormal Statistics

Minimum of Logged Data	2.542	Mean of logged Data	3.129
Maximum of Logged Data	10.93	SD of logged Data	1.037

Assuming Lognormal Distribution

95% H-UCL 52.9 95% Chebyshev (MVUE) UCL 65.18 99% Chebyshev (MVUE) UCL 99.24
 90% Chebyshev (MVUE) UCL
 56.91

 97.5% Chebyshev (MVUE) UCL
 76.67

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 2409	95% Jackknife UCL 2432
95% Standard Bootstrap UCL 2332	95% Bootstrap-t UCL 1354600
95% Hall's Bootstrap UCL 613687	95% Percentile Bootstrap UCL 2729
95% BCA Bootstrap UCL 3633	
90% Chebyshev(Mean, Sd) UCL 3632	95% Chebyshev(Mean, Sd) UCL 4859
97.5% Chebyshev(Mean, Sd) UCL 6562	99% Chebyshev(Mean, Sd) UCL 9907

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 4859

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

General Statistics

Number of Observations 62

	Number of Missing Observations	0
2.7	Mean	55.2
1420	Median	8.625
203.1	Std. Error of Mean	25.79
3.679	Skewness	5.85
	2.7 1420 203.1 3.679	2.7Mean1420Median203.1Std. Error of Mean

Number of Distinct Observations

60

Normal GOF Test

Shapiro Wilk Test Statistic	0.276	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.408	Lilliefors GOF Test
5% Lilliefors Critical Value	0.113	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Data Not	Normal at 5% 3		
Ass	suming Normal	Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	98.27	95% Adjusted-CLT UCL (Chen-1995)	118.1
		95% Modified-t UCL (Johnson-1978)	101.5
	Gamma GO	PF Test	
A-D Test Statistic	11.44	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.831	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.384	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.121	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed a	at 5% Significance Level	
	Gamma Sta	atistics	
k hat (MLE)	0.436	k star (bias corrected MLE)	0.425
Theta hat (MLE)	126.7	Theta star (bias corrected MLE)	129.7
nu hat (MLE)	54.04	nu star (bias corrected)	52.75
MLE Mean (bias corrected)	55.2	MLE Sd (bias corrected)	84.63
		Approximate Chi Square Value (0.05)	37.07
Adjusted Level of Significance	0.0461	Adjusted Chi Square Value	36.76
Ass	uming Gamma	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	78.56	95% Adjusted Gamma UCL (use when n<50)	79.22
	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.758	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	1.873E-13	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal at 5%	6 Significance Level	
		tatiatian	

Lognormal Statistics

Minimum of Logged Data	0.993	Mean of logged Data	2.521
Maximum of Logged Data	7.258	SD of logged Data	1.224

Assuming Lognormal Distribution

 95% H-UCL
 37.56

 95% Chebyshev (MVUE) UCL
 47.8

 99% Chebyshev (MVUE) UCL
 76.01

 90% Chebyshev (MVUE) UCL
 40.94

 97.5% Chebyshev (MVUE) UCL
 57.32

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	97.62	95% Jackknife UCL	98.27
95% Standard Bootstrap UCL	96.81	95% Bootstrap-t UCL	269.1
95% Hall's Bootstrap UCL	263.8	95% Percentile Bootstrap UCL	103
95% BCA Bootstrap UCL	123.5		
90% Chebyshev(Mean, Sd) UCL	132.6	95% Chebyshev(Mean, Sd) UCL	167.6
97.5% Chebyshev(Mean, Sd) UCL	216.3	99% Chebyshev(Mean, Sd) UCL	311.8

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 167.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	50
Number of Detects	7	Number of Non-Detects	1
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	0.212	Minimum Non-Detect	0.23
Maximum Detect	6.43	Maximum Non-Detect	0.23
Variance Detects	5.172	Percent Non-Detects	12.5%
Mean Detects	1.583	SD Detects	2.274
Median Detects	0.342	CV Detects	1.436
Skewness Detects	2.079	Kurtosis Detects	4.447
Mean of Logged Detects	-0.359	SD of Logged Detects	1.356

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.697	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.279	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.335	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Approximate Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.412	Standard Error of Mean	0.772
SD	2.021	95% KM (BCA) UCL	2.704
95% KM (t) UCL	2.874	95% KM (Percentile Bootstrap) UCL	2.697
95% KM (z) UCL	2.681	95% KM Bootstrap t UCL	6.911
90% KM Chebyshev UCL	3.727	95% KM Chebyshev UCL	4.776
97.5% KM Chebyshev UCL	6.232	99% KM Chebyshev UCL	9.091

Gamma GOF Tests on Detected Observations Only

D Test Statistic 0.619 Anders	on-Darling GOF Test			
O Critical Value 0.737 Detected data appear Gan	nma Distributed at 5% Significance Level			
S Test Statistic 0.307 Kolmo	ogrov-Smirnoff GOF			
S Critical Value 0.323 Detected data appear Gan	nma Distributed at 5% Significance Level			
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

k hat (MLE)	0.734	k star (bias corrected MLE)	0.515
Theta hat (MLE)	2.158	Theta star (bias corrected MLE)	3.077
nu hat (MLE)	10.27	nu star (bias corrected)	7.204
MLE Mean (bias corrected)	1.583	MLE Sd (bias corrected)	2.207

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	0.488	nu hat (KM)	7.809
Approximate Chi Square Value (7.81, α)	2.625	Adjusted Chi Square Value (7.81, β)	1.929
95% Gamma Approximate KM-UCL (use when n>=50)	4.2	95% Gamma Adjusted KM-UCL (use when n<50)	5.717

General Statistics

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

For gamma distributed detected data, BTVs ar	d UCLs may	be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	1.387
Maximum	6.43	Median	0.304
SD	2.178	CV	1.571
k hat (MLE)	0.519	k star (bias corrected MLE)	0.408
Theta hat (MLE)	2.671	Theta star (bias corrected MLE)	3.4
nu hat (MLE)	8.307	nu star (bias corrected)	6.525
MLE Mean (bias corrected)	1.387	MLE Sd (bias corrected)	2.171
		Adjusted Level of Significance (β)	0.0195
Approximate Chi Square Value (6.52, α)	1.914	Adjusted Chi Square Value (6.52, β)	1.348
95% Gamma Approximate UCL (use when n>=50)	4.728	95% Gamma Adjusted UCL (use when n<50)	6.709
Lognormal GOF	Test on Det	ected Observations Only	
Shapiro Wilk Test Statistic	0.856	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.272	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.335	Detected Data appear Lognormal at 5% Significance Le	evel
Detected Data app	ear Lognorm	al at 5% Significance Level	
	Statiation I In	ing Imputed Non-Detects	
Mean in Original Scale	1.405	Mean in Log Scale	-0.545
SD in Original Scale	2.165	SD in Log Scale	1.361
95% t UCL (assumes normality of ROS data)	2.105	95% Percentile Bootstrap UCL	2.793
95% BCA Bootstrap UCL	3.488	95% Bootstrap t UCL	6.932
95% H-UCL (Log ROS)	13.79		0.352
33 % TPOCE (Log (103)	13.75		
UCLs using Lognormal Distribution and K	M Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	-0.507	95% H-UCL (KM -Log)	8.567
KM SD (logged)	1.238	95% Critical H Value (KM-Log)	4.036
KM Standard Error of Mean (logged)	0.473		
	DL/2 Sta	tistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.4	Mean in Log Scale	-0.584
SD in Original Scale	2.169	SD in Log Scale	1.408
95% t UCL (Assumes normality)	2.852	95% H-Stat UCL	16.37
DL/2 is not a recommended met	nod, provided	l for comparisons and historical reasons	
Nonparamet	ric Distributio	n Free UCL Statistics	
Detected Data appear Approx	imate Norma	I Distributed at 5% Significance Level	
:	Suggested U	CL to Use	
	2 974	05% KM (Dereentile Restation) LICI	2 607

95% KM (t) UCL 2.874

95% KM (Percentile Bootstrap) UCL 2.697

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected OptionsDate/Time of Computation1/30/2016 4:40:26 PMFrom FileUpland_EU_surfacedata_0-5.xlsFull PrecisionOFFConfidence Coefficient90%Number of Bootstrap Operations2000

Arsenic

General Statistics

Total Number of Observations	62	Number of Distinct Observations	56
Number of Detects	56	Number of Non-Detects	6
Number of Distinct Detects	51	Number of Distinct Non-Detects	6
Minimum Detect	1.3	Minimum Non-Detect	0.6
Maximum Detect	24	Maximum Non-Detect	42
Variance Detects	8.944	Percent Non-Detects	9.677%
Mean Detects	4.327	SD Detects	2.991
Median Detects	4.02	CV Detects	0.691
Skewness Detects	5.292	Kurtosis Detects	34.94
Mean of Logged Detects	1.345	SD of Logged Detects	0.462

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.542	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors GOF Test
5% Lilliefors Critical Value	0.118	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	4.112	Standard Error of Mean	0.383
SD	2.956	90% KM (BCA) UCL	4.668
90% KM (t) UCL	4.609	90% KM (Percentile Bootstrap) UCL	4.613
90% KM (z) UCL	4.603	90% KM Bootstrap t UCL	4.989
90% KM Chebyshev UCL	5.262	95% KM Chebyshev UCL	5.782
97.5% KM Chebyshev UCL	6.505	99% KM Chebyshev UCL	7.924

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.009	Anderson-Darling GOF Test		
5% A-D Critical Value	0.754	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.147	Kolmogrov-Smirnoff GOF		
5% K-S Critical Value	0.119	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

4.1	k star (bias corrected MLE)	4.32	k hat (MLE)
1.055	Theta star (bias corrected MLE)	1.002	Theta hat (MLE)
459.2	nu star (bias corrected)	483.8	nu hat (MLE)
2.137	MLE Sd (bias corrected)	4.327	MLE Mean (bias corrected)

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	1.935	nu hat (KM)	239.9
Approximate Chi Square Value (239.94, α)	212.3	Adjusted Chi Square Value (239.94, β)	211.8
90% Gamma Approximate KM-UCL (use when n>=50)	4.647	90% Gamma Adjusted KM-UCL (use when n<50)	4.658

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.281	Mean	4.085
Maximum	24	Median	3.895
SD	2.97	CV	0.727
k hat (MLE)	2.954	k star (bias corrected MLE)	2.822
Theta hat (MLE)	1.383	Theta star (bias corrected MLE)	1.447
nu hat (MLE)	366.3	nu star (bias corrected)	350
MLE Mean (bias corrected)	4.085	MLE Sd (bias corrected)	2.431
		Adjusted Level of Significance (β)	0.0957
Approximate Chi Square Value (349.95, α)	316.5	Adjusted Chi Square Value (349.95, β)	315.9
90% Gamma Approximate UCL (use when n>=50)	4.516	90% Gamma Adjusted UCL (use when n<50)	4.525

Lognormal GOF	Test on Detected	Observations Only
---------------	------------------	-------------------

Lilliefors Test Statistic	0.171	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.118	Detected Data Not Lognormal at 5% Significance Level		
Detected Data Not Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	4.134	Mean in Log Scale	1.288
SD in Original Scale	2.917	SD in Log Scale	0.489
90% t UCL (assumes normality of ROS data)	4.614	90% Percentile Bootstrap UCL	4.663
90% BCA Bootstrap UCL	4.846	90% Bootstrap t UCL	5.052
90% H-UCL (Log ROS)	4.468		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	4.434	Mean in Log Scale	1.272
SD in Original Scale	3.692	SD in Log Scale	0.694
90% t UCL (Assumes normality)	5.041	90% H-Stat UCL	5.199

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coefficient

	- ·		
T		Statistics	50
Total Number of Observations	62	Number of Distinct Observations	50
		Number of Missing Observations	0
Minimum	12.7	Mean	923.7
Maximum		Median	19.7
	7109	Std. Error of Mean	902.9
Coefficient of Variation	7.697	Skewness	7.874
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.129	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.533	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	% Significance Level	
As	suming Nor	mal Distribution	
90% Normal UCL		90% UCLs (Adjusted for Skewness)	
90% Student's-t UCL	2093	90% Adjusted-CLT UCL (Chen-1995)	2726
		90% Modified-t UCL (Johnson-1978)	2244
	Gamma	GOF Test	
A-D Test Statistic	24.33	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.915	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.541	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.126	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamn	na Distribute	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.199	k star (bias corrected MLE)	0.2
Theta hat (MLE)	4640	Theta star (bias corrected MLE)	4614
nu hat (MLE)	24.69	nu star (bias corrected)	24.82
MLE Mean (bias corrected)	923.7	MLE Sd (bias corrected)	2064
		Approximate Chi Square Value (0.1)	16.33
Adjusted Level of Significance	0.0957	Adjusted Chi Square Value	16.2
Ass	umina Gan	nma Distribution	
90% Approximate Gamma UCL (use when n>=50))	-	90% Adjusted Gamma UCL (use when n<50)	1415
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.307	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.352	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Lognormal at 5% Significance Level	
		5% Significance Level	

Lognormal Statistics

Minimum of Logged Data	2.542	Mean of logged Data	3.129
Maximum of Logged Data	10.93	SD of logged Data	1.037

Assuming Lognormal Distribution

 90% H-UCL
 119.2

 95% Chebyshev (MVUE) UCL
 65.18

 99% Chebyshev (MVUE) UCL
 99.24

 90% Chebyshev (MVUE) UCL
 56.91

 97.5% Chebyshev (MVUE) UCL
 76.67

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

90% CLT UCL 2081	90% Jackknife UCL 2093
90% Standard Bootstrap UCL 2065	90% Bootstrap-t UCL 1193500
90% Hall's Bootstrap UCL 531786	90% Percentile Bootstrap UCL 1828
90% BCA Bootstrap UCL 2730	
90% Chebyshev(Mean, Sd) UCL 3632	95% Chebyshev(Mean, Sd) UCL 4859
97.5% Chebyshev(Mean, Sd) UCL 6562	99% Chebyshev(Mean, Sd) UCL 9907

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coeficient

General Statistics

Total Number of Observations 62

		Number of Missing Observations	0
Minimum	2.7	Mean	55.2
Maximum	1420	Median	8.625
SD	203.1	Std. Error of Mean	25.79
Coefficient of Variation	3.679	Skewness	5.85

Number of Distinct Observations

60

Normal GOF Test

Shapiro Wilk Test Statistic	0.276	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.408	Lilliefors GOF Test
5% Lilliefors Critical Value	0.113	Data Not Normal at 5% Significance Level
B • • • • •		

Data Not Normal at 5% Significance Level			
Ass	uming Norm	al Distribution	
90% Normal UCL	-	90% UCLs (Adjusted for Skewness)	
90% Student's-t UCL	88.61	90% Adjusted-CLT UCL (Chen-1995)	101.9
		90% Modified-t UCL (Johnson-1978)	91.81
	Gamma G	OF Test	
A-D Test Statistic	11.44	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.831	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.384	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.121	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed	d at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	0.436	k star (bias corrected MLE)	0.425
Theta hat (MLE)	126.7	Theta star (bias corrected MLE)	129.7
nu hat (MLE)	54.04	nu star (bias corrected)	52.75
MLE Mean (bias corrected)	55.2	MLE Sd (bias corrected)	84.63
		Approximate Chi Square Value (0.1)	40.09
Adjusted Level of Significance	0.0957	Adjusted Chi Square Value	39.88
Ass	uming Gamr	na Distribution	
90% Approximate Gamma UCL (use when n>=50))	72.63	90% Adjusted Gamma UCL (use when n<50)	73.02
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.758	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	I.873E-13	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.113	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal at !	5% Significance Level	
	Lognormal	Statistics	

Minimum of Logged Data	0.993	Mean of logged Data	2.521
Maximum of Logged Data	7.258	SD of logged Data	1.224

Assuming Lognormal Distribution

 90% H-UCL
 46.4

 95% Chebyshev (MVUE) UCL
 47.8

 99% Chebyshev (MVUE) UCL
 76.01

 90% Chebyshev (MVUE) UCL
 40.94

 97.5% Chebyshev (MVUE) UCL
 57.32

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

90% CLT UCL	88.25	90% Jackknife UCL	88.61
90% Standard Bootstrap UCL	87.7	90% Bootstrap-t UCL	195.9
90% Hall's Bootstrap UCL	255.4	90% Percentile Bootstrap UCL	93.04
90% BCA Bootstrap UCL	107.1		
90% Chebyshev(Mean, Sd) UCL	132.6	95% Chebyshev(Mean, Sd) UCL	167.6
97.5% Chebyshev(Mean, Sd) UCL	216.3	99% Chebyshev(Mean, Sd) UCL	311.8

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coeficient

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	50
Number of Detects	7	Number of Non-Detects	1
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	0.212	Minimum Non-Detect	0.23
Maximum Detect	6.43	Maximum Non-Detect	0.23
Variance Detects	5.172	Percent Non-Detects	12.5%
Mean Detects	1.583	SD Detects	2.274
Median Detects	0.342	CV Detects	1.436
Skewness Detects	2.079	Kurtosis Detects	4.447
Mean of Logged Detects	-0.359	SD of Logged Detects	1.356

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.697	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.279	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.335	Detected Data appear Normal at 5% Significance Level		
Detected Data appear Approximate Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.412	Standard Error of Mean	0.772
SD	2.021	90% KM (BCA) UCL	2.317
90% KM (t) UCL	2.504	90% KM (Percentile Bootstrap) UCL	2.333
90% KM (z) UCL	2.401	90% KM Bootstrap t UCL	4.218
90% KM Chebyshev UCL	3.727	95% KM Chebyshev UCL	4.776
97.5% KM Chebyshev UCL	6.232	99% KM Chebyshev UCL	9.091

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.619	Anderson-Darling GOF Test		
5% A-D Critical Value	0.737	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.307	Kolmogrov-Smirnoff GOF		
5% K-S Critical Value	0.323	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.734	k star (bias corrected MLE)	0.515
2.158	Theta star (bias corrected MLE)	3.077
10.27	nu star (bias corrected)	7.204
1.583	MLE Sd (bias corrected)	2.207
	2.158 10.27	2.158Theta star (bias corrected MLE)10.27nu star (bias corrected)

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	0.488	nu hat (KM)	7.809
Approximate Chi Square Value (7.81, α)	3.363	Adjusted Chi Square Value (7.81, β)	2.807
90% Gamma Approximate KM-UCL (use when n>=50)	3.278	90% Gamma Adjusted KM-UCL (use when n<50)	3.927

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

•		be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	1.387
Maximum	6.43	Median	0.304
SD	2.178	CV	1.571
k hat (MLE)	0.519	k star (bias corrected MLE)	0.408
Theta hat (MLE)	2.671	Theta star (bias corrected MLE)	3.4
nu hat (MLE)	8.307	nu star (bias corrected)	6.525
MLE Mean (bias corrected)	1.387	MLE Sd (bias corrected)	2.171
		Adjusted Level of Significance (β)	0.0607
Approximate Chi Square Value (6.52, α)	2.532	Adjusted Chi Square Value (6.52, β)	2.065
90% Gamma Approximate UCL (use when n>=50)	3.573	90% Gamma Adjusted UCL (use when n<50)	4.382
Lognormal GOF	[:] Test on Dete	acted Observations Only	
Shapiro Wilk Test Statistic	0.856	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.272	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.335	Detected Data appear Lognormal at 5% Significance Le	evel
Detected Data app	ear Lognorma	al at 5% Significance Level	
Lognormal ROS	Statistics Usi	ng Imputed Non-Detects	
Mean in Original Scale	1.405	Mean in Log Scale	-0.545
SD in Original Scale	2.165	SD in Log Scale	1.361
90% t UCL (assumes normality of ROS data)	2.488	90% Percentile Bootstrap UCL	2.409
90% BCA Bootstrap UCL	2.806	90% Bootstrap t UCL	4.181
90% H-UCL (Log ROS)	6.574		
UCLs using Lognormal Distribution and K	M Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	-0.507	90% H-UCL (KM -Log)	4.609
KM SD (logged)	1.238	90% Critical H Value (KM-Log)	2.712
KM Standard Error of Mean (logged)	0.473		
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.4	Mean in Log Scale	-0.584
SD in Original Scale	2.169	SD in Log Scale	1.408
90% t UCL (Assumes normality)	2.485	90% H-Stat UCL	7.422
DL/2 is not a recommended met	hod, provided	for comparisons and historical reasons	
Nonparamet	ric Distributior	n Free UCL Statistics	

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coefficient

APPENDIX G-2

Upland EU (0-15 feet)

UCL Statistics for Data Sets with Non-Detects

3
1/30/2016 10:53:25 AM
Upland_EU_alldata.xls
OFF
95%
2000

Arsenic

General Statistics

Total Number of Observations	77	Number of Distinct Observations	68
Number of Detects	69	Number of Non-Detects	8
Number of Distinct Detects	61	Number of Distinct Non-Detects	8
Minimum Detect	0.89	Minimum Non-Detect	0.6
Maximum Detect	24	Maximum Non-Detect	42
Variance Detects	7.758	Percent Non-Detects	10.39%
Mean Detects	4.103	SD Detects	2.785
Median Detects	3.89	CV Detects	0.679
Skewness Detects	5.45	Kurtosis Detects	38.87
Mean of Logged Detects	1.289	SD of Logged Detects	0.477

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.572	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	3.914	Standard Error of Mean	0.318
SD	2.737	95% KM (BCA) UCL	4.544
95% KM (t) UCL	4.444	95% KM (Percentile Bootstrap) UCL	4.462
95% KM (z) UCL	4.437	95% KM Bootstrap t UCL	4.771
90% KM Chebyshev UCL	4.868	95% KM Chebyshev UCL	5.3
97.5% KM Chebyshev UCL	5.9	99% KM Chebyshev UCL	7.078

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.71	Anderson-Darling GOF Test		
5% A-D Critical Value	0.755	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.12	Kolmogrov-Smirnoff GOF		
5% K-S Critical Value	0.108	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

4.051	k star (bias corrected MLE)	4.225	k hat (MLE)
1.013	Theta star (bias corrected MLE)	0.971	Theta hat (MLE)
559.1	nu star (bias corrected)	583.1	nu hat (MLE)
2.039	MLE Sd (bias corrected)	4.103	MLE Mean (bias corrected)

k hat (KM)	2.045	nu hat (KM)	314.9
Approximate Chi Square Value (314.94, α)	274.8	Adjusted Chi Square Value (314.94, β)	274.1
95% Gamma Approximate KM-UCL (use when n>=50)	4.485	95% Gamma Adjusted KM-UCL (use when n<50)	4.497

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.275	Mean	3.887
Maximum	24	Median	3.74
SD	2.743	CV	0.706
k hat (MLE)	3.152	k star (bias corrected MLE)	3.038
Theta hat (MLE)	1.233	Theta star (bias corrected MLE)	1.279
nu hat (MLE)	485.4	nu star (bias corrected)	467.9
MLE Mean (bias corrected)	3.887	MLE Sd (bias corrected)	2.23
		Adjusted Level of Significance (β)	0.0469
Approximate Chi Square Value (467.86, α)	418.7	Adjusted Chi Square Value (467.86, β)	417.8
95% Gamma Approximate UCL (use when n>=50)	4.343	95% Gamma Adjusted UCL (use when n<50)	4.352

Lognormal GOF	Test on Detec	cted Observations Only	
Lilliefors Test Statistic	0.151	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.107	Detected Data Not Lognormal at 5% Significance Leve	I
Detected Data No	t Lognormal a	at 5% Significance Level	
Lognormal ROS	Statistics Usin	g Imputed Non-Detects	
Mean in Original Scale	3.921	Mean in Log Scale	1.235
SD in Original Scale	2 705	SD in Log Scale	0 497

SD in Original Scale	2.705	SD in Log Scale	0.497
95% t UCL (assumes normality of ROS data)	4.435	95% Percentile Bootstrap UCL	4.489
95% BCA Bootstrap UCL	4.776	95% Bootstrap t UCL	4.822
95% H-UCL (Log ROS)	4.327		

DL/2 Statistics

DU2	Normai	DL/2 Log-Transf	ormea	
	Mean in Original Scale	4.211	Mean in Log Scale	1.232
	SD in Original Scale	3.412	SD in Log Scale	0.668
95% t	UCL (Assumes normality)	4.859	95% H-Stat UCL	4.98
2/ IO	is not a recommended meth	od provided for comparisons and historical reasons		

DL/2 is not a recommended method, provided for comparisons and historical reason

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (BCA) UCL 4.544

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	77	Number of Distinct Observations	53
		Number of Missing Observations	0
Minimum	12.7	Mean	747.7
Maximum	56000	Median	19.3
SD	6379	Std. Error of Mean	727
Coefficient of Variation	8.532	Skewness	8.775

Normal GOF Test

Shapiro Wilk Test Statistic	0.116	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.53	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Data Not Normal at 5% Significance Level
Data Not N	lormal at 5% Si	gnificance Level

Data Not	Normal at 5% S	Significance Level	
As	suming Normal	Distribution	
95% Normal UCL	-	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1958	95% Adjusted-CLT UCL (Chen-1995)	2720
		95% Modified-t UCL (Johnson-1978)	2079
	Gamma GO	F Test	
A-D Test Statistic	30.43	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.911	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.538	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.113	Data Not Gamma Distributed at 5% Significance Leve	əl
Data Not Gamn	na Distributed a	t 5% Significance Level	
	Gamma Sta	tistics	
k hat (MLE)	0.208	k star (bias corrected MLE)	0.209
Theta hat (MLE)	3595	Theta star (bias corrected MLE)	3586
nu hat (MLE)	32.03	nu star (bias corrected)	32.11
MLE Mean (bias corrected)	747.7	MLE Sd (bias corrected)	1637
		Approximate Chi Square Value (0.05)	20.16
Adjusted Level of Significance	0.0469	Adjusted Chi Square Value	19.98
۵۹۹	uming Gamma	Distribution	
95% Approximate Gamma UCL (use when n>=50))	•	95% Adjusted Gamma UCL (use when n<50)	1202
		· · · · · · · · ·	
	Lognormal GC	DF Test	
Shapiro Wilk Test Statistic	0.301	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.34	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.101	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at 5%	Significance Level	
	Lognormal St	atistics	
Minimum of Logged Data	2.542	Mean of logged Data	3.1
Maximum of Logged Data	10.93	SD of logged Data	0.936
Δεςι	imina Loanorma	al Distribution	

Assuming Lognormal Distribution

95% H-UCL	43.57	90% Chebyshev (MVUE) UCL	46.92
95% Chebyshev (MVUE) UCL	52.71	97.5% Chebyshev (MVUE) UCL	60.75
99% Chebyshev (MVUE) UCL	76.55		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 1944	
95% Standard Bootstrap UCL 1941	
95% Hall's Bootstrap UCL 431829	
95% BCA Bootstrap UCL 3656	
90% Chebyshev(Mean, Sd) UCL 2929	
97.5% Chebyshev(Mean, Sd) UCL 5288	

95% Jackknife UCL 1958 95% Bootstrap-t UCL 984666 95% Percentile Bootstrap UCL 2202

95% Chebyshev(Mean, Sd) UCL 3917

99% Chebyshev(Mean, Sd) UCL 7981

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 3917

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	77	Number of Distinct Observations	74
		Number of Missing Observations	0
Minimum	2.7	Mean	46.17
Maximum	1420	Median	8.1
SD	182.9	Std. Error of Mean	20.85
Coefficient of Variation	3.962	Skewness	6.529

Shapiro Wilk GOF Test

Normal GOF Test Shapiro Wilk Test Statistic 0.251

5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.41	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Data Not Normal at 5% Significance Level

Data Not	Normal at 5% Si	ignificance Level	
Ass	suming Normal [Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	80.88	95% Adjusted-CLT UCL (Chen-1995)	97.03
		95% Modified-t UCL (Johnson-1978)	83.47
	Gamma GOF	Test	
A-D Test Statistic	14.36	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.831	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.379	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.108	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed at	5% Significance Level	
	Gamma Stati	stics	
k hat (MLE)	0.447	k star (bias corrected MLE)	0.439
Theta hat (MLE)	103.2	Theta star (bias corrected MLE)	105.2
nu hat (MLE)	68.9	nu star (bias corrected)	67.55
MLE Mean (bias corrected)	46.17	MLE Sd (bias corrected)	69.71
		Approximate Chi Square Value (0.05)	49.64
Adjusted Level of Significance	0.0469	Adjusted Chi Square Value	49.34
Ass	uming Gamma I	Distribution	
95% Approximate Gamma UCL (use when n>=50))	62.83	95% Adjusted Gamma UCL (use when n<50)	63.2
	Lognormal GO	F Test	
Shapiro Wilk Test Statistic	0.756	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.101	Data Not Lognormal at 5% Significance Level	
Data Not Lo	gnormal at 5%	Significance Level	
	Lognormal Sta	tistics	
Minimum of Logged Data	0.993	Mean of logged Data	2.388
Maximum of Logged Data	7.258	SD of logged Data	1.168

Assuming Lognormal Distribution

95% H-UCL	29.82	90% Chebyshev (MVUE) UCL	31.8
95% Chebyshev (MVUE) UCL	36.59	97.5% Chebyshev (MVUE) UCL	43.24
99% Chebyshev (MVUE) UCL	56.31		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	80.46	95% Jackknife UCL	80.88
95% Standard Bootstrap UCL	80.29	95% Bootstrap-t UCL	223.5
95% Hall's Bootstrap UCL	214	95% Percentile Bootstrap UCL	85.06
95% BCA Bootstrap UCL	108.5		
90% Chebyshev(Mean, Sd) UCL	108.7	95% Chebyshev(Mean, Sd) UCL	137
97.5% Chebyshev(Mean, Sd) UCL	176.4	99% Chebyshev(Mean, Sd) UCL	253.6

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 137

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

	General Statistics		
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	61
Number of Detects	9	Number of Non-Detects	3
Number of Distinct Detects	9	Number of Distinct Non-Detects	3
Minimum Detect	0.212	Minimum Non-Detect	0.23
Maximum Detect	6.43	Maximum Non-Detect	0.28
Variance Detects	4.217	Percent Non-Detects	25%
Mean Detects	1.29	SD Detects	2.053
Median Detects	0.284	CV Detects	1.591
Skewness Detects	2.414	Kurtosis Detects	6.055
Mean of Logged Detects	-0.574	SD of Logged Detects	1.25

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.614	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.345	Lilliefors GOF Test
5% Lilliefors Critical Value	0.295	Detected Data Not Normal at 5% Significance Level
Detected Data N	lot Normal at 5%	Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.023	Standard Error of Mean	0.533
SD	1.739	95% KM (BCA) UCL	1.945
95% KM (t) UCL	1.98	95% KM (Percentile Bootstrap) UCL	1.964
95% KM (z) UCL	1.899	95% KM Bootstrap t UCL	4.816
90% KM Chebyshev UCL	2.621	95% KM Chebyshev UCL	3.345
97.5% KM Chebyshev UCL	4.349	99% KM Chebyshev UCL	6.322

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.119	Anderson-Darling GOF Test
5% A-D Critical Value	0.753	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.361	Kolmogrov-Smirnoff GOF
5% K-S Critical Value	0.29	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Date Mat Oc		

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.558	k star (bias corrected MLE)	0.725	k hat (MLE)
2.314	Theta star (bias corrected MLE)	1.779	Theta hat (MLE)
10.04	nu star (bias corrected)	13.05	nu hat (MLE)
1.728	MLE Sd (bias corrected)	1.29	MLE Mean (bias corrected)

k hat (KM)	0.346	nu hat (KM)	8.301
Approximate Chi Square Value (8.30, α)	2.911	Adjusted Chi Square Value (8.30, β)	2.446
95% Gamma Approximate KM-UCL (use when n>=50)	2.918	95% Gamma Adjusted KM-UCL (use when n<50)	3.472

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

For gamma distributed detected data, BTVs an	id OCLS may b	e computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.97
Maximum	6.43	Median	0.257
SD	1.844	CV	1.901
k hat (MLE)	0.421	k star (bias corrected MLE)	0.371
Theta hat (MLE)	2.307	Theta star (bias corrected MLE)	2.615
nu hat (MLE)	10.09	nu star (bias corrected)	8.905
MLE Mean (bias corrected)	0.97	MLE Sd (bias corrected)	1.593
		Adjusted Level of Significance (β)	0.029
Approximate Chi Square Value (8.90, α)	3.269	Adjusted Chi Square Value (8.90, β)	2.77
5% Gamma Approximate UCL (use when n>=50)	2.643	95% Gamma Adjusted UCL (use when n<50)	3.12
Lognormal GOF	Test on Detec	ted Observations Only	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.322	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.295	Detected Data Not Lognormal at 5% Significance Leve	el
Detected Data No	ot Lognormal a	t 5% Significance Level	
Lognormal ROS	Statistics Using	g Imputed Non-Detects	
Lognormal ROS Mean in Original Scale	Statistics Using 1.01	g Imputed Non-Detects Mean in Log Scale	-0.879
•			-0.879 1.204
Mean in Original Scale	1.01	Mean in Log Scale	
Mean in Original Scale SD in Original Scale	1.01 1.823	Mean in Log Scale SD in Log Scale	1.204
Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	1.01 1.823 1.955	Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	1.204 1.955
Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	1.01 1.823 1.955 2.451	Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.204 1.955
Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	1.01 1.823 1.955 2.451 2.837	Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.204 1.955
Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	1.01 1.823 1.955 2.451 2.837	Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.204 1.955
Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal	1.01 1.823 1.955 2.451 2.837 DL/2 Statis	Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL tics	1.204 1.955 4.784

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 4.349

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options	6
Date/Time of Computation	1/30/2016 10:55:41 AM
From File	Upland_EU_alldata.xls
Full Precision	OFF
Confidence Coefficient	90%
Number of Bootstrap Operations	2000

Arsenic

General Statistics

Total Number of Observations	77	Number of Distinct Observations	68
Number of Detects	69	Number of Non-Detects	8
Number of Distinct Detects	61	Number of Distinct Non-Detects	8
Minimum Detect	0.89	Minimum Non-Detect	0.6
Maximum Detect	24	Maximum Non-Detect	42
Variance Detects	7.758	Percent Non-Detects	10.39%
Mean Detects	4.103	SD Detects	2.785
Median Detects	3.89	CV Detects	0.679
Skewness Detects	5.45	Kurtosis Detects	38.87
Mean of Logged Detects	1.289	SD of Logged Detects	0.477

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.572	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	3.914	Standard Error of Mean	0.318
SD	2.737	90% KM (BCA) UCL	4.268
90% KM (t) UCL	4.325	90% KM (Percentile Bootstrap) UCL	4.342
90% KM (z) UCL	4.322	90% KM Bootstrap t UCL	4.632
90% KM Chebyshev UCL	4.868	95% KM Chebyshev UCL	5.3
97.5% KM Chebyshev UCL	5.9	99% KM Chebyshev UCL	7.078

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.71	Anderson-Darling GOF Test
5% A-D Critical Value	0.755	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.12	Kolmogrov-Smirnoff GOF
5% K-S Critical Value	0.108	Detected Data Not Gamma Distributed at 5% Significance Level
Detected Data Not Ga	mma Dist	ributed at 5% Significance Level

Gamma Statistics on Detected Data Only

4.051	k star (bias corrected MLE)	4.225	k hat (MLE)
1.013	Theta star (bias corrected MLE)	0.971	Theta hat (MLE)
559.1	nu star (bias corrected)	583.1	nu hat (MLE)
2.039	MLE Sd (bias corrected)	4.103	MLE Mean (bias corrected)

k hat (KM)	2.045	nu hat (KM)	314.9
Approximate Chi Square Value (314.94, α)	283.2	Adjusted Chi Square Value (314.94, β)	282.8
90% Gamma Approximate KM-UCL (use when n>=50)	4.352	90% Gamma Adjusted KM-UCL (use when n<50)	4.359

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.275	Mean	3.887
Maximum	24	Median	3.74
SD	2.743	CV	0.706
k hat (MLE)	3.152	k star (bias corrected MLE)	3.038
Theta hat (MLE)	1.233	Theta star (bias corrected MLE)	1.279
nu hat (MLE)	485.4	nu star (bias corrected)	467.9
MLE Mean (bias corrected)	3.887	MLE Sd (bias corrected)	2.23
		Adjusted Level of Significance (β)	0.0966
Approximate Chi Square Value (467.86, α)	429.1	Adjusted Chi Square Value (467.86, β)	428.5
90% Gamma Approximate UCL (use when n>=50)	4.237	90% Gamma Adjusted UCL (use when n<50)	4.243

Lognormal GOF	Test on Detec	cted Observations Only	
Lilliefors Test Statistic	0.151	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.107	Detected Data Not Lognormal at 5% Significance Leve	
Detected Data No	ot Lognormal a	at 5% Significance Level	
Lognormal ROS	Statistics Usin	g Imputed Non-Detects	
Mean in Original Scale	3.921	Mean in Log Scale	1.235
SD in Original Scale	2.705	SD in Log Scale	0.497
6 t UCL (assumes normality of ROS data)	4.32	90% Percentile Bootstrap UCL	4.322
90% BCA Bootstrap UCL	4.471	90% Bootstrap t UCL	4.648
90% H-UCL (Log ROS)	4.221		

DL/2 Statistics

90%

DL/2 Normal	DL/2 Log-	Transformed	
Mean in Original Scale	4.211	Mean in Log Scale	1.232
SD in Original Scale	3.412	SD in Log Scale	0.668
90% t UCL (Assumes normality)	4.714	90% H-Stat UCL	4.809
DL/2 is not a recommended meth	od, provided for comparisons and historical rea	asons	

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coefficient

General Statistics

Total Number of Observations	77	Number of Distinct Observations	53
		Number of Missing Observations	0
Minimum	12.7	Mean	747.7
Maximum	56000	Median	19.3
SD	6379	Std. Error of Mean	727
Coefficient of Variation	8.532	Skewness	8.775

Normal GOF Test

Shapiro Wilk Test Statistic	0.116	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.53	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Data Not Normal at 5% Significance Level
Data Mat M	ormal at 5% Significance	Level

Data Not Normal at 5% Significance Level

Data Not	Normal at 5%	Significance Level	
As	suming Normal	Distribution	
90% Normal UCL		90% UCLs (Adjusted for Skewness)	
90% Student's-t UCL	1688	90% Adjusted-CLT UCL (Chen-1995)	2199
		90% Modified-t UCL (Johnson-1978)	1809
	Gamma GO	F Test	
A-D Test Statistic	30.43	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.911	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.538	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.113	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	na Distributed a	t 5% Significance Level	
	Gamma Sta	tistics	
k hat (MLE)	0.208	k star (bias corrected MLE)	0.209
Theta hat (MLE)	3595	Theta star (bias corrected MLE)	3586
nu hat (MLE)	32.03	nu star (bias corrected)	32.11
MLE Mean (bias corrected)	747.7	MLE Sd (bias corrected)	1637
		Approximate Chi Square Value (0.1)	22.36
Adjusted Level of Significance	0.0966	Adjusted Chi Square Value	22.24
Ass	suming Gamma	Distribution	
90% Approximate Gamma UCL (use when n>=50))	•	90% Adjusted Gamma UCL (use when n<50)	1080
	Lognormal G	DF Test	
Shapiro Wilk Test Statistic	0.301	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.34	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.101	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal at 5%	Significance Level	
	Lognormal S	atistics	
Minimum of Logged Data	2.542	Mean of logged Data	3.1
Maximum of Logged Data	10.93	SD of logged Data	0.936
A		al Distribution	

Assuming Lognormal Distribution

90% H-UCL	41.17	90% Chebyshev (MVUE) UCL	46.92
95% Chebyshev (MVUE) UCL	52.71	97.5% Chebyshev (MVUE) UCL	60.75
99% Chebyshev (MVUE) UCL	76.55		

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

90% CLT UCL 1679	90% Jackknife UCL 1688
90% Standard Bootstrap UCL 1657	90% Bootstrap-t UCL 862515
90% Hall's Bootstrap UCL 383997	90% Percentile Bootstrap UCL 1475
90% BCA Bootstrap UCL 2202	
90% Chebyshev(Mean, Sd) UCL 2929	95% Chebyshev(Mean, Sd) UCL 3917
97.5% Chebyshev(Mean, Sd) UCL 5288	99% Chebyshev(Mean, Sd) UCL 7981

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coeficient

General Statistics

Total Number of Observations	77	Number of Distinct Observations	74
		Number of Missing Observations	0
Minimum	2.7	Mean	46.17
Maximum	1420	Median	8.1
SD	182.9	Std. Error of Mean	20.85
Coefficient of Variation	3.962	Skewness	6.529

Normal GOF Test 0 251

Shapiro Wilk Test Statistic	0.251	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.41	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Data Not Normal at 5% Significance Level
Data Mat M	arment at EQU OF	million on Lovel

Data Not	Normal at 5%	Significance Level	
Ass	suming Normal	Distribution	
90% Normal UCL		90% UCLs (Adjusted for Skewness)	
90% Student's-t UCL	73.12	90% Adjusted-CLT UCL (Chen-1995)	83.96
		90% Modified-t UCL (Johnson-1978)	75.7
	Gamma GO	PF Test	
A-D Test Statistic	14.36	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.831	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.379	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.108	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gamm	a Distributed a	at 5% Significance Level	
	Gamma Sta	atistics	
k hat (MLE)	0.447	k star (bias corrected MLE)	0.439
Theta hat (MLE)	103.2	Theta star (bias corrected MLE)	105.2
nu hat (MLE)	68.9	nu star (bias corrected)	67.55
MLE Mean (bias corrected)	46.17	MLE Sd (bias corrected)	69.71
		Approximate Chi Square Value (0.1)	53.15
Adjusted Level of Significance	0.0966	Adjusted Chi Square Value	52.95
Ass	uming Gamma	a Distribution	
90% Approximate Gamma UCL (use when n>=50))	58.68	90% Adjusted Gamma UCL (use when n<50)	58.89
	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.756	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.101	Data Not Lognormal at 5% Significance Level	
Data Not Lo	ognormal at 5%	6 Significance Level	
	Lognormal S	tatistics	
Minimum of Logged Data	0.993	Mean of logged Data	2.388

Maximum of Logged Data SD of logged Data 1.168 7.258

Assur	ning Lognormal Distribution		
90% H-UCL	27.57	90% Chebyshev (MVUE) UCL	31.8
95% Chebyshev (MVUE) UCL	36.59	97.5% Chebyshev (MVUE) UCL	43.24
99% Chebyshev (MVUE) UCL	56.31		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

90% CLT UCL	72.89	90% Jackknife UCL	73.12
90% Standard Bootstrap UCL	73.3	90% Bootstrap-t UCL	151.4
90% Hall's Bootstrap UCL	206.6	90% Percentile Bootstrap UCL	73.49
90% BCA Bootstrap UCL	88.54		
90% Chebyshev(Mean, Sd) UCL	108.7	95% Chebyshev(Mean, Sd) UCL	137
97.5% Chebyshev(Mean, Sd) UCL	176.4	99% Chebyshev(Mean, Sd) UCL	253.6

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coeficient

	General Statistics		
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	61
Number of Detects	9	Number of Non-Detects	3
Number of Distinct Detects	9	Number of Distinct Non-Detects	3
Minimum Detect	0.212	Minimum Non-Detect	0.23
Maximum Detect	6.43	Maximum Non-Detect	0.28
Variance Detects	4.217	Percent Non-Detects	25%
Mean Detects	1.29	SD Detects	2.053
Median Detects	0.284	CV Detects	1.591
Skewness Detects	2.414	Kurtosis Detects	6.055
Mean of Logged Detects	-0.574	SD of Logged Detects	1.25

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.614	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.345	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.295	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.023	Standard Error of Mean	0.533
SD	1.739	90% KM (BCA) UCL	1.769
90% KM (t) UCL	1.749	90% KM (Percentile Bootstrap) UCL	1.639
90% KM (z) UCL	1.706	90% KM Bootstrap t UCL	3.419
90% KM Chebyshev UCL	2.621	95% KM Chebyshev UCL	3.345
97.5% KM Chebyshev UCL	4.349	99% KM Chebyshev UCL	6.322

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.119	Anderson-Darling GOF Test		
5% A-D Critical Value	0.753	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.361	Kolmogrov-Smirnoff GOF		
5% K-S Critical Value	0.29	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Date Net Commo Distributed at 5% Cignificance Level				

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.558	k star (bias corrected MLE)	0.725	k hat (MLE)
2.314	Theta star (bias corrected MLE)	1.779	Theta hat (MLE)
10.04	nu star (bias corrected)	13.05	nu hat (MLE)
1.728	MLE Sd (bias corrected)	1.29	MLE Mean (bias corrected)

k hat (KM)	0.346	nu hat (KM)	8.301
Approximate Chi Square Value (8.30, α)	3.693	Adjusted Chi Square Value (8.30, β)	3.34
90% Gamma Approximate KM-UCL (use when n>=50)	2.3	90% Gamma Adjusted KM-UCL (use when n<50)	2.543

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

For gamma distributed detected data, BTVs ar	Id UCLs may I	be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.97
Maximum	6.43	Median	0.257
SD	1.844	CV	1.901
k hat (MLE)	0.421	k star (bias corrected MLE)	0.371
Theta hat (MLE)	2.307	Theta star (bias corrected MLE)	2.615
nu hat (MLE)	10.09	nu star (bias corrected)	8.905
MLE Mean (bias corrected)	0.97	MLE Sd (bias corrected)	1.593
		Adjusted Level of Significance (β)	0.0752
Approximate Chi Square Value (8.90, α)	4.103	Adjusted Chi Square Value (8.90, β)	3.728
90% Gamma Approximate UCL (use when n>=50)	2.106	90% Gamma Adjusted UCL (use when n<50)	2.318
Lognormal GOF	Test on Dete	cted Observations Only	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Lognormal at 5% Significance Level	el
Lilliefors Test Statistic	0.322	Lilliefors GOF Test	
5% Lilliefors Critical Value 0.295 Detected Data Not Lognormal at 5% Significance Level		el	
Detected Data N	ot Lognormal a	at 5% Significance Level	
Lognormal ROS	Statistics Usir	ng Imputed Non-Detects	
Mean in Original Scale	1.01	Mean in Log Scale	-0.879
SD in Original Scale	1.823	SD in Log Scale	1.204
90% t UCL (assumes normality of ROS data)	1.728	90% Percentile Bootstrap UCL	1.695
90% BCA Bootstrap UCL	1.988	90% Bootstrap t UCL	2.956
90% H-UCL (Log ROS)	1.996		
	DL/2 Stati	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1	Mean in Log Scale	-0.945
SD in Original Scale	1.828	SD in Log Scale	1.26
90% t UCL (Assumes normality)	1.72	90% H-Stat UCL	2.143
DL/2 is not a recommended met	hod. provided	for comparisons and historical reasons	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coefficient

APPENDIX G-3

Wetland EU

UCL Statistics for Data Sets with Non-Detects

User Selected Options	3
Date/Time of Computation	1/30/2016 10:48:08 AM
From File	Wetland_EU_data.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Arsenic

General Statistics

Total Number of Observations	128	Number of Distinct Observations	62
Number of Detects	96	Number of Non-Detects	32
Number of Distinct Detects	48	Number of Distinct Non-Detects	20
Minimum Detect	0.82	Minimum Non-Detect	0.63
Maximum Detect	11	Maximum Non-Detect	62
Variance Detects	4.205	Percent Non-Detects	25%
Mean Detects	3.571	SD Detects	2.051
Median Detects	3	CV Detects	0.574
Skewness Detects	1.522	Kurtosis Detects	2.489
Mean of Logged Detects	1.132	SD of Logged Detects	0.527

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0	.856	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 2.074	4E-13	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0	.164	Lilliefors GOF Test
5% Lilliefors Critical Value 0.	0904	Detected Data Not Normal at 5% Significance Level
Detected Date Nat	Normal at 5% Sign	ificance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	3.199	Standard Error of Mean	0.197
SD	2.08	95% KM (BCA) UCL	3.512
95% KM (t) UCL	3.525	95% KM (Percentile Bootstrap) UCL	3.522
95% KM (z) UCL	3.522	95% KM Bootstrap t UCL	3.555
90% KM Chebyshev UCL	3.789	95% KM Chebyshev UCL	4.056
97.5% KM Chebyshev UCL	4.427	99% KM Chebyshev UCL	5.156

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.098	Anderson-Darling GOF Test	
5% A-D Critical Value	0.757	Detected Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.0961	Kolmogrov-Smirnoff GOF	
5% K-S Critical Value	0.0918	Detected Data Not Gamma Distributed at 5% Significance Level	
Detected Data Not Gamma Distributed at 5% Significance Level			

Gamma Statistics on Detected Data Only

3.6	k star (bias corrected MLE)	3.709	k hat (MLE)
0.992	Theta star (bias corrected MLE)	0.963	Theta hat (MLE)
691.2	nu star (bias corrected)	712.1	nu hat (MLE)
1.882	MLE Sd (bias corrected)	3.571	MLE Mean (bias corrected)

k hat (KM)	2.365	nu hat (KM)	605.4
Approximate Chi Square Value (605.42, α)	549.3	Adjusted Chi Square Value (605.42, β)	548.7
95% Gamma Approximate KM-UCL (use when n>=50)	3.525	95% Gamma Adjusted KM-UCL (use when n<50)	3.529

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0781	Mean	3.125
Maximum	11	Median	2.793
SD	2.036	CV	0.651
k hat (MLE)	2.139	k star (bias corrected MLE)	2.094
Theta hat (MLE)	1.461	Theta star (bias corrected MLE)	1.492
nu hat (MLE)	547.6	nu star (bias corrected)	536.1
MLE Mean (bias corrected)	3.125	MLE Sd (bias corrected)	2.159
		Adjusted Level of Significance (β)	0.0481
Approximate Chi Square Value (536.08, α)	483.4	Adjusted Chi Square Value (536.08, β)	482.8
95% Gamma Approximate UCL (use when n>=50)	3.465	95% Gamma Adjusted UCL (use when n<50)	3.469

Lognormal GOF Test on Detected Observations Only

Logilolillai GOF	Test on De		
Lilliefors Test Statistic	0.0598	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0904	Detected Data appear Lognormal at 5% Significance Levent	/el
Detected Data app	ear Lognom	nal at 5% Significance Level	
Lognormal ROS	Statistics Us	sing Imputed Non-Detects	
Mean in Original Scale	3.174	Mean in Log Scale	0.991
SD in Original Scale	1.96	SD in Log Scale	0.573
95% t UCL (assumes normality of ROS data)	3.461	95% Percentile Bootstrap UCL	3.468
95% BCA Bootstrap UCL	3.481	95% Bootstrap t UCL	3.511
95% H-UCL (Log ROS)	3.491		
UCLs using Lognormal Distribution and Ki	VI Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	0.958	95% H-UCL (KM -Log)	3.64
KM SD (logged)	0.664	95% Critical H Value (KM-Log)	1.926
KM Standard Error of Mean (logged)	0.0645		

DL/2 Statistics

DL/2 Normal	DL/	2 Log-Transformed	
Mean in Original Scale	3.93	Mean in Log Scale	1.06
SD in Original Scale	3.712	SD in Log Scale	0.805
95% t UCL (Assumes normality)	4.474	95% H-Stat UCL	4.613

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (BCA) UCL 3.512

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options	6
Date/Time of Computation	1/30/2016 10:49:33 AM
From File	Wetland_EU_data.xls
Full Precision	OFF
Confidence Coefficient	90%
Number of Bootstrap Operations	2000

Arsenic

General Statistics

Total Number of Observations	128	Number of Distinct Observations	62
Number of Detects	96	Number of Non-Detects	32
Number of Distinct Detects	48	Number of Distinct Non-Detects	20
Minimum Detect	0.82	Minimum Non-Detect	0.63
Maximum Detect	11	Maximum Non-Detect	62
Variance Detects	4.205	Percent Non-Detects	25%
Mean Detects	3.571	SD Detects	2.051
Median Detects	3	CV Detects	0.574
Skewness Detects	1.522	Kurtosis Detects	2.489
Mean of Logged Detects	1.132	SD of Logged Detects	0.527

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.	.856	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 2.074	E-13	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.	164	Lilliefors GOF Test
5% Lilliefors Critical Value 0.0	0904	Detected Data Not Normal at 5% Significance Level
Detected Date Nat N	larmal at E0/ Cian	Seenee Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	3.199	Standard Error of Mean	0.197
SD	2.08	90% KM (BCA) UCL	3.445
90% KM (t) UCL	3.452	90% KM (Percentile Bootstrap) UCL	3.451
90% KM (z) UCL	3.451	90% KM Bootstrap t UCL	3.481
90% KM Chebyshev UCL	3.789	95% KM Chebyshev UCL	4.056
97.5% KM Chebyshev UCL	4.427	99% KM Chebyshev UCL	5.156

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.098	Anderson-Darling GOF Test		
5% A-D Critical Value	0.757	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.0961	Kolmogrov-Smirnoff GOF		
5% K-S Critical Value	0.0918	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

3.6	k star (bias corrected MLE)	3.709	k hat (MLE)
0.992	Theta star (bias corrected MLE)	0.963	Theta hat (MLE)
691.2	nu star (bias corrected)	712.1	nu hat (MLE)
1.882	MLE Sd (bias corrected)	3.571	MLE Mean (bias corrected)

k hat (KM)	2.365	nu hat (KM)	605.4
Approximate Chi Square Value (605.42, α)	561.3	Adjusted Chi Square Value (605.42, β)	560.9
90% Gamma Approximate KM-UCL (use when n>=50)	3.45	90% Gamma Adjusted KM-UCL (use when n<50)	3.453

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0781	Mean	3.125
Maximum	11	Median	2.793
SD	2.036	CV	0.651
k hat (MLE)	2.139	k star (bias corrected MLE)	2.094
Theta hat (MLE)	1.461	Theta star (bias corrected MLE)	1.492
nu hat (MLE)	547.6	nu star (bias corrected)	536.1
MLE Mean (bias corrected)	3.125	MLE Sd (bias corrected)	2.159
		Adjusted Level of Significance (β)	0.0979
Approximate Chi Square Value (536.08, α)	494.6	Adjusted Chi Square Value (536.08, β)	494.2
90% Gamma Approximate UCL (use when n>=50)	3.387	90% Gamma Adjusted UCL (use when n<50)	3.39

Lognormal GOF Test on Detected Observations Only					
Lilliefors Test Statistic	Lilliefors Test Statistic 0.0598 Lilliefors GOF Test				
5% Lilliefors Critical Value	0.0904	Detected Data appear Lognormal at 5% Significance Level			
Detected Data appear Lognormal at 5% Significance Level					
Lognormal ROS Statistics Using Imputed Non-Detects					
Mean in Original Scale	3.174	Mean in Log Scale	0.991		
SD in Original Scale	1.96	SD in Log Scale	0.573		
90% t UCL (assumes normality of ROS data)	3.397	90% Percentile Bootstrap UCL	3.398		
90% BCA Bootstrap UCL	3.404	90% Bootstrap t UCL	3.419		
90% H-UCL (Log ROS)	3.415				
UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed					

KM Mean (logged)	0.958	90% H-UCL (KM -Log)	3.546
KM SD (logged)	0.664	90% Critical H Value (KM-Log)	1.481
KM Standard Error of Mean (logged)	0.0645		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	3.93	Mean in Log Scale	1.06
SD in Original Scale	3.712	SD in Log Scale	0.805
90% t UCL (Assumes normality)	4.353	90% H-Stat UCL	4.46

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

Recommendation Provided only for 95% Confidence Coefficient

APPENDIX H

Response to Comments

APPENDIX H Response to Comments Draft Supplemental Remedial Investigation Report (dated February 19, 2016) Former Frontier Leather Tannery Property

Cooperative Agreement BF-00J93201

Reviewer	Reviewer Title	Comment #	Comment	Respo
DEQ comm	ents receiv	-	L dated 3/8/2016	
		1	Page 3, Remedial Investigation Report, GeoEngineers on behalf of DEQ, June 2004. In this section it could be noted that DEQ could not secure access to Tax Lot 602 (formerly Tax Lot 502), and thus it was not sampled during DEQ's RI.	The following sentence was added at the end of the first parage Lot 602 was not included in the RI completed in 2004 because investigation."
		2	Page 4, first bullet. Consider adding this statement: "The distribution of hides observed during the RI suggested they extended onto Tax Lot 602".	The suggested statement was added to the end if the first bull
		3	Page 5, first line. Because chromium levels detected during DEQ's RI were below current DEQ RBCs for human health, it would be informative to provide the basis for why it was identified as a contaminant of potential concern in the DEQ RI (i.e., it exceeded the EPA Preliminary Remediation Goal).	The first line on Page 5 was expanded to read as follows: "Ch (COPC) identified for soil and sediment, because it was found media and the concentrations either exceeded the industrial so EPA at the time of the investigation, or contributed to an unact with all other detected metals."
	iger	4	Page 5, first bullet. It would be informative to state what receptor and pathway accounted for the unacceptable ecological risk (i.e., terrestrial birds exposed to surface soil/sediment), and to include a discussion of ecological hotspots.	The first bullet on Page 5 provides a summary of the ecologica 1. Two sub-bullets were added at the beginning to summarize threatened & endangered (T&E) species. 2. The third sub-bullet now correctly lists those metals that are 3. The fourth sub-bullet identifies the receptor and exposure p conclusions of the Level III ERA as two sub-bullets presenting hot spots.
Mark Pugh	Project Manager	5	Page 6, first full paragraph. In additional to an RI, Geosyntec, on behalf of DEQ, also completed a feasibility study (Geosyntec, Feasibility Study, Former Ken Foster Farm, 23000 to 23500 SW Murdock Road Sherwood, Oregon. June 18, 2015). DEQ is currently developing a site wide cleanup plan.	The last sentence of the reference paragraph was revised to r multiple cleanup alternatives to address the soil impacts. DEC
2	DEQ P	6	Section 5.0 Conceptual Site Model and Risk Evaluation Should DEQ's Risk-Based Decision Making guidance be cited here?	The last sentence in the first paragraph of Section 5.0 was mo Making Guidance from 2003: "The risk evaluation was condu Decision Making for Petroleum Contaminated Sites (DEQ, 200 (DEQ, 2010)."
		7	Page 27, first complete sentence. "Table 4", rather than "Table 5" should be referenced here. Section 5.4.6 Evaluation of Human Health Risk, third paragraph.	The correction was made as noted by DEQ.
		8	The text states "risk from exposure to arsenic is driven by a single detection of arsenic that exceeds RBCs". An alternative and perhaps clearer way to state this is to say there is only one of XXX upland soil samples with an arsenic concentration above its expected naturally occurring concentration. It would be helpful to identify which sample this is (i.e., TP-5-5 collected from 5 feet bgs).	The statement referenced in DEQ's comment was revised as in only one of 78 upland soil samples (TP-5-5) at a concentrat
		9	Page 30, first paragraph. I suggest you characterize the risk as "potentially unacceptable". Page 32, Item 6.	The word "potentially" was incorporated into the sentence as s
		10	The text implies that occupational and excavation worker exposure pathways are currently complete. I suggest you clarify that trespasser is the only current exposure pathway, and that future exposure pathways will include occupational, construction and excavation worker.	The sentence was revised to state that the occupational and e
EPA commer	nts received	via telephone	conversation on 4/7/2016	•
B Perkins	EPA Project Officer	NA	No comments provided.	n/a

sponse

ragraph under the heading identified in DEQ's comment: "Tax use DEQ was not able to secure access to conduct the

oullet on Page 4.

"Chromium was the only constituent of potential concern and at concentrations greater than background levels in these al soil Preliminary Remediation Goal (PRG) established by acceptable level of potential risk when evaluated cumulatively

gical risk assessment and was revised as follows: ize ecological receptor types, including presence/absence of

are CPECs in waters at the site. e pathway evaluated in the Level III ERA and presents the ing the chromium management area and ecological receptor

to read: "DEQ has completed a Feasibility Study to evaluate DEQ is in the process of developing a cleanup plan."

modified to also reference DEQ's Risk-Based Decision ducted in general accordance with DEQ's Risk-Based 2003) and DEQ's Human Health Risk Assessment Guidance

as follows: "It should also be noted that arsenic was detected tration greater than its naturally occurring background level."

as suggested.

d excavation worker exposure pathway are *not* complete.